
Chapter 14

G-estimation for Accelerated

Failure Time Models

Kate Tilling, Jonathan A.C. Sterne, and Vanessa Didelez

14.1 Time-Varying Confounding

There is an increasing interest in life-course epidemiology (Ben-Shlomo 2007;

Ben-Shlomo and Kuh 2002), with the quantification of the effects of exposures

over long periods of time. For example, several papers recently have examined

the effects of socioeconomic position at different stages of life, and changes in

that exposure between these stages, on outcomes including risk of stroke and

respiratory function, and health behaviours including midlife drinking and smok-

ing patterns (Amuzu et al. 2009; Glymour et al. 2008; Tehranifar et al. 2009;

Tennant et al. 2008).

In longitudinal studies, the effects of risk factors on outcome may be estimated

in different ways, with different interpretations. The usual approach is to examine

the relationship between baseline exposure and rates of disease or death.

For reasonably constant exposures, this estimates the cumulative effects of expo-

sure. For example, in a longitudinal study the association between baseline diabetes

and subsequent mortality represents the association of lifetime diabetes with mor-

tality. Alternatively we may estimate time-varying effects of exposure. For exam-

ple, subjects may take up smoking or quit smoking at various stages during the

longitudinal study (usually we assume that the exposure level remains constant

from one measurement occasion to the next). Here, the time-varying association

between smoking and mortality represents the relationship between smoking at a

given visit and mortality after that visit. If follow-up is fairly short this represents

the instantaneous association between smoking and mortality and can be

investigated using standard regression methods (e.g. survival models, structural
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equation models, etc.). However, increased interest in exposures, confounders and

outcomes which vary over time highlights a potential problem, referred to as time-
varying confounding.

A covariate is a time-varying confounder (Mark and Robins 1993; Robins 1986;

Young et al. 2010) for the effect of exposure on outcome if it is

1. a time-dependent confounder, i.e. past covariate values predict current exposure

and current covariate value independently predicts outcome and also

2. past exposure predicts current covariate value.

As an example, suppose smokers (exposed ) with high blood pressure are advised
to quit smoking, so are less likely to smoke in future (condition 1 above). Suppose

also that smoking raises blood pressure (condition 2), and that high blood pressure

is a risk factor for death by another pathway other than through smoking (condition

1). In this situation, high blood pressure is a time-varying confounder for the effect

of smoking on mortality. Figure 14.1a shows a directed acyclic graph (DAG, see

Chaps. 1 and 11) for this example of time-varying confounding. The possible

interplay between past and future exposure and confounders makes this very

different from the usual definition of a confounder (Chap. 10) where a confounder

is always assumed to precede exposure (with DAG for non time-varying

confounding shown in Fig. 14.1b). The added complications due to time-varying

confounding are twofold. Firstly, if a future covariate is affected by past exposure

and independently predicts outcome, then it has the role of a mediator for the effect

of past exposure and we do not want to adjust for mediators when estimating the total

effect, but at the same time we have to adjust for it because it may confound future

exposure and outcome. Secondly, if a covariate is affected by past exposure and

other unobserved variables that also predict outcome (e.g. blood pressure may be

affected by diet which also predicts survival), then adjusting for this covariate may
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Fig. 14.1 (a) Time-varying confounding by SBP of the effect of quitting smoking on mortality.

(b) Non time-varying confounding by SBP of the effect of quitting smoking on mortality

244 K. Tilling et al.

http://dx.doi.org/10.1007/978-94-007-3024-3_1
http://dx.doi.org/10.1007/978-94-007-3024-3
http://dx.doi.org/10.1007/978-94-007-3024-3


introduce selection bias (Hernan et al. 2004), but again, we have to adjust for it if it

confounds future exposure and outcome. Hence the question is how to adjust for

time-varying confounding without interrupting mediated effects nor introducing

selection bias. Standard statistical methods for the analysis of cohort studies (for

example Cox or Poisson regression) often get this wrong and yield biased estimates

(Robins et al. 1992a), while G-estimation provides a valid method.

We illustrate the problemwith an example.When analysing the effect of smoking

on mortality we could employ several possible strategies, including: examining the

effect of baseline smoking; examining the effect of time-updated smoking;

controlling for baseline covariates; and controlling for time-updated covariates.

The unadjusted estimate of the effect of baseline smoking will be biased

(favouring smoking, in this case), because those who are both smokers and have

high blood pressure (and therefore have the highest mortality risk) will tend to quit

subsequently, and thus will reduce their mortality risk. Controlling for baseline

covariates such as blood pressure which are measured at the start of the study will

still give biased estimates of the effect of smoking, because it ignores the fact that

individuals who quit after the start of the study will tend to be those whose blood

pressure increased over time.

Controlling for time-updated measurements of covariates such as blood pressure

will still give biased estimates of the effect of smoking, because smoking

acts on mortality at least partly by raising blood pressure. Controlling for a variable

(e.g. blood pressure) which is intermediate on the pathway between the exposure

(e.g. smoking) and the outcome (e.g. mortality) will estimate only the direct effect

of the exposure (ignoring the effect mediated through the covariate) and may

additionally introduce selection bias (Hernan et al. 2004).

Example 1 To illustrate the bias of the usual survival analysis in the situation

described above, we simulated data for 2,000 people with four assessment

occasions (visits) 3 years apart. Each person had a randomly-generated (log-

normally distributed) survival time representing how long they would survive if

never exposed, which was then decreased by high blood pressure or smoking.

Survival time for a smoker was 0.67 of survival time for a non-smoker with the

same covariate history, and survival time decreased by 4% per 1 mmHg increase in

current blood pressure. Blood pressure increased by 2 mmHg for current smokers,

and by 1 mmHg for ex-smokers (i.e. if an individual smoked at the previous visit

but not the current visit, blood pressure was 1 mmHg higher than if they had been a

non-smoker at both visits). The odds of smoking were decreased by 0.3 if the

participant had high blood pressure at the previous visit. All 2,000 participants were

“followed up” until either they died (n ¼ 1,672) or until 3 years after the fourth

visit. We took visit 1 to be a baseline visit, and measured time to event/censoring

from visit 2. Table 14.1 shows the simulated number at each visit, together with

number smoking at that visit and average blood pressure at that visit.

The data were analysed using a Weibull model with the accelerated failure

time parameterisation, because this is the parameterisation which corresponds to

g-estimation (i.e., calculating the survival ratio rather than the hazard ratio).
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The accelerated failure time model assumes for the individual failure times Ti with
covariates xi that:

Ti ¼ expðyTxi þ eiÞ
where ei has a standard extreme value distribution with scale parameter 1/g, where g
is the shape parameter.

Survival models including current smoking, current smoking and blood pressure,

current smoking plus baseline smoking and blood pressure, and smoking and blood

pressure at current and previous visits, were all fitted. The model including current

smoking only estimated the survival time ratio for smokers compared to non-

smokers as 1.14 (95% CI 1.06–1.23), concluding that smoking had little (possibly

even a positive) effect on survival. The model including current smoking

and current blood pressure estimated the ratio as 0.87 (95% CI 0.84–0.89),

that including current smoking and baseline smoking and blood pressure as 0.93

(95% CI 0.90–0.96) and that including all time-updated variables as 0.93 (95% CI

0.91–0.94). Thus all these standard analyses under-estimated the true adverse effect

of smoking on mortality (a mortality ratio of 0.67).

14.2 Investigating Time-Varying Confounding

Relationships between time-varying exposures and covariates can be examined

using a logistic regression of exposure on concurrent values of the other covariates,

values of all exposures and covariates at the previous visit and at baseline (visit 1),

and non time-varying covariates. All data from all n visits should be used, so each

individual can contribute multiple observations to the model for an exposure.

This model will examine condition (1) above. The other part of Condition 1

(whether the covariate affects outcome) can be examined using a model relating

outcome to exposure and covariates (e.g. a survival model in the above example,

where mortality is the outcome). Condition (2), whether past exposure predicts

current covariate values, can be examined using similar logistic regression models

of each time-varying covariate on concurrent values of the other covariates and

exposure, values of all exposures and covariates at the previous visit and at baseline

(visit 1), and non time-varying covariates.

Table 14.1 Simulated data

for Example 1 Visit N N smokers (%)

Mean blood

pressure (sd)

1 2,000 140 (7) 142 (4.70)

2 2,000 139 (7) 143 (4.87)

3 1,880 108 (6) 143 (3.80)

4 1,153 67 (6) 141 (4.27)
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14.2.1 G-estimation

G-estimation of causal effects was proposed by Robins (see e.g. Robins et al.

1992a; Witteman et al. 1998) as one method to allow for confounders which are

also on the causal pathway, i.e. time varying confounding. G-estimation has been

used in various applications, to estimate the causal association between: quitting

smoking and time to death or first CHD (Mark and Robins 1993); isolated systolic

hypertension and cardiovascular mortality (Witteman et al. 1998); therapy and

survival for HIV-positive men (Joffe et al. 1997, 1998); graft versus host disease

and relapse after bone marrow transplants in leukaemia (Keiding et al. 1999);

various cardiovascular risk factors and mortality (Tilling et al. 2002); to estimate

the total causal effect of highly active antiretroviral therapy (HAART) on the time

to AIDS or death among those infected with immunodeficiency virus (HIV)

(Hernan et al. 2005); and to correct for non-compliance in clinical trials (Korhonen

et al. 1999). G-estimation has also been implemented as a Stata programme (Sterne

and Tilling 2002).

14.2.2 Counterfactual Failure Time

The unbiased estimation of causal effects usually requires the assumption of no
unmeasured confounding (Lok et al. 2004; Robins 1992). Roughly speaking this

means that we have measured and included in the model all variables that determine

whether a subject is exposed at each measurement occasion and which are also

(directly or indirectly) associated with the outcome. G-estimation exploits the

assumption of no unmeasured confounding in the following way.

For each subject i, Ui is defined as the time to failure if the subject was not

exposed throughout follow-up. This time (the counterfactual failure time (Mark and

Robins 1993; Robins et al. 1992a; Witteman et al. 1998)) is unobservable for

subjects with any exposure. The assumption of no unmeasured confounding

(which cannot be tested using the observable data) implies that the exposure for

an individual i at a given time will be independent of their counterfactual failure

time, Ui, conditional on covariate and exposure history so far. G-estimation pro-

ceeds by reconstructing Ui from the observed data and then determining the value

of the causal parameter as the one for which this conditional independence is true.

An example of this assumption is that, conditional on past weight, smoking status,

blood pressure and cholesterol measurements, the decision of an individual to quit

or start smoking is independent of what his/her survival time would have been had

he/she never smoked. A violation of this assumption would typically occur if

the decision depends on unobserved factors, e.g. alcohol consumption, that are

informative for the counterfactual survival time Ui. Exposure does not have to be

independent of subjects’ current life expectancy (smokers may choose to quit

precisely because they recognise that smoking reduces their life expectancy).
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In its simplest version, G-estimation proceeds by assuming that exposure

accelerates failure time by expð�CÞ, i.e. Ui expð�CÞ ¼ Ta
i where Ta

i is the

survival time for subject i if they are exposed throughout. The actually observed

failure time Ti will typically be in between Ui and Ta
i for subjects who have been

exposed for some but not all the time. For a given C, the counterfactual survival

time Ui;C can be calculated backwards from the observed data for subjects who

experience an event at time Ti by:

Ui;C ¼
Z Ti

expðC� ei;t) dt (14.1)

where ei;t is 1 if subject i is actually exposed at time t and 0 if subject i is unexposed.
Note that the above model that links the counterfactual survival time Ui;C with the

observed survival time Ti can be generalised by choosing a more flexible function

inside the integral.

For the case where we follow individuals for n follow-up visits (where the first is
the baseline visit), we could calculate the counterfactual survival time for subjects

who experience an event by:

Ui;C ¼
Xn
v¼1

ðtvÞ � expðC� ei;vÞ
� �

where tv is the time from visit v to either the event or the next visit.

Example 2 The simulated data on smoking and blood pressure used in example 1

were analysed using g-estimation. We had four visits, of which the first was the

baseline. Thus, for a given value of C, the estimated counterfactual survival time

for an individual is given by Ui;C where

Ui;C ¼
X4
v¼1

ðtvÞ � expðC� ei;vÞ
� �

where tv is the time from visit v to either the event or the next visit and

ei;v ¼ whether individual i smoked at visit v. Data from three simulated individuals

are shown in Table 14.2:

The first individual in this simulated dataset (individual A) was a smoker at visits

1 and 2, and survived for a total of 4.88 years (i.e. 1.88 years from visit 2).

Table 14.2 Simulated data for three individuals in Example 2

Smoking status Observed survival

time (years)Individual Visit 1 Visit 2 Visit 3 Visit 4

A 1 1 4.88

B 1 1 1 0 11

C 1 1 0 0 14
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Suppose we assume that smoking halves life expectancy, i.e. expð�CÞ¼0.5, so

C¼0.69. Then the counterfactual survival time for this individual at visit 1 (i.e. the

length of time they would have survived from visit 1 had they not been a smoker at

visit 1 and visit 2) is: ð3� expðC� 1ÞÞ þ ð1:88� expðC� 1ÞÞ ¼ 9:76 years:
The second individual in this simulated dataset (individual B) was a smoker at

visits 1, 2 and 3, then gave up and survived for a further 2 years. Again assuming that

smoking halves life expectancy then the counterfactual survival time for this indi-

vidual at visit 1 (i.e. the length of time theywould have survived from visit 1 had they

not been a smoker at visits 1, 2 and 3) is: ð3� expðC� 1ÞÞ þ ð3� expðC� 1ÞÞ þ
ð3� expðC� 1ÞÞ þ ð2� expðC� 0ÞÞ ¼ 20 years:

Thus, for all individuals who are followed up until death, the counterfactual

survival time can be calculated in a similar way.

14.2.3 Definition of G-estimation

G-estimation uses the assumption of no unmeasured confounders to estimate the effect

of exposure on survival by examining a range of values forC, and choosing the value

C0 forwhich current exposure is independent of counterfactual survival timeUi (Mark

andRobins 1993; Robins 1992; Robins et al. 1992a;Witteman et al. 1998). This can be

done by fitting a series of logistic regression models relating current exposure ei;v to
Ui;C, controlling for all confounders (this still assumes that there was no censoring):

logit (ei;vÞ ¼ mUi;C þ
X
k¼0

akxik þ
X
j

bjcij;v þ
X
j¼1

djcij;v�1 þ
X
j¼1

ljcij;1 v ¼ 2;:::; n

for different values of C, where cij;v are the time-varying confounders and xik the
time-invariant confounders. Alternatively, one logistic model could be fitted

including data from all visits, with allowance made for clustering within

individuals (e.g. by using a GEE). The time-varying confounders may include

the values of exposure at previous time-points and at baseline. In fact, the above

model for exposure can be generalised and should be chosen according to what is

judged appropriate based on subject matter knowledge about the exposure pro-

cess. For example when exposure is treatment, we may have specific information

on the rules according to which treatment was administered. Subjects contribute

an observation for each occasion at which their exposure was assessed.

The g-estimate C0 is the value of C for which the Wald statistic of m in this

logistic regression is zero (P value 1, i.e. no association between current expo-

sure and Uij;C0
). The upper and lower limits of the 95% confidence interval forC0

are the values of C for which the two-sided P-value for the Wald statistic of m in

this logistic regression is 0.05.
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This g-estimate C0 is minus the log of the “causal survival time ratio”.

Thus expð�C0Þ estimates the ratio of the survival time of a continuously exposed

person to that of an otherwise identical person who was never exposed.

If expð�C0Þ>1 then exposure is beneficial (i.e. exposure increases time to the

outcome event).

14.3 Censoring – Type I – End of Study

The counterfactual survival time Ui;C can only be derived from the observed data

for a subject who experiences the event. If the study has a planned end of follow-up

(at time Ci for individual i) that occurs before all subjects have experienced the

outcome event, not all subjects’ counterfactual failure times will be estimable. If Ci

is independent of the counterfactual survival time, then this problem can be

overcome by replacing Ui;C with an indicator variable (Di;C) for whether the

event would have been observed both if the person had been exposed throughout

follow-up and if they had been unexposed throughout follow-up, as described by

Witteman et al. (1998).

Di;C ¼ indðUi;C<Ci;CÞ

where Ci;C ¼ Ci if C�0 and Ci;C ¼ Ci � expðCÞ if C<0. Thus Di;C is zero for all

subjects who do not experience an event during follow-up, and may also be zero for

some of those who did experience an event.

Example 3 Continuing with the data from example 1, this study had a planned end

of follow-up 12 years after visit 1. Suppose we assume that smoking halves life

expectancy, i.e. expð�CÞ¼0.5, soC¼0.69. Then for each individual, the indicator

variable Di;0:69 is equal to 1 if the counterfactual failure time (givenC¼0.69) is less

than 12 years and 0 otherwise. The first individual in this simulated dataset

(A, above) was a smoker at visits 1 and 2, and survived for 4.88 years from visit 1.

The counterfactual survival time for this individual (see example 2) is 9.76 years,

and thus the indicator variable Di;0:69 takes the value 1 for this individual. The

counterfactual failure time for individual B, who smoked at visits 1, 2 and 3 then

gave up and survived for another 5 years, was 20 years. Thus the indicator variable

Di;0:69 takes the value 0 for this individual. Another individual (C) smoked at visits 1

and 2, then gave up and survived until the end of follow-up (dying 14 years after

visit 1). As this individual did not experience an event during follow-up, their value

for the indicator variable Di;0:69 is 0. The value of the indicator variable Di;C can be

calculated for all individuals, whether or not they experienced an event during

follow-up.

Once the value of the indicator variable has been calculated for each individual,

for a given value of C, then the g-estimation can proceed by performing a logistic

regression of the exposure of each individual at each timepoint on their
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counterfactual failure time. The data for individuals A, B and C are shown in

Table 14.3, assuming that smoking halves life expectancy):

Each individual i then contributes ni observations to a logistic regression

model with exposure as the outcome, where ni is the number of visits at which

that individual has observations. Thus in the example above, individuals A, B and C

contribute 1, 3 and 3 observations respectively. In each case, the logistic regression

relates their exposure to all their baseline covariates, and previous covariates and

exposures, and to the indicator variable for their counterfactual failure time (Di;C).

We used g-estimation to estimate the effect of smoking on mortality using the

entire simulated dataset. The g-estimate of C was 0.41 (95% CI 0.37–0.44), and

the g-estimated survival ratio was 0.66 (95% CI 0.64–0.69) compared to the

true value of 0.67. This is closer to the true value than all the other (biased)

models (see Example 1), and also has a slightly narrower confidence interval.

In this one hypothetical example, g-estimation performs better than the usual

survival analysis.

14.4 Censoring – Type II – Competing Risks

Censoring by competing risks can occur when subjects leave the study early or, in

the case of cause-specific mortality models, die from other causes. For example, in

models where systolic or diastolic blood pressure are the exposures, individuals

might be censored when they first reported use of anti-hypertensive medication

(Tilling et al. 2002). Subjects could also withdraw from the study because they felt

too ill to participate in further follow-ups. In each of these cases, censoring is not

independent of the underlying counterfactual survival time. Thus the above method

for dealing with censoring by the planned end of a study cannot be used to deal with

censoring by competing risks.

As outlined byWitteman et al. (1998), censoring by competing risks is dealt with

by modelling the censoring mechanism, and using each individual’s estimated

probability of being censored to adjust the analysis. This is a similar idea to using

weighting for non-response to adjust for missing data (Little and Rubin 2002).

Multinomial (if there are several censoring mechanisms) or logistic regression

(if there is only one censoring mechanism), based on all available data, is used to

relate the probability of being censored at each measurement occasion to the

exposure and covariate history. The probability of being uncensored to the end of

Table 14.3 Simulated data for three individuals in Example 3

Smoking status Observed survival

time (years)Individual Visit 1 Visit 2 Visit 3 Visit 4 Di;0:69

A 1 1 4.88 1

B 1 1 1 0 11 0

C 1 1 0 0 14 0
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the study for each individual is then estimated. The inverse of this probability is used

to weight the contributions of individuals to the logistic regression models used

in the g-estimation process, to which now only uncensored individuals contribute.

This can be done by using probability weights, or by replacing Di;C by
Di;C

p(not censored)
. This approach means that observations within the same individual

are no longer independent, so the logistic regression models for the g-estimation

process use robust standard errors allowing for clustering within individuals (using

the Huber-White sandwich estimator (Stata Corporation 2007)). This is equivalent

to the procedure suggested by Witteman et al., to use a robust Wald test from a

generalized estimating equation with an independence working correlation matrix

(Witteman et al. 1998). The confidence intervals obtained using this procedure are

conservative.

For example, suppose we are examining the effect of systolic and diastolic blood

pressure (as exposures) on mortality, and that individuals were censored when

they first reported use of anti-hypertensive medication. The probability of being

censored at each visit will depend on blood pressure at previous visits, and is likely

to be related to other factors also (e.g. smokers may be more likely to have other

health problems and therefore to visit the GP). The censoring process is modelled,

using logistic regression, with whether the individual was censored (i.e. prescribed

anti-hypertensive medication) at each occasion as the outcome. This logistic

regression model is then used to derive, for each individual, the probability that

they remained uncensored to the end of the study. The inverse of this probability is

used to weight all of that individual’s contributions to the g-estimation model (using

probability weights as before). For example, suppose a person with high initial

blood pressure has a chance of 0.25 of being uncensored at the end of the study.

In g-estimation the contribution of such a person to the model is multiplied by 4,

representing the ‘total’ of 4 people with high blood pressure, 3 of whom were

censored before the end of the study.

14.5 Converting to Survival Analysis

The parameter estimated by the g-estimation procedure, the causal survival time ratio,

describes the association between exposure and survival using the accelerated failure

time parameterisation. In epidemiology, the more usual parameterisation for survival

analysis is that of proportional hazards. It would thus be useful to be able to express the

causal survival time ratio in the proportional hazards parameterisation. One obvious

way to do this is via the Weibull distribution, as this can be expressed in either

parameterisation.

The Weibull hazard function at time t is hðtÞ ¼ fgtg�1, where f is referred to as

the scale parameter and g as the shape parameter. If the vector of covariates xi does
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not affect g, the Weibull regression model can be written as either the usual

epidemiological proportional hazards:

hðt; xiÞ ¼ h0ðtÞ exp ðbTxiÞ
or accelerated failure time, using the expected failure time:

Ti ¼ expðyTxi þ eiÞ
where ei has a standard extreme value distribution with scale parameter 1/g.
The Weibull shape parameter g can thus be used to express results from the

accelerated failure time parameterisation as proportional hazards: y ¼ �b/g.
If the underlying survival times follow a Weibull distribution, the Weibull shape

parameter can be estimated from the survival data and used to express the

g-estimated survival ratio as a hazard ratio for the exposure (Witteman et al. 1998).

The 95% confidence intervals for g-estimated effects are generally wider than

those for corresponding Weibull estimates, particularly with rare outcomes and for

estimates close to 1. This is because G-estimation discards information when

censoring, by dichotomising the outcome variable.

Example 4 G-estimation has been used to examine the effects of changes in

cardiovascular risk factors in mid-life on all-cause mortality and incidence of

coronary heart disease (CHD) (Tilling et al. 2002). Cardiovascular risk factors

(systolic and diastolic blood pressure, smoking, diabetes, HDL and LDL choles-

terol) were measured four times, with the first measure being used as the baseline in

the g-estimation model.

To identify the extent of time-varying confounding, the relationships between

each exposure and past and current values of all covariates were examined.

This was done using one regression model for each exposure, to which each

individual could contribute up to three observations. These models showed that

there was substantial time-varying confounding, with inter-relationships among

most of the time-varying exposures. Weibull survival analysis (with the accelerated

failure time parameterisation) was used to relate all the covariates to survival, and

the shape parameter from this model (1.26, 95% CI 1.17–1.36) was later used to

express the g-estimated survival ratios as hazard ratios for each exposure.

Separate g-estimation models were fitted for each exposure. In each g-estimation

model all risk factors (other than the exposure of interest) were included as

time-varying covariates. Baseline variables (e.g. age and sex) were included as

non time-varying covariates. In the models for systolic and diastolic blood pressure,

individuals were censored when they first reported use of anti-hypertensive medica-

tion. The probability of being on anti-hypertensive medication at each visit was

dependent on blood pressure at baseline and previous visits, and was also related to

baseline and time-varying values of BMI, smoking and diabetes, and to age and sex.

This censoring process was modelled, using logistic regression, and the probability

of each individual being censoredwas taken into account in the g-estimationmethod.

Table 14.4 (modified from (Tilling et al. 2002) with permission of Oxford

University Press and the Society for Epidemiologic Research) shows the baseline,
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time-varying and g-estimated hazard ratios for mortality for selected cardiovascular

risk factors. The comparisons of the results for the usual survival analysis (relating

exposure at baseline to mortality) and g-estimation shed some light on the likely

mechanisms for each exposure. Diabetes at baseline was associated with a hazard

ratio of 2.04 (Tilling et al. 2002). The g-estimated hazard rate ratio for time-varying

diabetes (1.62) was weaker than that for baseline diabetes, indicating that the

cumulative effect of diabetes is stronger than the instantaneous effect. The time-

varying effect of diabetes was underestimated by the standard analysis (hazard

ratio ¼ 1.26). The g-estimated hazard ratio for systolic blood pressure was again

weaker than the baseline effect, showing that the effect of blood pressure on

mortality was long-term rather than instantaneous. G-estimation and Weibull anal-

ysis showed a higher risk of death for those with low BMI and no evidence of

increased mortality among subjects with high BMI. The validity of G-estimation

depends on there being no unmeasured confounders. Confounders not included

here, such as comorbid conditions, may influence the relation between BMI and

mortality. Alternatively, BMI may have a cumulative effect, and so short-term

changes in weight (assessed by these time-varying models) have a different relation

to mortality than long-term weight.

For blood pressure and diabetes, the time-varying effects of exposure were

underestimated by the usual survival analysis, whereas the adverse effect of low

BMI appeared to be over-estimated by the usual survival analysis. Thus the time-

varying confounding present in this example led to biases in the estimation of the

effects of time-varying exposures. The confidence intervals for the g-estimated hazard

ratios were wider than those for the Weibull estimates, because g-estimation discards

information when dichotomising the outcome variable to deal with censoring.

14.6 Extensions to G-estimation

G-estimation (as described above) assumes a binary exposure. The effect of trichot-

omous exposures on outcome has been estimated using g-estimation and an itera-

tive procedure (Tilling et al. 2002). For each exposure, the middle category was

chosen as the reference. One of the other two categories was selected, and the effect

of the dichotomous exposure defined by that category and the middle category

estimated using g-estimation. This estimate was then included as a fixed value in

the g-estimation of the effect of the dichotomous exposure defined by the third

category and the middle category. This procedure was iterated to convergence.

The standard errors for the effects of variables with three categories estimated in

this way may be under-estimated, because each iteration assumes that the effect of

the other category on survival is known (rather than estimated). Ideally, both

parameters should be estimated simultaneously and a 95% confidence region for

their joint distribution calculated. However, this has not yet been carried out in

practice. Similarly, there has to date been no extension of g-estimation to continu-

ous exposures.
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The parameterisation used in the g-estimation procedure described above

assumes that the effect of exposure is both immediate and unlimited. Thuswe assume

that quitting smoking affects survival from the moment of quitting, and that this

effect remains throughout the rest of the non-smoking lifecourse. Alternativemodels

are possible (Lok et al. 2004), for example by generalisations of the integral in

Eq. 14.1. They include examining a lagged effect of exposure, or allowing exposure

to be related to outcome immediately after exposure, with a lesser effect after a period

of time (Joffe et al. 1998). For example, one could hypothesise that the effect of

quitting smoking on lung cancer mortality might be lagged, so might not start until

5 years after quitting smoking. The effects of a treatment could also be limited in time

– the effect of a particular treatment on outcomemay be different in the short and long

term (say, before and after 30 months) for example (Joffe et al. 1998). The way in

which the counter-factual survival time depends on the exposure can be easily

amended to take these alternative hypotheses into account (Joffe et al. 1998).

The use of g-estimation is not restricted to survival outcomes – for example,

g-estimation has been used to examine the effects of treatment regimes on non-

survival outcomes in randomised clinical trials, allowing for non-compliance (Toh

and Hernan 2008). The principle of g-estimation, exploiting the conditional indepen-

dence between a baseline counterfactual and exposure, has also been used for

estimating direct/indirect effects (Goetgeluk et al. 2008), genomic control

(Vansteelandt et al. 2009), and for finding optimal treatment strategies (Robins 2004).

14.7 Unmeasured Confounding

G-estimation depends crucially on the assumption of no unmeasured confounding.

In particular, it relies on having all variables determining exposure both observed

and included in the model. However, in many cohort studies, the factors related to

exposure are not measured. For example, when looking at smoking as an exposure

there may be many factors related to an individual’s decision to quit and success in

quitting smoking, which may also be related to the outcome. If these are not all

recorded, then there may still be bias in the G-estimation of the effect of smoking.

Thus, in order for G-estimation to be used successfully, the factors determining

treatment decisions need to be well standardised and well measured. The assump-

tion of no unmeasured confounding is, of course, necessary for the validity of all

observational epidemiological analyses.

14.8 Alternatives to G-estimation

Marginal structural models (MSMs) are one type of alternative to g-estimation for

analysing longitudinal data (Hernan et al. 2000, 2002; Young et al. 2010). In these

models each observation is weighted by the probability of exposure based on past

covariate and exposure history, and a model is then fitted to the weighted data and
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coefficients interpreted as in a standard analysis. For example, weighted Cox

proportional hazards models were used to estimate the joint effect of zidovudine

(AZT) and prophylaxis therapy for Pneumocystis carinii pneumonia on the survival

of HIV-positive men, controlling for time-dependent confounding (Hernan et al.

2001), and the effect of zidovudine therapy on mean CD4 count among HIV-

infected men (Hernan et al. 2002; Sterne et al. 2005). The weights were based on

the inverse of each patient’s probability of the treatment history they actually had,

given their covariate history. These inverse probability weights were stabilised and

modified to adjust for censoring (Hernan et al. 2001). MSMs were designed to

estimate marginal causal parameters and are difficult to adapt to situations where

exposure or treatment interacts with covariates. G-estimation in contrast can rela-

tively simply be adapted to include such interactions by modifying the function in

the integral and hence the way Ui is calculated back from Ti.
A second alternative to G-estimation is G-computation; also referred to as

(parametric) G-formula (Robins et al. 1999; Taubman et al. 2009). The G-formula

computes the causal effect of a given exposure or treatment sequence by assuming

regression models for all covariates that we wish to adjust for at all measurement

time points given the past as well as an outcome regression model, and then

integrating out the covariates. In practice this integral needs to be approximated

by Monte Carlo simulation. The G-formula is somewhat cumbersome to imple-

ment, but has been successfully implemented (Robins et al. 1999; Taubman et al.

2009) and interest in its use is growing (Snowden et al. 2011). The G-formula can

also be derived from a decision-theoretic point of view avoiding counterfactuals

(Dawid and Didelez 2010).

All three approaches, G-estimation, MSMs, and G-formula, correctly adjust for

time-varying confounding but require the same no unmeasured confounding

assumption; they differ in that the former two require a valid exposure model in

addition to the outcome model, while the latter requires valid models for the time-

varying covariates in addition to the outcome model.

14.9 Conclusions and Further Reading

Time-varying confounding may occur in longitudinal studies where exposure and

covariates change over time. Where time-varying confounding occurs, it may cause

bias in the results of usual survival analyses. G-estimation is one possible method

used to overcome this problem, and has been shown to reduce bias in some cases.

For those interested in exploring g-estimation further, the following references may

be helpful: (Hernan et al. 2005, 2006; Robins 1992, 2008; Robins et al. 1992b,

2007; Tanaka et al. 2008; Yamaguchi and Ohashi 2004; Young et al. 2010).

An overview and comparison of three methods of analysing data with time-depen-

dent confounding (marginal structural models and two forms of g-estimation)

is provided by Young et al. (2010). A summary of confounding, in particular

time-dependent confounding (in the context of marginal structural models)

demonstrated using causal diagrams may be found in Robins et al. (2000).
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