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Simulating from Marginal Structural Models
with Time-Dependent Confounding

W. G. Havercroft® and V. Didelez*

We discuss why it is not always obvious how to simulate longitudinal data from a general marginal structural
model (MSM) for a survival outcome while ensuring that the data exhibit complications due to time-dependent
confounding. Based on the relation between a directed acyclic graph (DAG) and an MSM, we suggest a data-
generating process that satisfies both these requirements, the general validity of which we prove. Our approach
is instructive regarding the interpretation of MSMs, and useful in that it allows one to examine the finite sample
performance of methods which claim to adjust for time-dependent confounding. We apply our methodology to
design a simulation study which emulates typical longitudinal studies such as the Swiss HIV Cohort Study, so that
competing methods of adjusting for time-dependent covariates can be compared. Copyright (¢) 2011 John Wiley &
Sons, Ltd.
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1. Introduction

Marginal structural models (MSMs), together with the method of inverse probability of treatment weighting (IPTW) used
to fit these models, have become a popular tool for investigating causal effects of time-varying treatments (or exposures)
in longitudinal studies [1, 2, 3, 4, 5]. A typical application is the Swiss HIV Cohort Study investigating the effect of
highly active antiretroviral therapy (HAART) on survival [3]; other potential examples could deal with the adjustment
of anticoagulant dosage for stroke patients [0, 7]. It is well known that when investigating the effect of time-varying
treatments from longitudinal studies time-dependent confounding has to be taken into account [8]. For a recent overview
see Daniel et al. [9].

Here we are concerned with the question of how to simulate data from a given MSM, such that the data-generating
process exhibits time-dependent confounding with the added complication of current treatment affecting future covariates.
In short, the problem occurs when the conditional distributions one might use to draw the simulated data from are not
compatible with the desired properties of the marginal model, e.g. because of non-collapsibility. However, it is clear that
being able to simulate data from a known true model is crucial to investigate for instance finite sample properties or

efficiency of different methods. We propose a general approach that allows such simulation from a given MSM, as well
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as a specific algorithm for a discrete-time hazard model, which emulates longitudinal HIV studies where antiretroviral
treatment may be started at different times, depending on changes in CD4 count.

Our proposal extends and gives a formal justification to work by Bryan et al. [10] and Young et al. [11, 12].

The paper is structured as follows. In Section 2 we introduce the basic concepts, including a definition of causal effect,
representation of relationships between random variables using directed acyclic graphs (DAGs), structural assumptions,
time-dependent confounding, MSMs and IPTW. In Section 3, we present and apply the sampling algorithm. Section 3.1
details the basic mechanism by which the presented algorithm generates data from the desired MSM with time-dependent
confounding, a proof is given in Appendix B; then Section 3.2 gives the details for a specific case. In Section 3.3 we
compare our algorithm to others suggested in the literature. Section 3.4 illustrates the use of the algorithm by carrying out
a small simulation study comparing the performance of different approaches dealing with time-dependent confounding.
Finally we discuss possible extensions and future work.

2. Basic Concepts

As mentioned in the introduction, we focus on the application of MSMs to typical longitudinal studies, for example the
Swiss HIV Cohort Study [3]. Let 7 = {0, ..., T} denote the finite sequence of discrete observation time points. We denote
the treatment (action) process by { A;}:c7 — this might simply be a sequence of binary variables to indicate whether the
patient is on treatment or not; it could also be a general discrete or continuous variable, e.g. the changing dosage of an
anticoagulant for stroke patients. Further {L; },c7 will typically denote one (or a set of) repeatedly observed covariate(s)
such as CD4 count for HIV patients. There may be latent variables which we denote by {U; };c7. Finally we consider
either a single outcome variable Y measured after time 7', or a process {Y; };,c7+, where T+ = {1,...,T + 1}. Typically
Y} is an indicator for the occurrence of an event, e.g. death, in which case there will be an equivalence between {Y; };c7+
and Y = min{t : Y, = 1}.

Throughout, we denote the history of a stochastic process {X;};c7 up to time ¢ as X;, while X = X7 denotes the
complete history.

2.1. Causal Effects and Marginal Structural Models

First we consider the single time point case, to keep the exposition simple. We define the causal effect of one variable A
on another Y in terms of interventions. Following the approach of Pearl [13], we denote the distribution of Y given an
intervention by which A is fixed at the value a as P(Y | do(A = a)) (abbreviated to P(Y | do(a)) when the context is clear).
Note the distinction between this, the distribution of the random variable ‘Y given an intervention «’, and P(Y | A = a),
the distribution of the random variable ‘Y given A is observed to be a’. It is also common to define causal effects in terms
of potential outcomes, where Y (a) denotes the outcome that would be observed if A were (possibly counter to the fact)
set to a [14, 15, 8]. For the present purpose we can regard P(Y (a)) and P(Y | do(a)) as equivalent, but see discussion by
Dawid [16, 17].

Broadly, we say that there is a causal effect if there is some contrast between the distribution P(Y | do(a)) for different
values of a. Contrasts under different interventions for other quantities, such as expectations, odds ratios or hazard
functions, can be used to define causal effects, depending on the context of the problem. More specifically, a model
that parameterises P(Y | do(a)) is a marginal structural model (MSM). The model is marginal over any covariates, while
the term structural distinguishes it as an interventional model, versus some observational marginal model P(Y | A = a).

The case of a sequence of treatment decisions or actions A = {4y, ..., Az} is analogous. For instance, the causal effect

of any sequence a of actions, which we also call a strategy, can be modeled by an MSM which parameterises

P(Y |do(a)) = f(a,7),
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where = is a vector of parameters. The exact form of the model depends on the structure of the data, such that it may
be defined for example in terms of E(Y |do(a)), or for instance the corresponding hazard function when Y is a survival
outcome.

Note that an MSM as used here models the effect of a given strategy a. For example in the case of binary treatment
decisions, an MSM may model the effect of strategies such as a = (0, ...,0), ‘never treat’ and @ = (1,...,1), ‘always
treat’. As this means that all treatment decisions are fixed in advance one could say that an MSM specifies the effects of
earlier treatments not mediated by later treatments, e.g. if we were to compare a = (0, ...,0) with a = (1,0,...,0). For
the moment, we do not consider dynamic strategies which make a; a function of time-varying covariates (see discussion
in Section 4).

2.2. Directed Acyclic Graphs (DAGs)

We will use directed acyclic graphs (DAGs) to illustrate key aspects of causal structures. Such a DAG is given by a
set of nodes V' representing variables, and a set of directed edges. We call V; a ‘parent’ of V; if V; — V}, and an
‘ancestor’ of Vj if V; — --- — V.. A DAG represents assumptions of conditional independencies by the absence of
edges between nodes [18]. For example Figure | includes the independence Y 1L {L,W}|{A,U} (where B 1L C'|D
denotes conditional independence between B and C given D [19]).

Figure 1. Example of a directed acyclic graph (DAG).

A DAG imposes a factorisation on the joint distribution of the set of random variables V', which is given by the product
of the conditional distributions of each variable in V' given all its parents. The DAG can be used to further encode causal
assumptions in the following way. We define that the DAG is causal with respect to the variable S € V if we can modify
the non-interventional joint distribution for the effect of an intervention which fixes S at the value s, simply by [13, p. 24]
[20]:

1. Replacing the conditional distribution of S given its parents with the identity function Is—,, and

2. Substituting the intervention S = s into the remaining conditional distributions.

It is common (but often not necessary nor appropriate) to assume the whole DAG is causal, meaning the above holds for
any subset of variables S C V.
For the DAG of Figure 1, we have the factorisation

P(U,L,W,A,Y) = P(U)P(W)P(L|U)P(A|L,W)P(Y |U, A). (1)

Demanding that the DAG be causal with respect to the variable A means that the joint intervention distribution of the
remaining variables is given by

P(U,L,W,Y | do(a)) = P(U)P(W)P(L|U)P(Y |U, A = a)l_q. )

In words, the DAG will be causal with respect to A if it describes the system in sufficient detail so that we can believe that
an intervention in A does not alter the remaining conditional distributions, other than through the value of A = a. This
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has been called the stability property by Dawid and Didelez [21], and can also be made graphically explicit with influence
diagrams [22, 23].

The general version of (2) is known as a truncated factorisation formula as it is obtained by ‘dropping’ certain factors
from (1) [13, p. 72] (see also the manipulation theorem of Spirtes et al. [24, p. 51]). This is in turn equivalent to dividing
the joint distribution by these factors; for example (2) is obtained from (1) upon dividing by P(A|L,W). This is an
alternative way of motivating the IPTW method which we describe in more detail in Section 2.6.

2.3. Relation between MSMs and DAGs

The factorisation of the joint distribution immediately suggests a generating process from which it would be
straightforward to simulate data that obey a given DAG. For Figure 1, choose specific conditional distributions and
sequentially generate first W and U, then L given U, followed by A given {L, W} and finally Y given {A, U}. However,
assume that we also wanted this data-generating process to obey a given MSM parameterising P(Y | do(a)). By integrating

out the remaining variables in (2) we see that

P(Y|do(a)) = > P(Y|L=1,A=a)P(L=1) 3)
l

= > PY|U=uA=a)P{U =u). 4)

(Replace sums by integrals if variables are continuous.) This means that in order to simulate data from a given MSM
within the structure of Figure 1, we need either suitable choices of P(Y | L, A) and P(L), or of P(Y |U, A) and P(U).
In some cases this is easy to achieve; e.g. if the MSM assumes a linear mean E(Y | do(a)) = By + 1a and we also have
EY|L=1,A=a)=ap+aia+asl, then Y, E(Y|L=1,A=a)P(L=1)=ay+ aia+ azE(L) so that §; = a.
As soon as general non-linear models (possibly with interactions) are involved, especially non-collapsible ones such as
logistic models, it is no longer obvious how the conditional distribution on the RHS of (3) or (4) can result in a given
MSM which specifies the LHS of (3).

For the case of a single time point, our proposal in Section 3.1 works as follows: take U to be an unobservable latent
variable, e.g. representing general health, with a UJ0, 1] marginal distribution. Hence any distribution P(Y | do(a)) can be
obtained from (4) by transforming U with the CDF F'* of P(Y |do(a)). At the same time, the variable L in Figure | can
be taken to play the role of an observable covariate used to adjust for confounding as we explain in the next section.

2.4. No Unmeasured Confounding

We say that there exists some confounding of the effect of A on Y if P(Y | do(a)) # P(Y | A = a), i.e. if the distribution
of Y given an intervention do(A = a) is not equal to the distribution of Y given A = a is observed. In the example of
Figure 1, the effect of A on Y is confounded, which we can see formally by noting that neither (3) nor (4) are equal to
P(Y | A = a), since the distributions of L and U respectively are not conditional on A in the sum. Another way of putting
this is by noting that in the DAG of Figure 1 there is a back-door path from A to Y which creates a non-causal association
between them [25].

It may be possible to obtain P(Y | do(a)) by suitably making use of additional data on covariates which is often called
adjusting for confounding; if this is possible then P(Y | do(a)) (or a specific parameter of this distribution) is identifiable.
There are different approaches to adjust for confounding, but all of them require that sufficient additional information is
available. In the case of a single treatment variable, a set of covariates is sufficient to adjust for confounding if it blocks
all back-door paths from A to Y in a DAG that is causal with respect to A [25, 23]. For Figure 1 we find that either L or
U is sufficient to adjust for confounding. An analogous criterion can be given for the case of sequential (non-dynamic)
treatments: For every A;, every back-door path to Y must be blocked by {L;, A;_;} in the modified DAG where all
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incoming arrows into any future A, are deleted [26, 27, 21]. This property is also often called sequential randomisation
[8], or no unmeasured confounding [2, 12].

Given covariates that are sufficient to adjust for confounding, the most popular method to do so is regression adjustment.
In the example of Figure 1, with L as the covariate, this amounts to estimating P(Y | L, A) in (3). This is clearly informative
about the causal effect, as we have P(Y |L,A=a) = P(Y | L; do(A = a)), though it does not explicitly target the
marginal effect P(Y |do(a)) for which we require the additional standardisation with P(L). In the case of sequential
treatments, regression adjustment is more problematic as P(Y | L, A = a) is not generally equal to P(Y | L; do(A = a))
when some of the time-varying covariates L; are measured after and affected by some of the treatments A;_;. This is
discussed in the next section.

2.5. Time-Dependent Confounding

Now, we turn to the case of more than one treatment variable and the problem of time-dependent confounding. We consider
a very simple case of longitudinal data. For each subject, a treatment decision A, is made at time 0, e.g. whether to initiate
HAART for HIV patients. The value of a diagnostic covariate L, e.g. CD4 count, measured at time 1, is potentially
affected by the earlier Ay and may itself inform a second treatment decision Ay, e.g. to start HAART if CD4 is low. The
diagnostic covariate L, will typically also depend on an underlying latent general health process which we represent by
U, and which in turn is predictive of the outcome of interest Y, e.g. survival.

We may represent the above structure in the DAG in Figure 2, which we assume is causal with respect to A. We see that
there is confounding of the relationship between A; and Y, since L, is a common parent (and U a common ancestor) of
the two; hence P(Y |do(a)) # P(Y | A = a) in general.

L,

SN

Ay

Y

Ap

Figure 2. DAG depicting simple time-dependent confounding. Circled node denotes latent variable.

Recall that in a DAG, the absence of edges encodes crucial independencies; here we assume that the treatment decisions
Ay are conditionally independent of U given {L;, A;_;} as shown by the absence of an edge from U into A;. Such an
assumption could be justified if it is plausible that any information which clinicians in the study use to make their treatment
decisions is contained in L;. This structure ensures that in Figure 2, L, is sufficient to adjust for confounding, i.e. as long
as we have data on L4, there is no unobserved confounding.

In analogy to the time-fixed case one may consider regression adjustment, i.e. estimation of the observational conditional
distribution P(Y | Ly, Ao, A1). However in this time-dependent case, adjusting for L; in this way will introduce other
sources of bias. Firstly, the time-dependent data structure permits the existence of causal pathways from treatment to
outcome which are mediated via the covariates. In this case, we have the mediated causal pathway 49 — Ly — Y.
Regression adjustment for L; could block such pathways, resulting in distorted estimates of the overall effects of earlier
treatment decisions on the final outcome. Secondly, conditioning on L1, which is graphically known as a collider on the
path Ay — L; «— U — Y/, induces an association between its co-parents Ay and U, and hence between Ay and Y.
This is known as selection bias [28, 29, 30]. Selection bias often gets overlooked, but its effect can be clearly demonstrated
if we consider the special case where neither Ay nor A; have any causal effect on Y at all, as in Figure 3. There are no
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causal pathways from A to Y, yet conditioning on L; results in a conditional association between Ag and Y, which will
show up in a regression model for P(Y | L, Ag, A1) as a non-zero coefficient of Ay.

In the general case with more time points, selection bias, as well as bias due to blocked mediated effects, will almost
automatically become a problem whenever summary measures of treatment and/or covariates, such as cumulative or
average treatment or CD4 count, are used [31]. It can then also happen that a mediation pathway like Ay — Lyy1 —
Ai+1 — Y becomes problematic.

Ly Y

N

Ao A,

Figure 3. DAG representing the case of no causal effect of A, but selection bias.

Thus we have three potential sources of bias in a longitudinal setting: time-dependent covariates may confound the
effect of future treatments on the outcome; but if we condition on these covariates we could potentially induce selection
bias as well as obscuring mediation effects with respect to earlier treatments. These issues characterise time-dependent
confounding [2], and are problematic in that there is potential for bias whether or not we use { L, } in regression adjustment.
The following section addresses one possible method which takes time-dependent confounding into account without
introducing bias.

2.6. Inverse Probability of Treatment Weighting

Inverse probability of treatment weighting IPTW) [1, 2] is a method for correcting for time-dependent confounding when
fitting an MSM. This is achieved by weighting each subject’s data based on their observed treatment history. The basic
inverse probability of treatment weight for subject ¢ at time ¢ takes the form

1
Hizo pr(Ari| Ar 14, Ly )

where p;(z|z,w) = P(A; = x| Ay_1 = %, Ly = w), so that the denominator is the probability that the subject received

Wi =

the particular treatment history they were observed to receive up to time ¢, given prior observed treatment and covariate
histories. Applying the terminal weights Wy ; to each subject in the sample results in a pseudo-population in which
treatment A; is no longer affected by past covariates L;, breaking the confounding; but crucially, the causal effect of A on
Y remains unchanged. Then the parameters of the MSM coincide with those of the re-weighted observational marginal
model, which may be estimated using standard methods on the re-weighted data. The resulting estimates are consistent
under the following assumptions: the MSM is correctly specified, the denominators are non-zero as well as being correctly
specified and fitted using a consistent method, and given {L,} there is no unobserved confounding.
In practice, we use the stabilised form of the IPTW:

Hs—:o pr (A'r.,i | A'rfl,i)
Hj—:o Pr (AT,i, | AT—l,ia LT,i) 7

Wi = 5)
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where p;(z|2) = P(A; = 2| A;_1 = 2). It can be shown that replacing the numerator of the weight by any function of
A, affects the efficiency of the IPTW estimator of ~, but not its consistency. Furthermore, ﬁ//m generally gives a more
efficient estimator than W, ; [1, 2]. It also has the property that the weights reduce to 1 when there is no confounding,
so that the weighted analysis is asymptotically equivalent to the unweighted analysis (see an empirical example of this in
Section 3.4.3).

2.7. Extension to Time-to-Event Outcomes

Sections 2.5-2.6 focus on a simple form of longitudinal data in which follow-up proceeds for a fixed amount of time,
and the outcome Y is measured at the end. This extends naturally to the case of time-to-event data (in discrete as well as
continuous time) with finite follow-up, in which Y is treated as a binary indicator process {Y; };c7+ [11, 32, 33, 34, 35].
Here, Y; = 1 when the subject has failed (e.g. died) before time ¢, Y; = 0 otherwise, and the outcome of interest is the
survival time, Y. The key differences in methodology for this case are as follows: Instead of applying terminal IPTWs
Wr ; to each subject, the time-varying weights W, ; are applied at each time point ¢ for each subject; and often the hazard
function, or the probability of failure in a particular interval, is of primary interest, so that it is necessary to condition on
Y; = 0, i.e. ‘survival’ up to the present.

3. Simulating Data from a Given MSM with Time-Dependent Confounding

We now address the issue of how to simulate longitudinal data with a survival outcome from a given MSM, so that the
underlying data-generating process exhibits time-dependent confounding. For the purpose of evaluating methods which
correct for time-dependent confounding, we require that the true marginal structural model for Y given do(a) takes a
known form.

If, instead of a survival analysis, we were examining a data structure with a fixed-time outcome, with linear relationships
between variables (e.g. multivariate Gaussian), the requirement would be straightforward to achieve. We could simply use
the structure of Figure 2, in which Y is affected by A and L. This would give a known conditional model for Y given A
and L, which, due to linearity, we could collapse over L to derive the marginal model for Y given A alone. However this is
not as simple in the case of a survival outcome, where hazard functions, or their discrete equivalents based on generalised
linear models, are typically non-collapsible.

3.1. General Idea

The general idea is essentially based on a longitudinal version of Figure | and the issues discussed around (4). We take
a uniformly distributed Up, which represents a latent general health variable; we generate {L:, A;} depending on Uy, as
well as transforming Uy to obtain Y; with the desired MSM’s survival function S%(¢) once the actual treatments A, =@,
are known. Note that the uniform distribution of Uy is not crucial, as long as Y; given Uy can be generated from the desired
S%(t). We can ensure that { L, } is sufficient to adjust for confounding by choosing conditional distributions for A; that are
independent of U, given (L;, A;_1). We can further easily choose conditional distributions for L; that depend on A;_;
and U so that past treatment decisions affect future covariates. (Note that in the specific algorithm given below, we induce
noise in the dependence of L; on Uy by including further latent variables Uy, ..., Ur.)

The procedure suggested above can simply be regarded as one way of matching the LHS of (3) as given by the MSM
with a suitable choice of the factors on the RHS of (4). However, it could also be interpreted in terms of potential outcomes
as follows. The MSM determines a survival function (or CDF) S%(t) for any treatment strategy do(a). So, in principle we
could generate the set of all counterfactual outcomes of an individual 4, {Y;(a) : @ € A}, at the start, and then generate the
remaining processes in a way which ensures {L;} is sufficient to adjust for confounding. Once the observed treatment
process A = a* is known, the corresponding potential outcome process Y;(a*) is picked and becomes the observed
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outcome Y;. The procedure suggested above instead provides a shortcut in that it waits until the treatment process is
known and then generates the potential outcome, which is far more computationally efficient.

An obvious disadvantage of the suggested approach is the way in which the dependence of {Y;} on {L;} can only
implicitly be specified via their respective dependencies on Uy. This also means that {L;} is only a very weak mediator
of past treatment decisions in the sense that it may influence survival via future treatment decisions but not via other
pathways. If we wanted to model a more explicit dependence we would either need to use collapsible models (or maybe
exploit conditions for near-collapsibility [32]), or make the RHS of (3) match with the LHS as given by the MSM. This
approach will generally be more challenging and intricate, especially in the general longitudinal case.

3.2. Data-Generating Algorithm

We now present a specific algorithm based on the above proposal. We wish to emulate a simplified version of the data
structure of the Swiss HIV Cohort Study [3], for the effect of HAART versus no treatment on the ‘survival’ time of HIV
patients (time to AIDS-related illness or death; we assume death from here onwards for simplicity), with time-dependent

confounding by CD4 count and no other measured covariates.

3.2.1. Data Structure. Our data structure operates in discrete time ¢ € 7. The four processes included in the model are as
follows.

A binary treatment indicator process { A; }+c7, where A; = 1 when the subject is on treatment (e.g. HAART) at time ¢,
A = 0 otherwise. Once a subject has started treatment, they remain on treatment until failure or end of follow-up.

A covariate process { L; }+c7 represents one or more diagnostic variables. In the context of the Swiss HIV Cohort Study,
L would be the subject’s CD4 count in cells/pL at time ¢. A lower value of L, indicates more severe illness.

The binary failure process {Y; };c7+ indicates when death has occurred before time ¢, ¥; = 1, and otherwise ¥; = 0.

As before {U, }.c7 represents a latent ‘general health’ process, where U; € [0,1]. A value of U, close to O indicates
poor health, U; close to 1 indicates good health.

‘Check-up’ times, at which L; is measured and A; is chosen, only occur at every kth time point (the first check-up is
at t = 0), while U, is updated and Y; is measured at each ¢. This permits a greater granularity in the failure times; for a
fixed ratio ¢/k, as t — oo, the failure time approaches a continuous process. Between check-ups L, and A; are taken to be

constant.

3.2.2. MSM. As we assume discrete-time data, we will not take a continuous proportional hazards approach to the survival
analysis. Instead we work with the probability of failure in a single interval (¢, ¢ + 1] given survival up to ¢, as the discrete
equivalent of the hazard function. Let A\? denote \;(do(a)) = P(Y;41 = 1|Y; = 0; do(a)). Note that, in the present case,
any intervention strategy a is fully specified by the time ¢* of treatment initiation so that we can reformulate our model in
terms of ¢*. The algorithm given below generates data from the following MSM:

A =logit™! (70 4+ 7 [(1 — ar)t + at*] + Yoy + y3a.(t — t*)) (6)
= logit™" (0 + vid1 + Y2as +Y3ds ),

where d; ; = min{¢,t*} and d3; = max{t —t*,0} represent the time elapsed before and after treatment initiation
respectively. Thus the structural model for the effect of treatment on survival can represent situations in which, for example,
initiating treatment improves survival chance (72 < 0), but also increases the rate at which survival chance decreases with
time (v3 > 1 > 0). In this case, the problem of determining the optimal time to initiate treatment is non-trivial. Note
that often the hazard function is chose to depend only on the current treatment, e.g. logit™* (ag + a1ay); the above choice
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means that the hazard depends on a summary of the treatment history a, by including the duration without treatment as

well as the duration on treatment.

3.2.3. The Algorithm. The following algorithm generates data under the structure of Section 3.2.1 which follow the
MSM of Section 3.2.2, exhibiting time-dependent confounding, and ensuring that data on L, are sufficient to adjust for
confounding. For each subject:

e Draw Uy ~ UJ0, 1]

e Compute the baseline CD4 L as a transformation of Uj by the inverse CDF of the I'(k = 3,6 = 154) distribution,
plus a N(0,20) error term. This inverse CDF transform was chosen to heuristically approximate the sample
distribution of baseline CD4 counts in the Swiss HIV Cohort Study [3].

e Draw treatment decision Ay ~ Bernoulli(p,), where pa, = logit™" (fy + 62(Lo — 500)), where clinical consensus
holds that a CD4 count of 500 is a conservative lower ‘healthy’ bound.

o If Ag = 1, i.e. treatment starts at this check-up, set treatment start time 7* <« 0.

e Compute )\ « logit™* (70 4+ ¥240), the probability of failure in the interval (0, 1] conditional on survival up to time
0.

e If \y > Uy, the subject failed in the interval (0, 1] and set Y7 < 1. Else the subject survived and set Y7 < 0.

e Fort =1,...,T, while the subject is still alive,

— Draw U; < min{1, max{0, U;_; + N(0,0.05)}}, a perturbation of U;_ restricted to [0, 1].
- If t £ 0 (mod k), i.e. t is not a check-up time, L; « L;_; and A; + A; ;. Else:

+ If treatment started at the previous check-up, L; + max (0, L;_; + 150 + N(100(U; — 2), 50)). Else L; <
max(0, Ly—1 + N(100(U; — 2),50)). The Gaussian drift term is included such that the closer U, is to 0,
the stronger the negative drift in CD4.

« If treatment has not already started, draw treatment decision A; ~ Bernoulli(ps,), where pa, =
10git_1(90 + 01t + 02(L: — 500)). Else A; + 1 (subject remains on treatment once initiated.)

x If Ay =1and A;_j = 0, i.e. treatment starts at this check-up, set treatment start time 7™ « ¢.

— Compute \; + logitfl(% + 71 [(1 = At + AT*] + 2 Ap + 3 A (t — T™)), the probability of failure in the
interval (¢,¢ + 1] conditional on survival up to time .

— Compute S(t) = Hizo(l — \;), the probability of survival up to time ¢ + 1. If 1 — S(¢) > Uy, the subject
failed in the interval (¢,¢ + 1] and set Yz, = 1. Else the subject survived and set Y;1 = 0.

The complete sampling algorithm for the modified model is given in Appendix A, and Appendix B proves that the
generated data follow our desired MSM (6). A DAG representing this model for the case 7' = 1,k = 1 is given in Figure
4. Dot arrowheads represent deterministic relationships, circled nodes represent latent variables. Arrows from Y; to future
variables, representing dependence on prior survival, are omitted for clarity.
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Figure 4. DAG corresponding to the data-generating algorithm for the case ' = 1, k = 1.

From Figure 4, it is clear that the process exhibits time-dependent confounding. There is confounding due to U
being a common ancestor of A (via L) and Y. There is potential for selection bias conditioning on L; induces an
association between U; and Ay, and hence between Y and A,. Finally the only mediating pathways are such as
Ay — Ly — Ay — Y>. Furthermore, L is sufficient to adjust for confounding, since A; is independent of U, given
(Le, Ap 1),

The key mechanism by which this sampling algorithm generates confounded data from this MSM is the way in which
Aand Y depend on Uy. The Uy — Y relationship is due to Uy acting as a probability threshold, against which S(t), the
probability of surviving the time interval (0,¢ + 1], is compared at each ¢. Hence, the subject fails at the point at which
1 — S(t) exceeds Uy. The mechanism makes sense intuitively; a value of Uy close to 1 indicates good health, and means it
is less likely that 1 — S(¢) will exceed Up. Thus failure is unlikely when baseline general health is good.

It is straightforward to demonstrate that using Uy in this way does indeed result in the algorithm generating survival
processes with interventional failure probabilities A?. One such demonstration is as follows: Given a strategy a, we note
that )\; in the algorithm is equal to AZ from (6) when A; = a;. Thus, we have

{Yii=1Y =0} & {1—ﬁ(1—Ai)2U021—t1:[1(1—)\$)}.

=0 7=0

This event occurs with probability

P<U0§1ﬁ(1A§)>P<U0§1ﬁ(1Ai)>

7=0 7=0

zl—ﬁ(l—,\i)—<1—ﬁ(1—)\i)>

=X (=29,
=0
which is the probability of surviving the first ¢ — 1 intervals, and failing in the ¢-th, as required.

Note that the corresponding observational hazard \¢**(A; = a@;) = P(Y;41 = 1|Y; = 0, A; = @;) cannot be so easily
obtained. It would require one to evaluate the above probabilities with respect to the conditional distribution of Uy given
A, = a,, which is different from the marginal distribution of Uy, since U, and A are not independent (see also Appendix
B for more details).
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3.3. Comparison with Other Approaches

The above data-generating algorithm is inspired by the one used in Bryan et al. [10] and the chosen MSM hazard (6) is the
same. However, their algorithm fixes the whole sequence { L.} at the start as a deterministic function of Uy. Hence present
treatment A; cannot affect future L, j, which is unrealistic and means that we cannot examine whether a given method
appropriately deals with the problems due to treatment affecting future covariates. Our algorithm extends the approach of
Bryan et al. in this crucial aspect.

Furthermore, Young et al. [11, 12] propose an algorithm to simulate data from an MSM that allows a continuous
survival outcome. The two papers focus on describing and proving a set of conditions under which a continuous-time
proportional hazards MSM, a Structural Nested Accelerated Failure Time Model (SNAFTM) and a Structural Nested
Cumulative Failure Time Model (SNCFTM) approximately coincide, so that the performance of IPTW can be compared
with g-estimation. The MSM we have chosen here (6) is more complex than that in Young et al. and does not satisfy the
conditions under which the three models coincide, for instance the effect of treatment start is allowed to depend on the
time delay. The data-generating approach of Young et al., however, is essentially the same as ours; in particular they allow
future covariates to depend on both past treatments and a latent variable representing the counterfactual baseline survival
time T} under the strategy of ‘never treat’, which obviously predicts the outcome variable; this is analogous to our Uy. The
authors do not explicitly prove their algorithm, but our proof in Appendix B can easily be adapted, by changing the final
step to demonstrate the validity of the respective MSMs.

The simulations carried out by Daniel et al. [9] used linear models, which are collapsible and therefore do not have the
problem of incompatibility between the marginal model and the conditional distributions used to simulate the data. The
approach of Xiao et al. [32] considers survival outcomes but does not actually simulate data from an MSM as it is based
on a conditional model which includes a L;-term in the hazard. They argue that choosing a very small rate of events means
that the model is near-collapsible, i.e. that the conditional and marginal parameter values are almost identical. However,
this further relies also on the absence of a latent process {U;} which means that selection bias cannot occur and hence
cannot be investigated with their simulations.

3.4. Application to a Simulation Study

With our data-generating algorithm established, we wish to evaluate and compare the performance of the following
methods for a finite sample size. Note that throughout we only consider the case where censoring occurs at end of follow-
up, for simplicity. We apply four different pooled logistic regressions to the data. (Pooled logistic regression is the discrete
analogue of proportional hazards regression, in which all subject—time points are pooled into one set of observations [36].)
These are:

1. An unweighted regression which nominally fits model (6) using data on {A;, Y;} but without any adjustment for
confounding, i.e. not using {L; }.

2. An unweighted, adjusted regression which nominally fits model (6) but adds an extra term 4 in an attempt to

105
adjust for confounding by {L;}.

3. A second unweighted, adjusted regression which nominally fits model (6) but adds an extra term 74%, where L2
is the average over all (past and future) observed values of {L;}. The idea here is that L*' may be regarded as a
summary measure for the CD4 counts, and it should be biased as it conditions on future covariates.

4. A weighted regression which fits (6) and uses the stabilised weights of (5).
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Figure 5. Structural hazard and survival curves for four possible treatment regimes.

3.4.1. Simulation Settings. We simulate data from our generating model with the following parameter values.

e Follow-up occurs over T = 40 time points, with check-ups every (k = 5)th point. These values match those used in
Bryan et al. [10]

e The parameters for the conditional distributions of treatment are
(6o,071,02) = (—0.405,0.0205, —0.00405).

These values calibrate the logistic function such that P(Ay = 1| Ly = 500) = 0.4, P(Ayp = 1| Ly = 400) = 0.5 and
P(A1p = 1] Lip = 500) = 0.45. This calibration generally ensures that treatment assignment probabilities close to
0 or 1 do not occur. Such a requirement could be relaxed when we wish to specifically investigate the stability of
IPTW when there are rare treatment decisions.

e The parameters of the MSM hazard \¢ are

(Y0,71,72,73) = (—3,0.05,—1.5,0.1).

These values satisfy the non-trivial case described in Section 3.2.3, in which initiating treatment provides a one-time
decrease in \;, but also increases the rate at which \; increases with time.

The above settings result in structural hazard and survival functions as shown in Figure 5, and the rate of failure events
between check-up times is around 12% (by changing the intercept ~, this can be reduced; however, even with a rate of at
most 4% we found qualitatively analogous results as given below).

3.4.2. Results. We generated 100 replications each of a study with n = 1000 subjects, a moderate sample size (for
comparison, the Swiss HIV Cohort Study has a sample size of 3245). For each study, we fit the four regressions. The
mean and standard deviation of each regression’s estimates of « are taken over all replications. The results (omitting the

intercept ) are given in Table 1. Note that the coefficient ~4 is defined such that one unit corresponds to 100 cells/uL.
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As expected, all unweighted estimates are biased, while the IPTW estimate appears to perform well even for this
moderate sample size. We see that the unweighted unadjusted estimates, especially of 7, -, are biased towards the null.
This is plausible because patients with low CD4 counts are more likely to start treatment, but also more likely to have
shorter survival, hence treatment will appear less effective. Also, as expected the regression that adjusts for L2V is more
biased than the one which adjusts for L;. We note the non-zero regression coefficients v, which indicate that the covariate
process {L,}, and moreso L?, is indeed predictive of the outcome.

When interpreting the results of the two regression adjustments, we have to keep in mind that our target parameter is
a marginal causal effect, while these two regressions are estimating conditional coefficients (given the covariate L, or
L®). As the model is not collapsible these cannot be expected to be the same, even if {L,} and {A;} were independent

processes, as we will see below.

3.4.3. Isolating Sources of Bias. In order to isolate separate potential sources of bias, we now consider the following
special cases of the above data-generating algorithm obtained by removing certain dependencies corresponding to edges
in the underlying DAG.

(i) We can break the dependence of L; on A;_; by drawing L; + max{0, L;_; + N(100(U; — 2),50)}. For the HIV
scenario this would mean that treatment no longer has a beneficial (or any other) effect on CD4 count, but
nevertheless improves survival chances. Hence, Uy is still confounding A, and survival via L;, but as the latter
is not affected by past treatment there will be no selection bias nor mediation.

(i) We can break the dependence of L; on U; by drawing L; < max{0, L;_1 + 150A4; (1 — A;_4_1) + N(—=150,50)}.
For the HIV scenario this would mean that a subject’s CD4 count at a particular time does not depend on their latent
general health. Now, there is no confounding at all, and selection bias cannot occur either.

(iii) We can break the dependence of A; on L; by drawing A; ~ Bernoulli(0.5) whenever A;_; = 0. This clearly
corresponds to performing a randomised controlled trial, in which each subject who has not already initiated
treatment at a particular time is randomly put on treatment with probability 0.5. Again, there is no confounding
in this scenario, but there is potential for selection bias.

(iv) Finally we combine (i) and (iii) of the above. Graphically this removes any arrows from A;_; to L, as well as
arrows from L, to A;. In other words the processes { A; } on the one hand and {L,, U, } on the other hand are entirely
independent.

With these modified generating processes established, we may once again apply the same four pooled logistic regressions:
unweighted, L;-adjusted, L?V-adjusted and IPTW-weighted, each applied to 100 replications of 1000 subjects of each
data-generating process. Means and standard deviations are taken across the replications. The results are given in Tables
3-5. We note that the results for the IPTW approach are very good throughout, as can be expected from its theoretical
properties; we know that it is consistent in all scenarios and the finite, rather small, sample size does not appear to cause a
problem.

Let us first consider the performance for the last data-generating process, see Table 3. As we would expect, neither
the unweighted unadjusted nor the IPTW estimators are biased; in fact their standard deviations are very similar. This
is because the stabilised weights will all be close to 1, numerator and denominator being essentially identical except for
sampling variability. The unweighted unadjusted estimators can be regarded as using the true weights. It is known that
using estimated weights even when the true weights are known yields more efficient estimators, which explains why the
variability of IPTW appears even smaller than of the unweighted unadjusted approach [1, 10]. While there is no structural
bias that can possibly affect the two regression-adjusted estimators for these simulated data, the estimates appear biased
due to the lack of collapsibility and ensuing misspecification of the regression model. As expected, higher CD4 counts are
associated with longer survival, however all other effects appear biased away from null.

In Table 2 we see the performance on data where treatment does not affect future covariates. The unweighted unadjusted
regression exhibits the exact same bias as in Table 1; the same method is not biased in Tables 4 and 5 which confirms
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that this method is only affected by confounding. The two regression adjustments are also affected by the remaining
confounding in Table 2, even though they are trying to adjust for it. These two methods neither seem to estimate the true
marginal parameters, nor the conditional ones of Table 3.

The L,-adjusted regression appears consistent for data where {U, } does not affect { L, } in Table 4, but is further affected
by selection bias in Table 5. In the former case, we have that L, does not predict the outcome given A; as can be seen
from the zero 4 coefficient. Hence the model is correctly specified and there is no source of bias, so that the estimates are
consistent. If we were able to simulate data from an MSM such that L; predicts Y other than through future treatment we
would expect to see a bias here.

In contrast, the L?V-adjusted regression struggles in all cases. Including L2V as covariate at any given time ¢ implies
conditioning on future covariates which predict Y via future treatment, and we can see from Table 4 that this leads to bias
of the treatment effect towards the null, i.e. some of the effect of starting treatment is wrongly attributed to L2V instead. In
fact the sign of 74 means that large average CD4 count is associated with shorter survival which can only be explained by
its predicting that future treatment is less likely.

4. Discussion and Outlook

We have discussed a general approach for simulating longitudinal data from a given MSM while ensuring that the data
exhibit time-dependent confounding, including the potential for bias due to past treatment affecting future covariates.
This is especially relevant in cases where the desired model is not collapsible, such as in typical survival analyses using
proportional hazards or pooled logistic regressions, because the data-generating process suggested by a corresponding
DAG relies on conditional model specification which may not be compatible with the desired marginal model.

The sampling algorithm presented here is quite flexible; there is scope to examine and develop the finer details of it.
This may involve altering aspects such as the distribution of U, given U;_,, with the aim of generating data which more
closely match that of the Swiss HIV Cohort Study, or perhaps examining different longitudinal data structures. However
the key mechanism by which time-dependent confounding is included must remain intact.

As MSMs and IPTW are gaining popularity, especially in the context of survival or time-to-event analyses, it is
important to be able to simulate data from a known true model so as to evaluate finite-sample properties and compare
competing approaches. We have illustrated the shortcomings of unweighted and regression-adjusted methods with a small
simulation study. To address weaknesses of IPTW, future simulation studies could consider problems due to large or
unstable weights, censoring, misspecification of the structural model and/or the treatment model, especially in situations
when the set of covariates to be adjusted-for is high-dimensional, as well as mild violations of the no unmeasured
confounding assumption. Our data-generating algorithm can easily be extended to such cases. A shortcoming however
is that the dependence of the outcome on any covariates can only indirectly be specified, and hence mediation as well as
effect modification are difficult to model.

The problems addressed in this paper may lead some researchers to conclude that MSMs are not a natural model class as
it appears more intuitive and flexible to generate simulated data from the conditional distributions of a DAG factorisation.
In such a case we find it still valuable and important to consider the induced P(Y |do(a)) which can be obtained from the
truncated factorisation formula, integrating out the time-dependent covariates and latent processes; it may then even be
possible to work out what the misspecified MSM is estimating. In cases where this is analytically difficult it is relatively
straightforward to simulate the corresponding data similar to [37].

Finally, MSMs are now becoming more popular for analysing the effect of dynamic treatment strategies by artificial
censoring [38, 5, 39, 40]. The aim is to determine the optimal strategy within a given set of possible ones. A dynamic
strategy takes the treatment decisions as functions of the time-varying covariate, e.g. ‘start treatment with HAART when
CD4 drops below 600°. The time at which a given patient will receive treatment is not then predetermined, as it might
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happen that their CD4 drops below 600 very early on, later, or never. In future work we will consider how to adapt our
data-generating algorithm to MSMs for such dynamic strategies.
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The Full Sampling Algorithm

for subjecti =1,...,n do

Up,; ~ U[0,1]
€o,; ~ N(0,20)
Lo + F1:(§,7154) (UO,i) + €0,
A_1;+0
Ag,; ~ Bernoulli (logit ™" (6 + 62 (Lo,; — 500)))
if Ap; = 1 then
T« 0
end if
Xo,i 4 logit™ (o +7240,)
if \o; > Uy ; then
i1
else
Y10
end if
fort=1,...,T do
while Y; ; = 0 do
Ay ~N(0,0.05)
Ui < min{l, max{0,U;_1; + Ay ;}}
if ¢ # 0 (mod k) then
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Ly L1,
A Ap_1i
else
€:i ~ N (100(U,; — 2),50)
L;; < max{0,Ly—1,; + 150A;_p (1 — Ap—p—1,) + €10}
if A;_1; = 0 then
Ay ~ Bernoulli (logit ™" (6 + 01t + 02(Ly; — 500)))
else
A 1
end if
if A;; =1and A;_;; = 0 then
T 1t
end if
end if
Ari < logit ™ (yo + 71 [(1 — Api)t 4+ A i T*) 4+ 2 Ari + Y3 Asi(t — T*))
if 1 - [[._, (1 —\.;) > Uy, then
Yii1:.=1
else
Yit1,=0
end if
end while
end for
end for

B. Sketch Proof that the Generating Model Simulates from the Desired MSM

We begin by considering the factorisation of the joint distribution of all the variables in the model. Then, as in Section 2.2
we obtain the truncated factorisation formula under an intervention following treatment plan @, and show that it results in
the MSM (6). The reasoning is essentially the same as for the example with a single time point, which yields (4).

Note that the set of parents of each L; and A; depends on whether or not ¢ is a check-up time. if ¢ is not a check-up
time, the only parent of L; is L;_;. Otherwise, L; has the additional parents A;_j, A;_;_1 and U;. Similarly if ¢ is not
a check-up time, the only parent of A; is A;_;, otherwise it has the additional parent L;. However since the removal of
parents represents the addition of conditional independencies, we may proceed without loss of generality by assuming the
larger set of parents for all L; and A;.

In the following we have that all vectors Y consist of a sequence of zeros followed by a one. Let Y = min{t : Y; =1}
be the time where the event (e.g. death) occurs. All remaining variables are undefined for ¢ > Y. The joint distribution

factorises as follows (where variables with negative index are defined to be the empty set).

Y-1
P (I/7A7Y70) = H {P (U‘r | Ur1,Y: = 0) X P(L’T | LT*17AT7]€7A7'7]€717U’T7YT = 0)
7=0

X P(AT ‘ ATfl,LT,YT = 0) x P (YT+1 |AT7U0,YT = 0)} .
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Intervening to fix treatment A at a yields the truncated factorisation formula

Y-1
Vi (E7Y7(7 | do(&)) = H {P (UT | Ur—1, Y, = 0) X P(LT |LT—17AT—]€ = a’T—kaAT—k—l =a;-1,U:, Y, = 0)
=0
x P (Yri1|Ar = a-,Up, Y, =0)}.

Integrating out Ly, ..., Ly and Uy, ..., Up yields

Y-1
P (Y, Uo |d0((_l)) = P(UO) H P (Y'r+1 | AT =a,, Uy, Y = 0) .

7=0

Note that equivalent operations can be derived if we replace Y with the events Y > t, so that equivalently we have

p(?>t,Uo\do(a)) :P(UO)ﬁP<17>T|AT:aT,UO,f’ET).
=0

Let A2 = A\.(do(a)) as in (6). Then, in our algorithm {)7 =t+ 1} & {Ht_l 1-A)>1-Uy>]['(1— )\2)}, and

Uy ~ UJ0, 1], so we obtain that
t

P(V > tldo@) =TT (1= %)
=0
which is the survival function of our desired MSM under an intervention do(a) as required.

Note that apart from the very last step, the above proof is for general conditional distributions. It therefore justifies more
general versions of the algorithm, where for instance we could have non-binary treatment, or treatment that can repeatedly
be switched on or off, as well as multivariate covariate processes etc. The validity of the algorithm of Young et al. [12] can
be shown just as above, but replacing the final step so that Uy is transformed into an exponentially distributed variable,
which is then further transformed according to an accelerated failure time model depending on the actual treatment

At - (_;Lt.
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True Unweighted (s.d.) L¢-adjusted (s.d.) L& -adjusted (s.d.) Weighted (s.d.)
Y1 0.050 0.009 (0.006) 0.072 (0.008) 0.230 (0.012) 0.050 (0.010)
Yo || —=1.500 | —0.402 (0.111) | —1.917 (0.143) | —2.374 (0.173) | —1.526 (0.134)
v3 || 0.100 | 0.113(0.005) | 0.097 (0.007) | 0.287 (0.011) | 0.103 (0.009)
V4 — — —0.978 (0.032) | —1.375 (0.056) —

Table 1. Monte Carlo means and standard deviations of estimates produced by different regression methods.

True

Unweighted (s.d.) L¢-adjusted (s.d.) L#-adjusted (s.d.) Weighted (s.d.)
Y1 0.050 0.009 (0.006) 0.066 (0.008) 0.247 (0.012) 0.051 (0.011)
Yo || —1.500 | —0.399 (0.109) | —3.019 (0.166) | —2.411 (0.153) | —1.516 (0.133)
v3 || 0.100 | 0.113(0.004) | 0.077 (0.007) | 0.245(0.008) | 0.102 (0.010)
| — — —1.184 (0.040) | —1.320 (0.046) —

Table 2. Pooled logistic regression results for data simulated according to (i), where L; does not depend on A; ;.

True Unweighted (s.d.) L¢-adjusted (s.d.) L#-adjusted (s.d.) Weighted (s.d.)
v || 0.050 | 0.049 (0.008) | 0.068 (0.008) | 0.249 (0.011) | 0.050 (0.006)
Yo || —=1.500 | —1.496 (0.116) | —3.557 (0.178) | —3.654 (0.206) | —1.503 (0.098)
v3 || 0.100 | 0.100(0.004) | 0.103 (0.007) | 0.278 (0.009) | 0.100 (0.004)
Y4 — — —1.127 (0.043) | —1.272 (0.047) —

Table 3. Pooled logistic regression results for data simulated according to (iv), where {A;} and {L;, U;} are independent.

True Unweighted (s.d.) L¢-adjusted (s.d.) L& -adjusted (s.d.) Weighted (s.d.)
Y1 0.050 0.051 (0.009) 0.051 (0.009) 0.033 (0.009) 0.052 (0.017)
Yo || —1.500 | —1.523 (0.104) | —1.523 (0.110) | —1.184 (0.111) | —1.525 (0.157)
v3 || 0.100 | 0.100(0.005) | 0.100 (0.005) | 0.107 (0.005) | 0.101 (0.006)
Ya — — —0.000 (0.017) 0.167 (0.017) —

Table 4. Pooled logistic regression results for data simulated according to (ii), where L; does not depend on Uj.

True

Unweighted (s.d.) L¢-adjusted (s.d.) L& -adjusted (s.d.) Weighted (s.d.)
v || 0.050 | 0.051(0.008) | 0.074 (0.009) | 0.232(0.013) | 0.051 (0.007)
Yo || —1.500 | —1.504 (0.111) | —2.541 (0.143) | —3.480 (0.195) | —1.502 (0.097)
v3 || 0.100 | 0.101(0.004) | 0.119 (0.007) | 0.321(0.012) | 0.100 (0.004)
V4 — — —0.943 (0.029) | —1.335 (0.053) —

Table 5. Pooled logistic regression results for data simulated according to (iii), where A; does not depend on Lj;.
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