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1. Introduction
A billiard is a dynamical system in which a
particle alternates between motion in a straight
line and specular reflections from a boundary.
The stadium billiard is a chaotic system where
the defocusing mechanism guarantees a pos-
itive Lyapunov exponent λ (exponential sep-
aration rate of nearby trajectories) almost ev-
erywhere, the exception being a zero-measure
family of marginally unstable periodic orbits
between the parallel straight segments called
Bouncing Ball orbits. They have been shown
to lead to an intermittent, quasi-regular be-
haviour which effectively causes the closed sta-
dium to display some weaker chaotic proper-
ties such as an algebraic decay of correlations.
Quantum mechanically they cause scarring, the
system is not quantum uniquely ergodic, an ~
dependent ‘island of stability’ appears to sur-
round them and deviations from random ma-
trix theory (RMT) predictions are observed if
not treated appropriately. The question we ad-
dress here is what is their effect on Transport
through the system?

2. Model: Stadium with 2 holes

Stadium billiard with two holes H1 and H2.

3. Overview of Results
We find that the predominantly chaotic char-
acter of the closed stadium is non-trivially af-
fected by the positioning of holes. In par-
ticular we find that the transmission and re-
flection probabilities, when particles are in-
jected from one of the two holes, are qualita-
tively different at long times depending on the
choice of the injecting hole, therefore display-
ing time-dependent asymmetric transport [1].
The reason for this is that the stadium’s classi-
cal phase space is split into separate regions
occupied by ‘fully-chaotic’ and ‘sticky’ orbits,
which are responsible for the exponential and
algebraic decays respectively. As a result the
two distributions cannot be treated as time-
reverses of each other. Experimental observa-
tion in semiconductor nano-structures would
imply that the Ehrenfest time and more gen-
erally quantum chaos predictions of intermit-
tent system require correction terms subject to
the underlying classical dynamics of the corre-
sponding open systems.

4. Phase Space Splitting

Top: Initial conditions which escape through
H1 and H2. Bottom: Purple, orange and white
corresponds to short, medium and long escape
times. (a = 2, r = 1, hi = 0.5, h−1 = 0.25).

6. Transmission and Reflection survival distributions

Transmission and reflection survival probabilities are defined by P ji (t) and P ii (t) respectively
(i, j = 1, 2), such that P ji (t) = P (x1 . . . xN /∈ H

∣∣x0 ∈ Hi, xf ∈ Hj), where H = H1 ∪H2, N (x0, t) is
the number of collisions with the boundary up to time t, xn denotes the position of the particle at
the nth collision and xf is the final (escape) coordinate. We obtain:
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[2], where 〈τ〉 is the mean free path for 2D billiards, |∂Q| is the perimeter, while the ℘ji s are
the respective asymptotic (t→∞) reflection and transmission coefficients (℘1

i + ℘2
i = 1 due to flux

conservation, and ℘2
1 = ℘1

2 due to time-reversal symmetry).
The variety of options available with regards to hole positions, sizes and system parameters
offers ways of calibrating and controlling these classical distributions and hence encourages the
possibility of experimental observation of the quantum analogue.

7. Quantum time-scales
For typical semiconductor nano-structures, the
time scale τtail at which the algebraic tail
becomes visible (see Figure above) is of the
order of a nanosecond. This is slightly
larger than the predicted Ehrenfest time τE =
λ−1 ln

(
τH〈τ〉/τ2D

)
[3] (the time scale at which

quantum interference effects become appar-
ent ≈ 0.3 ns) and would therefore be sup-
pressed. However, since the nature of chaos lies
in orbital instability, we argue that the Ehren-
fest time τE calculated from the average Lya-
punov exponent λ does not faithfully repre-
sent quantum spreading of the near-bouncing
ball orbits, since for these orbits the finite-time
local Lyapunov exponent is zero, leading to
a much longer validity and persistence of the
classical description of the sticky phase space.

5. Numerical Simulations

a = 2 µm, r = 1 µm, hi = 0.2 µm and h−1 = 0.
τtail ≈ 6.315 ns is the large solution of
e−γt = D

℘1
1t

2 , where ℘1
1 ≈ 0.5594.

The power law decay of P 1
1 (t) is due to the

geometric asymmetry of the hole’s positions
which exploit the marginally unstable bounc-
ing ball orbits as to force a preference of es-
cape through H1. Furthermore, the splitting of
the phase space into fully chaotic and sticky re-
gions renders the later inaccessible to particles
injected through H2.

8. Proposed experimental observation
In a stadium quantum-dot, the charge exiting
through each hole will follow the driving cur-
rent, Iini (t) through hole Hi, with a lag-time τ
which is distributed according to (1) or (2) ap-
propriately. This can be modeled by Ij(t) =

(−1)i+j℘ji
∫∞
0
Iini (t−τ)dP j
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dτ dτ . The observed,
net current through the system is thus given by
Ineti (t) = Iini (t) + I1(t) + I2(t). Because the
probability density dP 1

1 (τ)
dτ is slightly skewed to

the right, relative to the other densities, the two
observables Inet1 (t) and Inet2 (t) will differ by
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dτ . A square
wave signal V (t) = V0 (1 + sign(sinωt)) such
that ω > π/τtail would thus accentuate the
power-law contribution of P 1

1 (t) hence assist-
ing in its experimental detection.
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