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We have discovered universal properties of confined random geometric graphs' by developing mathematical models for ad-
hoc networks?. We use these models to design reliable wireless mesh networks at reduced deployment and running costs.

Urbanisation is a significant worldwide trend which Smart City technologies aim to address. These rely heavily on
wireless communications for sensing and control purposes; however the cost and complexity of planning and deploying
such infrastructures is often prohibitive, a problem that this research aims to address.

1" A collection of nodes randomly distributed in some finite domain, pairwise connected with a probability depending on mutual distances.
2> Networks which do not rely on a pre-existing infrastructure and can be deployed “on the fly”.

Universality in network connectivity

Group graphs together according to their largest cluster size:
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Rearranging we can study the probability of full connectivity:
Pre=1— > Hg—... (1)
geGN,N-1
Expectation values are averages over spatial realizations:
1
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Definition / Explanation

H;;=H(r;) Probability that nodes i and j connect
Y /| V  Network domain / Volume
N Number of nodes
p=N/V  Density of nodes
5-[9 Probability of graph g

Gy s Set of graphs with largest cluster of size S

Using (1) and (2), we have derived a general expression for
network connectivity in the high density regime:
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* A sum of separable boundary contributions B which exhibit
universal properties, distinct but complementary to those of
classical percolation phenomena. el
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« Arbitrary convex geometries in any dimension.

* Independent of the connectivity model H;;.

*  First uniform treatment of boundary effects across density regimes.

“Connectivity is governed by the microscopic details of the network
domain such as sharp corners rather than the macroscopic total volume”.
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Network reliability
This can be quantitfied by k-connectivity;
the property that the network remains
connected if any k-1 nodes fail. Our °
analytic expressions provide a useful ’
tool for design specifications.
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Non-convex domains

The network is connected if its sub- e
networks are connected, and there exists R e gyﬂé
at least one “bridging” link X through the l &y b
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Semi-quenched disorder

To analyse the bridging link we keep nodes on one side frozen
(“quenched”) while averaging over the positions of those on the

Anisotropic radiation patterns

Ad-hoc networks with randomly oriented directional antenna
gains G(0) have fewer short links and more long links which can
bridge together otherwise isolated sub-networks. Whether this is
advantageous (or not) is governed by the functional:
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[5] “Connectivity of confined 3D networks with anisotropically radiating nodes”arxlv 1310.7473, (2014).

other side. This realization leads to: Na Ng

X =1- (H(H(l — XijHij))B)A

i=1 j=1

-.. . T’ij 7}'
> For a Rayleigh fading model: £1;; =¢€ (”"0 )
we can calculate :

3
X ~1—exp (—mpg 2T§w>

A | B A B
[4] “Network connectivity through small openings”, Best Paper in proceedmgs ISWCS’13, (2013)

A step closer to Smart-Cities

By quantifying the connectivity of ==
ad-hoc networks, we can control key oY
features such as robustness to failure f,._j |
and identify the most cost effective 1
methods for optimal deployment. =
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