Graphical Models for Marked Point Processes

based on Local Independence

VANESSA DIDELEZ
Unwversity College London

Abstract

A new class of graphical models capturing the dependence structure of events
that occur in time is proposed. The graphs represent so—called local independencies,
meaning that the intensities of certain types of events are independent of some (but
not necessarilly all) events in the past. This dynamic concept of independence is
asymmetric, similar to Granger non—causality, so that the corresponding local inde-
pendence graphs differ considerably from classical graphical models. Hence a new
notion of graph separation, called d—separation, is introduced and implications for
the underlying model as well as for likelihood inference are explored. Benefits re-
garding facilitation of reasoning about and understanding of dynamic dependencies

as well as computational simplifications are discussed.
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1 Introduction

Marked point processes are commonly used to model event history data, a term originating
from sociology where it is often of interest to investigate the dynamics behind events
such as finishing college, finding a job, getting married, starting a family, durations of
unemployment, illness etc. But comparable data situations also occur in other contexts,
e.g. in survival analyses with intermediate events such as the onset of a side effect, change
of medication etc. (cf. Keiding, 1999). Longitudinal studies and the careful analysis of the
underlying processes are crucial for gaining insight into the driving forces of inherently
dynamic systems, but having to deal with the multidimensionality as well as with the
dynamic nature of these systems makes this a very complex undertaking.

Graphical models deal with complex data structures that arise whenever the interre-
lationship of variables in a multivariate setting is investigated. Over the last two decades,
they have proven to be a valuable tool for probabilistic modelling and multivariate data

analysis in such different fields as expert systems and artificial intelligence (Pearl, 1988;



Cowell et al., 1999; Jordan, 1999), hierarchical Bayesian modelling (cf. BUGS project
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml), causal reasoning (Pearl, 2000;
Spirtes et al., 2000), as well as sociological, bio-medical, and econometric applications. For
overviews and many different applications see for instance the monographs by Whittaker
(1990), Cox and Wermuth (1996), Edwards (2000).

While the ‘classical’ graphical models are concerned with representing conditional
independence structures among random variables, variations have been proposed to deal
with feedback systems (Sprites, 1995; Koster, 1996) but are still based on cross—sectional
data. The application of graphical models to truly time-dependent data, such as event
histories or time series is only slowly getting on its way. Dahlhaus (2000) has proposed
graphical models for multivariate time series, but his approach does not capture how the
present or future of the system depends on or is affected by the past. Instead, Eichler
(1999, 2000) uses graphs to represent Granger—causality, which is a dynamic concept of
dependence. For continuous time one approach, called Dynamic Bayesian Networks, is to
discretise time and provide directed acyclic graphs that encode the independence structure
for the transitions from ¢ to t+ 1 (Dean and Kanazawa, 1989). The approach proposed by
Nodelman et al. (2002, 2003) comes closest to the kind of graphs that we will consider.
In their Continuous Time Bayesian Networks they represent a multistate Markov process
with nodes corresponding to subprocesses and edges corresponding to dependencies of
transition rates on states of other subprocesses.

In this paper, we propose and investigate the properties of graphs that represent
so—called ‘local independence’ structures in event history data. The basic idea of local
independence is that, once we know about specific past events, the intensity of a consid-
ered future event is independent of other past events. It has been developed by Schweder
(1970) for the case of Markov processes and applied e.g. in Aalen et al. (1980). A gen-
eralisation to processes with a Doob—Meyer decomposition can be found in Aalen (1987)
who focusses on the bivariate case, i.e. local dependence between two processes. Here
we extend this approach to more than two processes. The analogy of the bivariate case
to Granger-non-causality has been pointed out by Florens and Fougere (1996), see also
Comte and Renault (1996). Note that the notion of ‘local independence’ used by Allard
et al. (2001) is a different one.

We first set out the necessary notations and assumptions for marked point processes
in section 2.1 followed by the formal definition of local independence in section 2.2, the
emphasis being on the generalisation to a version that allows to condition on the past

of other processes and hence describes dynamic dependencies for multivariate processes.



Section 3.1 defines graphs that are appropriate to represent local (in)dependence. The
main results are given in section 3.2. The properties of local independence graphs are
investigated. In particular we prove that a new notion of graph separation, called J—
separation, can inform us about independencies that are preserved after marginalising
over some of the processes. In section 3.3, it is shown how the likelihood of a process with
given local independence graph factorises and implications are discussed. The potential of

local independence graphs is discussed in section 4 and proofs are given in the appendix.

2 Local independence for marked point processes

Marked point processes are briefly reviewed in section 2.1 using the notation of Andersen

et al. (1993). In section 2.2 the concept of local independence is explained in some detail.

2.1 Marked point processes and counting processes

Let £ = {ey,...,ex}, K < 00, denote the (finite) mark space, i.e. the set containing all
types of events of interest for one observational unit, and 7 the time space in which the
observations take place. We assume that time is measured continuously so that we have
7 =10,7] or T = [0,7) where 7 < oo. The marked point process (MPP) Y consists of
events given by pairs of variables (T, F), s = 1,2,..., on a probability space ({2, F, P)
where T, € 7,0 < T} < Ty..., are the times of occurrences of the respective types of
events Fy € £. Assume that the MPP is non—explosive, i.e. only a finite number of events
occurs in the time span 7. The mark specific counting processes Ny (t) associated with an
MPP are then given by

Ne(t) =Y E, =e}, k=1, K.

To<t

We write N = (N, ..., Nk) for the multivariate counting process, and N4, A C {1,..., K},
for the vector (Ng)rea, calling N4 a subprocess, with Ny = N.

To investigate dependencies of the present on the past it will be important to have
some notation for the history of some subset or all of the processes involved. Hence we
denote the internal filtration of a marked point process by F; = o{(Ts, Es) | Ts < t, Es €
&} which is equal to o{(Ny(s),...,Nk(s)) | s < t}, while for A C {1,..., K} we define
the filtrations of a subprocess as F/* = 0{N4(s) | s < t}; in particular FF is the internal
filtration of an individual counting process Nj.

Under rather general assumptions (cf. Fleming and Harrington, 1991, p. 61), a Doob—
Meyer decomposition of N(t) into a compensator and a martingale exists. Both these pro-

cesses depend on the considered filtration which is here taken to be the internal filtration



of the whole MPP Y. We will assume throughout that all the F;,—compensators Ay are ab-
solutely continuous and predictable so that intensity processes i (t) exist, which are taken
to be predictable versions of the derivatives of the compensators, i.e. Ag(t) = fot Ak(s)ds.
Heuristically we have (Andersen et al., 1993, p. 52)

Me(t)dt = E(Ny(dt) | Fi-). (1)

More formally this means that the differences N, — A, are F;—martingales.

An interpretation of property (1) is that given the information on the history of the
whole MPP up to just before time t, A(t)dt is our best prediction of the immediately
following behaviour of Nj. Note that for the theory developed in this paper the setting
can slightly be generalised, not requiring absolute continuity of compensators (cf. Didelez,
2000), as might be relevant when certain types of events can only occur at fixed times.

It will be important to distinguish between the F;,—intensity based on the past of the
whole MPP, and the F/-intensities based on the past of the subprocess on marks in A.
The latter can be computed using the innovation theorem (Brémaud, 1981, pp. 83), and
a way of doing so, especially relevant to our setting, is given in Arjas et al. (1992).

The following is a standard assumption in counting process theory but we want to

highlight it as it plays a particularly important role for local independence graphs.

Assumption 2.1 No jumps at the same time

The Frmartingales Ny — [ Ax(s)ds are assumed to be orthogonal for k € {1,..., K},
meaning that none of Ny,..., Ng jump at the same time. This is implied by the above
assumption that all compensators are absolutely continuous if in addition no two counting

processes IN; and NN, are counting the same type of event.

Assumption 2.1 might be violated, e.g. when investigating the survival times of cou-
ples and there is a small but non-zero chance that they die at the same time, in a car
accident for instance. The reason for imposing this assumption is that we want to explain
dependencies between events by the past not by common innovations. If one wants to
allow events to occur at the same time, then such a simultaneous occurrence defines a
new mark in the mark space.

Note that general multi—state processes can be represented as marked point process
with every transition between two states being a mark. This is explored in more detail in
Didelez (2007) for Markov processes.

2.2 Local independence

The bivariate case is defined as follows (cf. Aalen, 1987).
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Definition 2.2 Local independence (bivariate).
Let Y be an MPP with € = {e1,e5} and N; and N, the associated counting processes on
(Q, F, P). Then, N; is said to be locally independent of Ny over T if \(t) is measurable
w.r.t F} for all t € 7. Otherwise we speak of local dependence.

The process N; being locally independent of Ny is symbolised by Ny - Nj. Inter-

changeably we will sometimes say that e; is locally independent of ey, or es /€.

The essence of the above definition is that the intensity A;(¢), i.e. our ‘short—term’
prediction of Ny, remains the same under the reduced filtration F} as compared to the
full one F;. This implies that we do not lose any essential information by ignoring how
often and when event ey has occurred before ¢. One could say that if Ny + N; then the
presence of Nj is conditionally independent of the past of Ny given the past of Ny, or

heuristically*
Nl(t)iLff—Vf—, (2)

where A1l B|C means ‘A is conditionally independent of B given C” (cf. Dawid, 1979).
For general processes, this is a stronger property than local independence but it holds for
marked point processes with Assumption 2.1 as their distributions are determined by the
intensities. Note that (2) does not imply that for u > 0: Ny (¢t 4 u) 1L F2 |FL — hence the
name local independence. Also, Ny(t)1L No(t) will only hold if the two processes are mu-
tually locally independent of each other. Without Assumption 2.1 the F}-measurability
of A (t) would, for instance, trivially be true if e; = ey but, in such a case, we would not

want to speak of independence of e; and es.

Example 1. Skin disease.

In a study with women of a certain age, Aalen et al. (1980) model two events in the life
of an individual women: occurrence of a particular skin disease and onset of menopause.
Their analysis reveals that the intensity for developing this skin disease is greater once the
menopause has started than before. In contrast, and as one would expect, the intensity for
onset of menopause does not depend on whether the person has earlier developed this skin
disease. We can therefore say that menopause is locally independent of this skin disease
but not vice versa. Note that, in whatever way the onset of skin disease and menopause

are measured, it is assumed that they do not start systematically at exactly the same

Note that (2) is an informal way of saying that Ni(dt) is conditionally independent of {T|Ts <
t,Es=2,s=1,2,...} given {Ts|Ts < t,Es =1, =1,2,...}. This and similar statements later, like (3),
(12) or (15), should be interpreted correspondingly.



time, corresponding to the above ‘no jumps at the same time’ assumption.

Let us now turn to the case of more than two types of events. This requires condi-

tioning on the past of other processes as follows.

Definition 2.3 Local independence (multivariate).
Let N = (NVq,..., Ng) be a multivariate counting processes associated with an MPP.
Let further A, B, C' be disjoint subsets of {1,..., K'}. We then say that a subprocess Ng

FAUBYUC intensities A\, k € B, are

is locally independent of N 4o given N over 7 if all
measurable with respect to FPYC for all t € 7. This is denoted by N4 - Ny | N¢ or
briefly A 4 B | C. Otherwise, Np is locally dependent on N4 given N¢, ie. A — B | C.

If C' = () then B is marginally locally (in)dependent of A.

Conditioning on a subset C' thus means that we retain the information about whether
and when events with marks in C' have occurred in the past when considering the intensi-
ties for marks in B. If these intensities are independent of the information on whether and
when events with marks in A have occurred we have conditional local independence. In
analogy to (2) the above definition of multivariate local independence is with Assumption

2.1 equivalent to
Np(t) L FA|FEYC vieT. (3)

Example 2. Home visits

This example is not taken from the literature but is inspired by real studies (e.g. Vass
et al., 2002, 2004). In some countries programmes exist to assist the elderly through reg-
ular home visits by a nurse. This is meant to reduce unnecessary hospitalisations while
increasing the quality of life for the person. It is hoped that such a programme increases
the survival time. The times of the visits as well as the times and durations of hospitali-
sation are monitored. In addition, it is plausible that the underlying health status of the
elderly person may also affect the rate of hospitalisation and predict survival. This inter-
play of events for an individual elderly person can be represented as an MPP if ‘health
status’ is regarded as a multistate process. Assume that the timing of the home visits is
determined externally, e.g. by the availability of nurses which has nothing to do with the
patient’s development, i.e. the visits are assumed locally independent of all the remain-
ing processes. It might then be of interest to investigate whether the visits affect only
the rate of hospitalisation directly, i.e. whether survival is locally independent of the vis-

its process given the hospitalisation and health history or even given only a subset thereof.



As can easily be checked, local (in)dependence needs to be neither symmetric, re-
flexive nor transitive. However, since in most practical situations a subprocess depends
at least on its own past we will assume throughout that local dependence is reflexive. An
example for a subprocess that depends only on the history of a different subprocess and

not on its own history is given in Cox and Isham (1980, p. 122).

In order to see the relation with local independence, we briefly review Granger non—
causality (Granger, 1969). Let Xy = {Xy(t) | t € Z} with Xy (t) = (X1(t),..., Xk(t))
be a multivariate time series, where V' = {1,..., K} is the index set. For any A C V we
define X4 = {X4(¢)} as the multivariate subprocess with components X,, a € A. Further
let X 4(t) = {X4(s) | s < t}. Then, for disjoint subsets A, B C V we say that X, is

strongly Granger-non causal for Xp if
Xp(t)LL X a(t —1) | Xna(t —1),

for all t € Z. The interpretation is similar as for local independence, i.e. the present value
of Xp is independent of the past of X4 given its own past and the one of all other com-
ponents C' = V\ (AU B), in analogy to (3). Also note that the above does not imply that
Xp(t+u)lL X 4(t — 1) | Xyna(t — 1) for u > 0, again analogous to local independence.
Eichler (1999, 2000) investigates a graphical representation and rules to determine when

the condition Xy 4(¢ — 1) can be reduced to proper subsets X¢(t — 1), C C V\A.

Finally, let us indicate how the definition of local independence can be generalised
to stopped processes. This is relevant when there are absorbing states such as death. In
that case all other events will be locally dependent on this one because all intensities
are zero once death has occurred. However, the dependence is ‘trivial’ and not of much
interest. Let T' be a F;—stopping time and let N7 = (N{,... NL) be the multivariate
counting process stopped at 7. Then the intensities of NI are given by X, k € V and

local independence can be formalised as follows.

Definition 2.4 Local independence for stopped processes.

Let NT = (N{ ..., NE) be a multivariate counting processes associated to an MPP and
stopped at time 7. Then we say that A /+ B | C' if there exist F2“~measurable processes
A, k € B, such that the FAYPYC—intensities of N% are given by A (t) = M\ (£)1{t < T},
ke B.

The local independencies in a stopped process have to be interpreted as being valid

as long ast <T.



3 Local independence graphs

We first give the definition of local independence graphs and then investigate what can

be read off these graphs.

3.1 Definition of local independence graphs

An obvious way of representing the local independence structure of an MPP by a graph
is to depict the marks as vertices and to use an arrow as symbol for local dependence as

in the following small example.

Example 1 ctd. Skin disease.

The local independence graph for the relation between menopause and skin disease is very
simple, cf. Figure 1. Notice that even with this simple example there is no way of express-
ing the local independence using a classical graph based on conditional independence for
the two times 77 = ‘time of occurrence of skin disease’ and 75 = ‘time of occurrence of

menopause’ as these are simply dependent.

menopause skin disease
® >0

Figure 1: Local independence graph for skin disease example.

For general local independence structures, we will have directed graphs that may
have more than one directed edge between a pair of vertices, in case of mutual local de-
pendence, and that may have cycles. More formally, a graph is a pair G = (V, E'), where
V ={1,..., K} is a finite set of vertices and E is a set edges. The graph is said to be
directed if E C {(j,k)|j,k € V,j # k}. Later we will also need the notion of an undirected
graph where E C {{j,k}|j,k € V,j # k}. Undirected edges {j, k} are depicted by lines,
j — k, and directed edges (j, k) by arrows, j — k. If (j,k) € E and (k,j) € FE this is

shown by stacked arrows, j — k.

The following property (4) is called the pairwise dynamic Markov property, where we

say dynamic to emphasise the difference to graphs based on conditional independence.

Definition 3.1 Local independence graph

Let Ny = (NVy,. .., Nk) be a multivariate counting process associated to an MPP Y with



mark space & = {ey, ..., ex}. Let further G = (V, E) be a directed graph, V = {1,..., K'}.
Then, G is called a local independence graph of Y if

forall jjkeV: (k)¢E = {j} A{HV\{J k}. (4)
Home o Home o
visits  Hospitalisation visits Hospitalisation
o
o
Death Health status Death Hedlth status
@ (b)

Figure 2: Home visits example; (a) for the whole process; (b) for the stopped process.

Example 2 ctd. Home wvisits

The graph in Figure 2(a) is for the whole process, while (b) shows the local independencies
for the stopped process (stopping when death occurs). There are no arrows into ‘Home
visits’ representing that the rate of visits is locally independent of ‘Hospitalisation” given
‘Health status’ as well as of ‘Health status’ given ‘Hospitalisation’ (while the person is still
alive), reflecting that the visits are determined externally. The latter local independence
might be violated if the nurses, on their own account, increase the frequency of their visits
when they notice that the person’s health is deteriorating. The graph further represents
that survival is locally independent of the visits given hospitalisation and health history,
and that the health process is also locally independent of the visits given hospitalisation
history (while the person is still alive obviously). These absent edges could reflect the
null-hypothesis when investigating whether the visits affect survival in other ways than

through changing the rate of hospitalisation.

3.2 Dynamic Markov properties

The local independence graphs as defined above allow (under mild assumptions) more
properties to be read off, concerning the dependence structure, than just those given by
(4). We may in particular query the graph with the aim of dimension reduction, i.e. with
questions about which other processes can be ignored while investigating certain local

independencies. The local dynamic Markov property addressed in section 3.2.1 tells us



about the immediately relevant information when considering a single mark e; and corre-
sponding Ny. Further, the global dynamic Markov property in section 3.2.2 gives graphical
rules to identify when the separating set itself can be reduced, i.e. when in (4) we do not
need to condition on all V\{j, k} but just on a true subset. For this we need the notion

of d—separation also introduced in section 3.2.2.

Some more graph notation will be required. A path between two nodes is defined in
the obvious way (the formal definition is given in Appendix A.2): we distinguish between
undirected paths for undirected graphs, directed paths, preserving the direction of edges,
for directed graphs and trails for connections in directed graphs that do not preserve the
direction. For directed graphs we further require the following almost self-explanatory
notations. If a — b then a is called a parent of b and b is a child of a (if a — bthena
is both, a child and a parent of b); pa(A) denotes the set of all parents of nodes in A C V/
without A itself, and ch(A) analogously the set of children of A. The set cl(A) = pa(A)UA
is called the closure of A. If there is a directed path from a to b then a is an ancestor of
b and b is a descendant of a; the corresponding set notation is an(A) and de(A) (always
excluding A itself). Consequently, nd(A) = V'\(de(A) U A) are the non—descendants of A.
If pa(A) = 0, then A is called ancestral. In general, An(A) is the smallest ancestral set
containing A, given by A U an(A).

3.2.1 Local dynamic Markov property

Definition 3.2 Local dynamic Markov property
Let G = (V, E) be a directed graph. For an MPP Y the property

forall k e V:  V\cl(k) £{k} | pa(k), (5)
is called the local dynamic Markov property w.r.t. G.

In other words, property (5) says that every F;-intensity A is Fy 1(k)fmeausurable,
which clearly implies that for any ancestral set A the intensity A4 is F/'-measurable.
This property could for instance be violated if two components in pa(k) were a.s. identical
which is however prevented by the orthogonality assumption 2.1. As shown in Appendix

A.3, the exact condition for the property (5) to follow from (4) is that
FANFE=FA" YA BCV, VteT, (6)

where we define F? = {(), Q}. Property (6) is called ‘conditional measurable separability’

(Florens et al., 1990) and formalises the intuitive notion that the components of N are

10



‘different” enough to ensure that common events are necessarily due to common compo-

nents.

Example 2 ctd. Home wvisits

Let us consider the question whether the four processes are sufficiently different to ensure
(6). If the health process is measured in a way such that it is determined by the number
and duration of past hospitalisation, not taking any other information into account, this
assumption might be violated. However, it makes sense and we will assume for this ex-
ample that the ‘Health status’ reflects more aspects of a person’s health than just past
hospitalisations. Then it seems plausible that (6) is satisfied as the other processes are
clearly capturing different information anyway. Consequently we can use the local dy-
namic Markov property to read off that the visits process is locally independent of both,

hospitalisation and health status (while the person is still alive).

3.2.2 (—separation and the global dynamic Markov property

In undirected graphs we say that subsets A, B C V are separated by C' C V if any path
between elements in A and elements in B is intersected by C'. This is symbolised by
All, B|C. In classical graphical models every such separation induces conditional inde-
pendence between A and B given C regardless of whether (A, B, C) is a partition of V'
or not. This can obviously lead to considerable dimension reduction if C' is chosen mini-
mally and the graph is sparse. To obtain a similar result for local independence graphs we
require a suitable notion of separation called é—separation, introduced below after some

more graph notation.

The moral graph G™ is given by inserting undirected edges between any two vertices
that have a common child (if they are not already joined) and then making all edges
undirected (two directed edges between a pair of nodes are replaced by one undirected
edge). This procedure of moralisation will also be applied to an induced subgraph G 4,
A C V, defined as (A, E4) with E4 the subset of £ containing only edges between pairs
of nodes in A. Finally, for B C V, let GP denote the graph obtained by deleting all
directed edges of GG starting in B.

Definition 3.3 d-Separation.

Let G = (V, E') be a directed graph. Then, we say for pairwise disjoint subsets A, B,C C V
that C' 0-separates A from B in G if A1L, B|C in the undirected graph (
(the case of non—disjoint A, B, C'is given in Appendix A.2).

m

B
GAn(AUBUC))
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Note that except for the fact that we delete edges starting in B, which makes -
separation asymmetric, the definition parallels the one for DAGs. This initial edge deletion
can heuristically be explained by the fact that we want to separate the present of B from
the past of A and hence we disregard the ‘future’ of B which is where the edges out of B
point to; for the same reason only the ancestral set An(A U B U () is considered. As for
DAGs the insertion of moral edges is necessary whenever we condition on a common ‘child’
due to a ‘selection effect’” by which two marginally independent variables (or processes)
that affect a third variable (or process) become dependent when conditioning on this third

variable. Further properties of d—separation are discussed in Didelez (2006).

Definition 3.4 Global dynamic Markov property
Let Ny = (Ny,..., Ng) be a multivariate counting process associated to an MPP Y and
G = (V, E) a directed graph. The property that

for all disjoint A, B,C C V : C é-separates A from BinG = A+LB|C. (7)
is called the global dynamic Markov property w.r.t. G.

The significance of the global Markov property is that it provides a way to verify
whether a subset C' C V\(A U B) is given such that A 4 B|C, i.e. local independence is
preserved even when ignoring information on the past of processes in V\(AU BUC'). Of
course, (7) is only meaningful if it can be linked to the definition of local independence

graphs addressed next.

Theorem 3.5 FEquivalence of dynamic Markov properties

Let Y be a marked point process and G = (V, ) a directed graph. Under the assumption
of (6) and further regularity conditions (cf. Appendix A.3), the pairwise, local and global
dynamic Markov properties, i.e. (4), (5) and (7) are equivalent.

The proof is given in Appendix A.3.

Example 2 ctd. Home wvisits.

The underlying health status of an elderly person may be difficult to measure accurately in
practice. Let us therefore investigate the local independence structure when ignoring this
underlying process altogether, in particular consider the question of whether from Figure
2 we can infer that survival is still locally independent of ‘Home visits’ given only the
hospitalisation but ignoring the health process. Graphically this means we have to check
whether the node ‘Hospitalisation’ alone separates ‘Home visits’ from ‘Death’. As can be

seen from the corresponding moral graph (for the stopped process) in Figure 3 this is not
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the case. Hence, even though the home visits are assumed to be determined externally in
Figure 2 and do not affect survival directly, ignoring the underlying health process may
lead to a ‘spurious’ local dependence of survival on the home visits. The reason is that,
for instance, a history of hospitalisation with preceding home visit predicts survival differ-
ently from a hospitalisation without preceding home visit — the former might mean that
the health was especially bad and hence hospitalisation was necessary, while the latter al-

lows minor health problems that could have been treated by a nurse who was not available.

Home o
visits Hospitalisation

Death Hedth status

Figure 3: Moral graph for home visits example.

Notice that intuitively it is clear that if the intensity of the visits depended on the
underlying health status, i.e. if there was a directed edge from ‘Health’ to “Visits’, we
could talk of confounding. Hence it is rather surprising that even when the frequency of
the visits is controlled externally we may find a spurious dependence. For the discrete
time case Robins (1986, 1997) has demonstrated that nevertheless in a situation like Fig-
ure 2 we can draw causal conclusions even when no information on the underlying health
process is available. However, standard methods that just model the intensity for survival
with time varying covariates for the times of previous home visits and hospitalisations
will typically give misleading results due to the conditional association between ‘Home

visits’ and ‘Death’ given ‘Hospitalisation’.

Example 3. Chemo therapy cycles

To see a more complex example of a local independence graph consider a hypothetical
study (which is inspired by real studies) where early stage breast cancer patients are
observed over a period of several months during which they receive at least one but
usually more cycles of chemo therapy. The tumour size is monitored through palpation.
The doctors will consider removing the tumour by surgery if the size does not decrease and
surgery is almost certain if it increases. Furthermore, the chemo therapy may be delayed

or discontinued if the patient shows a toxic reaction following the treatment but also if the
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Toxic Chemo
reaction  therapy  Surgery

Anxiety Tumour  Death
size

Figure 4: Local independence graph for chemo therapy example (stopped process).

patient requests a delay, possibly due to an increased state of anxiety. Except for tumour
size all processes count one type of event that can occur once or more often. Tumour size
is measured categorically depending on the number and palpable size of lesions and can
be regarded as a multistate process. Figure 4 shows a hypothetical local independence
structure. For instance it assumes that survival locally depends on the tumour size and
whether surgery has taken place, but once this information is given none of the other
processes are relevant for the intensity of death. Note that this particular assumption
could plausibly be violated because toxic reactions and anxiety may reflect other health
problems, but for simplicity we will assume that all patients are ‘healthy’ except for the
breast cancer so that this violation is excluded.

Figure 5 shows the different moral graphs constructed from Figure 4 to investigate
d—separations. Graph (a) shows d—separation from the node ‘Death’ allowing us to read
off, for instance, that ‘Chemo therapy’ is not d—separated from ‘Death’ by ‘Tumour size’
alone reflecting that chemo therapy predicts survival if surgery history is ignored. This
is plausible because knowing that for example a decrease in tumor size was preceded by
a treatment cycle is informative for surgery, making it less likely than without preced-
ing chemo therapy; and whether surgery has taken place, in turn, predicts the survival
chances. As ‘Anxiety’ is problematic to observe and measure we may further be interested
in the question of when it can be ignored. We see from the graph (a) that ‘Death’ is lo-
cally independent of ‘Anxiety’ given either the set {‘Surgery’, ‘Tumour size’} or {‘Chemo
therapy’, ‘Tumour size’}, the latter implying that once we know the chemo therapy his-
tory in addition to the development of the tumour size then anxiety will not inform us
any further about the intensity for death regardless of whether surgery and toxic reaction
history is known or not. But note that even though ‘Anxiety’ does not affect ‘Tumour size’
directly the latter has to be part of the separating set. Figure 5(b) shows that ‘Anxiety’

is d—separated from ‘Surgery’ by any set that includes ‘Tumour size’ and similarly for
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Toxicr. Chemoth. Surgery Toxicr. Chemo th.

Anxiety  Tumour s.

(b)

Anxiety  Tumour s.

@

Chemoth. Surgery Toxicr. Chemoth. Surgery

Anxiety) Tumour s.

(d)

Anxiety  Tumour s.

(©

Figure 5: Different moral graphs for chemo therapy example. Dotted edges have been
added due to a ‘common child’ in Figure 4 and circles indicate that arrows out of these

nodes have been deleted before moralising.

(c) that it is 0—separated from ‘Toxic reaction’ by any set that includes ‘Chemo therapy’
— in these two cases d—separation does not tell us more than the local dynamic Markov
property (5). From graph (d) we see that ‘Anxiety’ itself is locally independent of ‘Chemo
therapy’ and ‘Tumour size’ given ‘Toxic reaction’ and of ‘Surgery’ given either ‘Toxic

reaction’ or the set {‘Chemo therapy’, ‘Tumour size’}.

3.3 Likelihood factorisation and implications

In order to discuss properties and implications for the likelihood for graphical MPPs we
will regard the data consisting of times and types of events (t1,e1), (t2,€2), ..., (t,, €,) as
a realisation of the history process Hy = {(Ts, Fs)|Ts < t}. As for filtrations, H;~ denotes
the strict pre-t history process. Additionally, HA, A C {1,..., K}, defined as

H = {(T,B) | To<tand 3k € A: B, = e, s =1,2...}

denotes the history process restricted to the marks in A. Any set of marked points for
which it holds that ¢, = t,, s # u, implies e, = e, can be a history, i.e. a realization of
H;. Note that (up to completion by null sets) the different filtrations can be regarded as
being generated by the history processes, i.e. F* = o{HA}, AC {1,...,K}.
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Before deriving the likelihood for a given local independence graph, we recall it for
the general case. Based on the mark specific intensity processes A\x(t) the corresponding
crude intensity process is given by A(t) = Zszl Ak(t). This is the intensity process of the

cumulative counting process ), Nj. The likelihood process L(t|H;) is then given as
t
L(t|Hy) = [] Ae.(T2) - exp (—/ A(s) ds) . (8)
To<t 0

To see how the likelihood is affected by GG being a local independence graph of Y, we first

rewrite (8) as follows:

K t K
Lt H) = [] ] (@)= - exp (-/ > Als) ds)
k=1Ts<t 0 k=1
K t
= H H Ne(Tory) - exp (—/ k() ds) ,
k=1 \ Ty <t 0
where Ty with Ey) = e, are the occurrence times of mark e;. The inner product of the

above can be regarded as the mark specific likelihood and is denoted by Ly (t|H;). Now, by
the definition of a local independence graph and the equivalence of the pairwise and local
dynamic Markov properties under condition (6) we have that A(s) is Fy 1(k)—measurauble,

where cl(k) is the closure of node k. Hence, it follows that
1
Le(tlH,) = Ly(t| ™), (9)

i.e. the mark specific likelihood L, based on the whole past remains the same if the
available information is restricted to how often and when those marks that are parents of
e in the graph and ey itself have occurred in the past, symbolised by H, cltk),

It follows that under (6) the likelihood factorises as
L(t|Hy) = [] Lt ™), (10)
%

which parallels the factorisation for DAGs where the joint density is decomposed into the
univariate conditional distributions given the parents. Here, we replace the parents by the
closure because we also need to condition on the past of a component itself which is not

required in the static case.

Example 2 ctd. Home wvisits

From Figure 2(b) we obtain the following factorisation
L(t|Ht) = LW_(t|Ht{vi})Lho(ﬂHt{vi,ho,hS})th(t|Ht{ho,hS})Ld(ﬂHt{d,ho,hs})
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for t < time of death, where vi, ho, hs, d stand for ‘visits’, ‘hospitalisation’, ‘health status’

and ‘death’ respectively.

Two consequences of the above factorisation regarding the relation of local and con-

ditional independence are given next.

Theorem 3.6 Conditional independencies
For an MPP with local independence graph G and disjoint A, B,C' C V, such that C'
separates A and B, i.e. All, B | C,in (Ganaupuc))™, we have

FAULFP|FE vYteT. (11)

The proof is given in appendix A.4. The graph separation that A, B, C have to satisfy
for (11) implies that for each k& € C the FAYBYC—intensity \; is either FAYC— or FPUC-
measurable, otherwise C' could not separate A and B in the moral graph. Also, of course,
we have that for each k € A (resp. B) the FAYBY—intensity is FAYC (resp. FPYUC)-
measurable; otherwise there would be edges linking A and B in the graph and they could
not be separated. A property similar to (11) has been noted by Schweder (1970, Theorems
3 and 4) for Markov processes. With a similar argument we can reformulate (2) and (3):

for any B C V we have
Np(t) 1L F\AE) | FlB) (12)

i.e. the present of Np is independent of the past of Ny () given the past of Ny p).

Example 3 ctd. Chemo therapy cycles

Let A =‘Surgery’, B =‘Toxic reaction’ and C' = {‘Chemo therapy’, ‘Tumour size’}. Then
(G An(auBuc))™ 1s the same as Figure 5(a), where the node ‘Death’ could be omitted as
we are conditioning on the patient being alive anyway, and indeed A and B are separated
by C. With (11) we can infer that at any time ¢ (before death) the whole surgery history,
i.e. whether and when surgery has taken place before ¢, is independent of whether and
when toxic reactions have occured given we know the tumour size development up to ¢
and when chemo therapy has been administered. Note that as mentioned above we have
for the nodes in C' that the F/AYB“C—intensity for ‘Tumour size’ is F/1"“~ and the one
for ‘Chemo therapy’ is FPYC“~measurable; the latter can be seen, using §-separation, by
checking that ‘Chemo therapy’ is locally independent from A =‘Surgery’ given {‘Chemo

therapy’, ‘Toxic reaction’ } (the relevant moral graph happens to be the same as Figure

5(b)).
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3.4 Extensions

Local independence graphs can easily be extended to include time-fixed covariates, such
as sex, age and socioeconomic background of patients etc. The filtration at the start,
Fo, then has to be enlarged to include the information on these variables. They can be
represented by additional nodes in the graph with the restrictions that the subgraph
on the non-dynamic nodes must be a DAG (or chain graph, cf. Gottard, 2002) and no
directed edges are allowed to point from processes to time—fixed covariates. A process
being locally independent of a time-fixed covariate means that the intensity does not
depend on this particular covariate given all the other covariates and information on the
past of all processes. d—separation can still be applied to find further local independencies.

The nodes in a local independence graph do not necessarily have to stand for only
one mark (or the associated counting process), marks can be combined into one node as
has been done in Examples 2 and 3 with ‘Health status’ and ‘Tumour size’. This might
be of interest when there are logical dependencies. For example if a particular illness
is considered then the events ‘falling ill” and ‘recovering’ from this illness are trivially
locally dependent. If one node is used to represent a collection of marks corresponding to
a multivariate subprocess of the whole multivariate counting process then an arrow into
this node will mean that the intensity of at least one (but not necessarily all) of these
marks depends on the origin of the arrow. However, some interesting information could
be lost. For instance, if events such as ‘giving birth to 1st child’, ‘giving birth to 2nd
child’” etc. are considered, it might be relevant whether a woman is married or not when
considering the event of ‘giving birth to 1st child’ but it might not be relevant anymore
when considering ‘giving birth to 2nd child.’

In many data situations the mark space is not finite, e.g. when measuring the mag-
nitude of electrical impulse, the amount of income in a new job or the dosage of a drug.
One could then discretise the mark space e.g. in ‘finding a well paid job’ and ‘finding a
badly paid job’. However, it must be suspected that too many of these types of events will
generate too many logical dependencies that are of no interest and will make the graphs
crammed.

As we have seen in some of the examples it is sometimes sensible to consider stopped
processes in order to avoid having to represent logical and uninteresting dependencies.
More generally one might want to relax in Definition 2.3 the requirement ‘for all t € 7
and instead consider suitably defined intervals based on stopping times. For example,
it might be the case that the independence structure is very different between the time
of finishing education and starting the first job than before or after that. This deserves

further investigation.
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4 Discussion and conclusions

The main point of graphical models is that they allow certain algebraic manipulations
to be replaced by graphical ones. In the case of local independence graphs, we can read
properties of intensity processes with respect to different, in particular reduced filtrations,
off the graph without the need to derive explicit formulae for these intensities, and simi-
larly we can read off relations among subprocesses such as properties (11) and (12). This
facilitates reasoning about complex dependencies, especially in the face of unobservable
information, and simplifies calculations by reducing dimensionality.

Clearly, it is tempting to interpret local independence graphs causally. However, we
regard causal inference as a topic of its own and it is not the aim of this paper to go into
much detail in this respect, but for the following few comments. Local independence graphs
represent (in)dependencies in E(Ng(dt)|F;-), where conditioning is on having observed F;-
and, as we saw in Example 2, it makes a difference to what dependencies there are whether
we condition on F;- or different subsets (or even extensions) thereof. Causal inference is
about predicting N (dt) after intervening in F;-, e.g. by modulating the times of the home
visits to be once a week in the home visits example. It is well known that conditioning on
observation is not the same as conditioning on intervention (“seeing” and “doing” in Pearl
(2000)). Hence, without further assumptions, the arrows in local independence graphs do
not necessarily represent causal dependencies — the intensity of an event being dependent
on whether another event has been observed before does not imply causation in the same
way as correlation does not imply causation. Such further assumptions could be that
all ‘relevant’ events (or processes) have been taken into account, like originally proposed
by Granger in order to justify the use of the term ‘causality’ for what is now known as
Granger-causality. E.g. if, in Figure 2(b), we are satisfied that by including ‘Health’ all
relevant processes have been taken into account, then we could say that homevisits are
indirectly causal for ‘Death’. Obviously, in this particular example, there are many other
relevant processes, like the occurrence of illnesses or death of the partner, that might
be relevant. However, the literature on (non-dynamic) graphical models and causality
has shown that causal inference is possible under weaker assumptions. Analogous results
based on local independence graphs would require more prerequisites than we have given
in this paper. Hence this is a topic for further research. For non—graphical approaches
to causal reasoning in a continuous time event history setting confer Eerola (1994), Lok
(2001), Arjas and Parner (2004) and Fosen et al. (2004).

Another issue is the question of statistical inference for local independence graphs.

This can be subdivided into (i) inference when a graphical structure is given, e.g. from
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background knowledge, but we still want to quantify the strength of the dependencies,
and (ii) finding the graph from data if nothing about the local independence structure is
known beforehand, which can be regarded as a particular kind of model selection or search
task. The former has partly been addressed in section 3.3, where more specific results will
depend on the actual modelling assumptions about the intensity processes which in turn
will depend on the particular application. Estimation and testing within the class of
Markov processes is tackled in Didelez (2007). More generally, local independence graphs
can be combined with non—, semi— or parametric methods but more research is required
to investigate how the graphical representation of the local independence structure can
simplify inference in particular settings. As to model search, Nodelman et al. (2003) pro-
vide a first attempt, restricted to Markov processes, at exploiting the graphical structure
to find the graph itself when it is not postulated based on background knowledge. Clearly,

generalisations would be desirable.

A Appendix

The appendix is targeted at proving Theorem 3.5, but to do so we first give some more
results on the properties of local independence and d—separation which will be used in
that proof. These are explored along the lines of the graphoid axioms (Dawid, 1979; Pearl
and Paz, 1987; Pearl, 1988; Dawid, 1998) which have been generalised to the asymmetric
case by Didelez (2006).

A.1 Properties of local independence

Proposition A.1 Properties of local independence

The following properties hold for local independence:

(i) left redundancy: for all A, B C V: A/ B|A,
(ii) left decomposition: for all A, B,C C V and D C A: if A /B|C then D 4+ B|C,

(iii) left weak union: for all A, B,C C V and D C A: if A 4 B|C then A 4 B|(C U D)
and

right weak union: for all A, B,C' C V and D C B: if A /B|C then A £ B|(C'UD),

(iv) left contraction:

forall A,B,C,D CV:if A/ B|C and D /B|(AUC) then (AU D) /B|C,

(V) right intersection:

forall A,B,C c V:if A/~B|C and A /~C|B then A /~(BUC)|(BNC).
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Proof:

(i) Left redundancy holds since obviously the F/"YB-intensities of N g are F/1“B-measurable,
i.e. if the past of N4 is known, then the past of N 4 is of course irrelevant.

(ii) Left decomposition holds since the FAYB“C-intensities \.(t), k € B, are FPUC-
measurable by assumption so that the same must hold for the FZYC“Pintensities A (),
k € B, for D C A.

(iii) Left and right weak union also trivially hold since adding information on the past of
components that are already uninformative (left) or included (right) does not change the
intensity.

fAUBUCUD
t

(iv) Left contraction holds since we have that the ~intensities Ay, k € B, are by

f’AUBUC’

; ~measurable and these are again by assumption F;?“¢

assumption ;. ~~—measurable.
(v) The property of right intersection can be checked by noting that in the definition of
local independence the filtration w.r.t. which the intensity process should be measurable

is always generated at least by the process itself. 0

Note that left redundancy, left decomposition and left contraction imply that
A+-B|C < A\CHB|C. (13)

It is also always true that A ~B | C' = A /B\C|C, but we do not have equivalence here.

The following property will be important for the equivalence of pairwise, local and
global dynamic Markov properties (just like in the well-known case of undirected condi-

tional independence graphs, cf. Lauritzen, 1996).

Proposition A.2 Left intersection for local independence
Under the assumption of (6) local independence satisfies the following property called left
intersection: for all A, B,C C V

if AAB|Cand C /AB| Athen (AUC) AB|(ANC).

Proof:
Left intersection assumes that the F/AVB“C—intensities A\, (t), k € B, are FPY“— as well as
FAYB-_measurable. With (6) we get that they are FPUA9) measurable which yields the

desired result.

The following can be regarded as an alternative version of the above property of left

intersection. With (13), left decomposition and left intersection we have that for disjoint
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A,B,C,DCV
A£B|(CUD)and C 4B | (AUD) = (AUC) 4B | D (14)

This follows from Corollary 4.3 of Didelez (2006).

The last property that I want to consider, the ‘right” counterpart of left decomposition
given above, makes a statement about the irrelevance of a process N 4 after discarding part
of the possibly relevant information Ng\ p. If the irrelevance of N4 is due to knowing the

past of N\ p then it will not necessarily be irrelevant anymore if the latter is discarded.

Proposition A.3 Conditions for right decomposition of local independence

Consider a marked point process and assume that the cumulative counting process » © Ny is
non—explosive and that intensites exist. Let A, B,C' C V', D C B, with (BNA)\(CUD) =
(). The following property, called right decomposition,

A+LB|C = A4LD|C
holds under the conditions that
B £~A\(CUD)|(CUD)
and
ALk} | CUB or BA{k} | (CUDUA)
for all k € C\D.

Proof:
In this proof we proceed somewhat informally for the sake of simplicity. The formal proof
is based on the results of Arjas et al. (1992) and given in Didelez (2000, pp. 72).
Redefine A* = A\(C' U D), B* = B\D and C* = C\D. Then A* N B* = () and with
(12) and (11), it can be shown that the assumptions of the present proposition imply that

Np(t)lL FY | 7P (15)
as well as

FUALFS | FOP. (16)
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We want to show that the FAY“Pintensity Ap(t) of Np(t) is FCP-measurable. With

the above and interpretation (1) we have

Ap(t)dt = E
—  B(B(Np(dt
t

Np(dt) | FAYUP) = E(Np(dt) | FAVVP)
(

Np(dt) | FELUOVDY | FATRCTUD) using (15)
)
)

) ‘ ftAjUB*UC*UD) ‘ fﬁ*UC*UD)

| FETUP) using (16)
dt) | F2OP),

as desired.

A.2 Properties of /—separation

For a general investigation of the properties of é—separation we need to complete Defini-
tion 3.3 by the case that A, B and C are not disjoint: we then define that C' d—separates
A from B if C\B d-separates A\(B U C) from B. We further define that the empty set
is always d—separated from B. Additionally, we define that the empty set d—separates A

from B if A and B are unconnected in (ng( AU B))m.

It can be shown (Didelez, 2006) that d—separation satisfies the same properties as lo-
cal independence given above in Proposition A.1 if we replace A /4 B|C by “C' §—separates
A from B” which we will write as AIRsB|C'. In particular it satisfies left redundancy, left
decomposition, let and right weak union, left and right contraction as well as left and
right intersection without requiring further asumptions. The property of right decompo-
sition holds for d—separation under conditions analogous to those in Proposition A.3. In

particular we have the following special case of right decomposition
ARsB | C, D C B= A1rsD | (CUB)\D (17)

which is Lemma 4.11 in Didelez (2006).

In addition, we want to show how d—separation can be read off a local independence
graph in a different but equivalent way to Definition 3.3. We mention this firstly, because
it will be more familiar to readers who use d-separation for DAGs (Pearl, 1988; Verma
and Pearl, 1990), and secondly, because some parts of the proof of Theorem 3.5 are easier
to show using this alternative way of checking d—separation.

First, the different notions of paths and trails need to be made more stringent. Con-

sider a directed or undirected graph G = (V, E'). An ordered (n + 1)-tuple (jo,...,jn) of
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distinct vertices is called an undirected path from jo to j, if {ji_1,ji} € F and a directed
path if (j;_1,7;) € E for all i = 1,...,n. A (directed) path of length n with j, = 7,
is called a (directed) cycle. A subgraph m = (V', E’) of G with V' = {jo,...,J,} and
E' ={ey,...,e,} C F is called a trail between jy and j, if e; = (J;_1, i) or €; = (Ji, Jiz1)
or e; = {Jji,Ji—1} for all i = 1,... n. Further, for a directed graph we say that a trail
between j and k is blocked by C if it contains a vertex v such that either (i) directed
edges of the trail do not meet head-to-head at v and v € C, or (ii) directed edges of the
trail meet head-to—head at v and v as well as all its descendants are no elements of C.

Otherwise the trail is called active.

Proposition A.4 Trail condition for d—separation

Let G = (V, F) be a directed graph and A, B, C pairwise disjoint subsets of V. Define
that any allowed trail from A to B contains no edge of the form (b, k),b € B,k € V\B.
For disjoint subsets A, B, C' of V| we have that C' —separates A from B if and only if all
allowed trails from A to B are blocked by C.

The proof is given in Didelez (2000, pp.22; cf. also Didelez, 2006).

A.3 Proof of Theorem 3.5

It is easily checked that (7) = (5) = (4): First, pa(k) always 0—separates V'\ (pa(k) U{k})
from {k} in G, hence (5) is just a special case of (7). Also, it is easy to see that the
equivalence of the pairwise and local dynamic Markov properties immediately follows from
left intersection assuming (6), left weak union and left decomposition. Thus, the following
proof considers situations where A, B, C' do not form a partition of V' or pa(B) ¢ C. The
structure of the proof corresponds to the one given by Lauritzen (1996, p. 34) for the
equivalence of the Markov properties in undirected conditional independence graphs. Due
to the asymmetry of local independence, however, this version is more involved.

Assume that (4) holds and that C' j—separates A from B in the local independence graph.
We have to show that A % B | C, i.e. the FAYBY“—intenities M\, (t), k € B, are FPYC—
measurable. The proof is via backward induction on the number |C| of vertices in the
separating set. If |C'| = |V| — 2 then both, A and B consist of only one element and (7)
trivially holds. If |C| < |V| — 2 then either A or B consist of more than one element.
Let us first consider the case that A, B, C' is a partition of V' and none of them is empty.
If |[A] > 1 let @ € A. Then, by left weak union and left decomposition of é—separation we
have that C'U (A\{«}) d—separates {a} from B, i.e.

{a}msB | CU (A\{a})
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and C' U {a} d-separates A\{a} from B in G, i.e.
A\{a}1rRsB | (CU{a}).
Therefore, we have by the induction hypothesis that

{a} £2B [ CU(A\{a}) and A\{a} /B | (CU{a}).

From this it follows with the modified version of left intersection as given in (14) (which
can be applied because of the assumption that (6) holds) that A /B | C' as desired.

If | B| > 1 we can show by a similar reasoning, applying (17) to {#} € B, that A B | C.
Let us now consider the case that A, B,C' C V are disjoint but no partition of V. First,
we assume that they are a partition of An(AU B UC), i.e. that AU BUC is an ancestral
set. Let v € V\(AU BUC(), i.e. v is not an ancestor of AU B U C'. Thus, every allowed
trail (cf. Proposition A.4) from 7 to B is blocked by A U C' since any such trail includes
an edge (k,b) for some b € B where no edges meet head-to-head in k and k € AUC.

Therefore, we get
{7} 1RsB | (AUC).

Application of left contraction, weak union, and decomposition for é—separation yields
AR B | (CU{~}).
It follows with the induction hypothesis that

A+LB|(CU{y}) aswell as {v} ~#B| (AUC).

With left intersection as given by (14) and left decomposition for local independence we
get the desired result.

Finally, let A, B, C be disjoint subsets of V and A U B U C not necessarily an ancestral
set. Choose v € an(AU BUC) and define G = Gin(AUBUc). Since AL, B| C in (GF)™

we know from the properties of ordinary graph separation that

(i) either {y}1L, B | (AUC) in (G&)™
(i1) or AL, {y} | (BUC) in (GF)™.

(i) In the first case {7y} IRsB | (AU C) and it follows from left contraction that
(Au{v})RrsB | C.

Application of left weak union and left decomposition yields AIRsB | (C'U{v}). With the

induction hypothesis we therefore get

A£B[(CU{r}) and {y} £~ B | (AUC).
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Left intersection according to (14) and left decomposition for local independence yields
A+LB|C.

(ii) The second case is the most complicated and the proof makes now use of right de-
composition for local independence under the conditions given in Proposition A.3. First,
we have from (ii) that ALL {7y} | BUC in (Ganaupuc))™ since the additional edges
starting in B can only yield additional paths between A and ~ that must be intersected
by B. Since deleting further edges out of v does not create new paths, it holds

Atrs{~} [ (BUC).

With A1rsB | C, application of right contraction for d—separation yields A1rs(BU{7}) |
C'. Now, we can apply property (17) to get A1RsB | (C'U{~}) from where it follows with
the induction hypothesis that

A£BI(CU{Y) and A {7} [ (BUC),

With right intersection for local independence we get A 4 (B U {v}) | C. In addition,
{7} +# A | (BUC) by the same arguments as given above for A 4 {7} | (BUC). In
order to apply Proposition A.3 we still have to show that for all k£ € C' either AIRs{k} |
(CUBU{v}) or {7} 1rs{k} | (C U B U A) which by the induction hypothesis implies
the corresponding local independencies. To see this, assume that there exists a vertex
k € C for which neither holds. With the trail condition we then have that in G Anaupuey
there exists an allowed trail from A and -, respectively, to k such that every vertex where
edges do not meet head-to-head are not in (C' U B U {y})\{k} and (C U B U A)\{k},
respectively, and every vertex where edges meet head—to—head or some of their descendants
are in (C'UBU{v})\{k} respective (C'UBU A)\{k}. This would yield a path between A
and ~ which is not blocked by C'U B (note that k is a head-to-head node on this trail) in
G An(ausucy- This in turn contradicts the separation of A and v by BUC' in Gin( AUBLO)
because the edges starting in B cannot contribute to this trail. Consequently we can apply

right decomposition and get the desired result.

A.4 Proof of Theorem 3.6

The factorisation (10) implies that the marginal likelihood for the marked point process
discarding events not in An(AU BUC), ie. {(Ts, E;) | s =1,2,...; Es € Eanavpuc) }» 19
given by

L |y = I Lt )
ke An(AUBUC)
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as none of the intensities of Ny, k €An(AU B U () depend on V\An(A U B UC). Hence,
the likelihood may be written as product over factors that only depend on cl(k), k €
An(AUBUC). Let C ={cl(k) | k € An(AU BUC)} be the set containing all such sets
and let g.(t|-), ¢ € C, be these factors. Then, we have
L(t| HtAn(AUBUC)) _ ch(t | HY).
cec

Further, by rearranging the factors the sets in C can be taken to be the ‘cliques’; i.e.
the maximal fully connected sets of nodes, of the graph (G'Anaupuc))™- The above thus
corresponds to the factorisation property of undirected graphs which in turn implies the
global Markov property for undirected graphs (Lauritzen, 1996, p. 35). This means that
when we have a separation, like C' separating A and B, in this graph (G anaupuc))™ the

corresponding conditional independence (11) holds, which completes the proof.
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