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Abstract The ability to infer parameters of gene regulatory
networks is emerging as a key problem in systems biology.
The biochemical data are intrinsically stochastic and tend to
be observed by means of discrete-time sampling systems,
which are often limited in their completeness. In this paper
we explore how to make Bayesian inference for the kinetic
rate constants of regulatory networks, using the stochastic
kinetic Lotka-Volterra system as a model. This simple model
describes behaviour typical of many biochemical networks
which exhibit auto-regulatory behaviour. Various MCMC al-
gorithms are described and their performance evaluated in
several data-poor scenarios. An algorithm based on an ap-
proximating process is shown to be particularly efficient.

Keywords Biochemical networks - Block updating -
Lotka-Volterra model - Markov jump process - MCMC
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1 Introduction

A high current priority in the biological sciences is the
development of new techniques for integrative and pre-
dictive modelling (Bower and Bolouri 2001; Kitano 2001;
Kirkwood et al. 2003). This is based both on the realisation
that traditional reductionist approaches need to be comple-
mented by efforts to reconstruct an understanding of how
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systems function as a whole (i.e. “systems biology”) and
also on the massive amounts of detailed experimental data
being produced by high-throughput technologies, such as
gene expression micro-arrays. As knowledge of underlying
mechanisms has advanced, it has also become increasingly
apparent that there is an important stochastic element inher-
ent in cell and molecular processes. Stochastic variation at
this level can have significant impacts even on high-level
outcomes such as an organism’s development and ageing
(Finch and Kirkwood 2000).

To date, relatively little work has addressed the impli-
cations of the stochastic nature of the gene regulatory net-
works in terms of modelling and data analysis (McAdams
and Arkin 1997; Arkin et al. 1998). The biochemical re-
actions involved in gene regulation typically involve very
low concentrations of key reactants which interact with each
other and with DNA (Guptasarma 1995). Stochastic vari-
ation arises both from randomness of molecular diffusion
and from effects of chance in the combinatorial assembly of
transcription factor complexes at DNA control sequences.
Experimental evidence (Zlokarnik et al. 1998) confirms that
gene expression occurs in abrupt stochastic bursts. Conven-
tional deterministic chemical kinetics fail to describe the de-
velopment of systems of coupled biochemical reactions cor-
rectly when both concentrations of reactants and reaction
rates are low (Zheng and Ross 1991). Recognition of the fact
that chemical reaction steps occur discretely and at random
times is vital.

One of the most important challenges in developing
systems-level models of stochastic gene regulatory processes
is how to estimate the values of the key rate parameters. Re-
alistic models involve many parameters of biological inter-
est and importance. Experimental technology is improving
rapidly, so that (semi-)quantitative high-resolution single-
cell data of the type that is most informative for the build-
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ing of stochastic models is now realistically attainable (Pep-
perkok and Ellenberg 2006). Typically, data is generated via
fluorescence microscopy, then processed to extract gene ex-
pression time series (Shen et al. 2006).

Traditionally, network models have been given a contin-
uous deterministic interpretation leading to a set of cou-
pled ordinary differential equations. The inference prob-
lem then becomes one of estimating the kinetic rate pa-
rameters and a variety of techniques are possible ranging
from ad hoc parameter tuning to sophisticated model-based
Bayesian methods; see, for example, Brown and Sethna
(2003), Barenco et al. (2006) and Liebermeister and Klipp
(2005) for the latter. For intracellular processes, it is well
known that stochastic effects are important (Bahcall 2005;
McAdams and Arkin 1999) and so methods are required
which explicitly account for intrinsic stochastic effects. An-
other important consideration is that the experimental proce-
dures mentioned in the previous paragraph rarely allow for
the simultaneous measurement of more than a small num-
ber of the key reactants. Therefore the case of how to make
inferences using only partial observation of the system is of
particular interest.

Until recently, stochastic gene regulatory models have
been too complicated for direct inferential analysis and in
current work (see Arkin et al. 1998) parameters are set to bi-
ologically plausible starting values and then tuned in an ad
hoc manner in an attempt to match experimental data. How-
ever, progress in Bayesian stochastic-simulation methodol-
ogy allows, in principle, direct inference to be made for
the parameters of any fully specified model, taking account
of prior information about parameter values in the form of
probability distributions.

A typical stochastic gene regulatory model describes the
evolution of u species Y1, Y2, ..., ¥, (in thermal equilibrium
inside some fixed volume) using a set of v reaction equations
R1, R>, ..., Ry. Such systems are represented using chemi-
cal reaction notation as follows:

Ri: puhi+pepYo+---+putu
— quYi+qu2+---+quY,
Ry: puYi+pnYs+---+ puYy

— @Y1+ g2+ +quY,

Rv: pv1Y1+pv2Y2+"'+pvuYu
— quY1+quYo+--+qutu

where py; is the stoichiometry associated with reactant j
in reaction k and gi; is the stoichiometry associated with

product j in reaction k. Each reaction R; has a stochas-
tic rate constant 6; and a rate law hx(Y, 6), where Y =
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(Y1, Ya,...,Y,) is the current state of the system measured
in numbers of molecules. The rate law describes the in-
stantaneous hazard of reaction Rj occurring under an as-
sumption of mass action kinetics (Gillespie 1977). The ef-
fect of reaction Ry is to change the value of each Y; by
qkj — Pkj. A consequence of the model is that, at time ¢,
the time to the next reaction has an exponential distribu-
tion with rate ho(Y,0) = Y_;_, hx (Y, 6x), and the reaction
is of type k with probability ki (Y, 6x)/ ho(Y, 6). Hence, the
process is easily simulated using discrete event simulation
methods. Within the chemical kinetics literature, this tech-
nique is known as the Gillespie algorithm (Gillespie 1977);
see Wilkinson (2006) for further details of stochastic kinetic
modelling and its application to systems biology.

A naive approach to parameter inference in this context
would be to work with a deterministic approximation to the
stochastic model. Parameter estimates can then be obtained
by using standard least squares or maximum likelihood ap-
proaches. However, Tian et al. (2007) show that this strat-
egy does not work well in general. In this paper, we de-
scribe a systematic attempt to conduct rigorous inference for
a partially and discretely observed stochastic kinetic model.
There have been several attempts in the recent literature to
tackle this problem. Reinker et al. (2006) assumed full ob-
servation of the system at discrete times but the applicabil-
ity of their methods are limited due to the extent to which
non-Bayesian methods can cope with hidden data. In partic-
ular, the parsimony assumptions that they use have the ef-
fect of downward-biasing of parameter estimates. Rempala
et al. (2006) study a model for gene transcription containing
two species. They assume data are obtained with the process
in steady state and use the tractability of the steady state
distribution for their model to integrate out the unobserved
specie. Using these simplifications they develop a Bayesian
inference algorithm for the rate constants in their model. The
applicability of these techniques are somewhat limited and
could not be applied to the non-linear models typically of
interest in systems biology (including the model considered
in this paper). Golightly and Wilkinson (2006, 2008) de-
velop two very general inference algorithms based on a dif-
fusion approximation to the true discrete stochastic model.
Although their approximation captures the intrinsic stochas-
tic variation and they have shown that their method works
well for many problems, it nevertheless ignores the discrete-
ness of the underlying process which can be important in
low copy number scenarios. This point is highlighted by
Tian et al. (2007), who develop an algorithm based on the
exact process but which requires observation of all species
within the system. Their procedure evaluates the likelihood
function and uses a genetic algorithm to search for the maxi-
mum likelihood estimate. In contrast, the method developed
here provides a fully Bayesian solution to the parameter es-
timation problem for the exact model in the context in which
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not all species are observed. Furthermore, our procedure can
be extended in a straightforward way to allow for experi-
mental error in the observation process.

To illustrate the methodology, the system we use is of
Lotka-Volterra type (Lotka 1925; Volterra 1926), and de-
scribes the time evolution of two species, usually called
predator and prey (Renshaw 1991). Although not explic-
itly a gene-regulatory model, the “species” represented in
the model could equally well be molecular species and the
model serves to gain insight into how inference might be
done in more realistic and complex networks. The Lotka-
Volterra system is a basic stochastic process which is suf-
ficiently complex to explore the behaviour typical of many
biochemical networks that exhibit auto-regulatory behav-
iour; see Gillespie (1977) for further background on sto-
chastic and deterministic versions of the Lotka-Volterra
model and its chemical kinetic interpretation. Jost and
Arditi (2000) describe methods for estimating parameters
for predator-prey models from time series but these are not
appropriate for sparse observation on models with signifi-
cant amounts of intrinsic noise. This case is considered by
Gilioli et al. (2008) and they describe procedures similar in
spirit to those develop by Golightly and Wilkinson (2006)
and suffer from the potential disadvantages described previ-
ously.

The main contribution of this paper is to show how exact
inferences can be made despite the discreteness and partial
nature of the data. Section 2 examines how inferences can
be made for the kinetic rate constants by using a complete
data trace and then, in Sect. 3, we show how this can be
achieved when only discretely observed time course data are
available. Experimental results often measure only part of
the discretised data, for example, by missing some or all of
one of the chemical “species”. In Sect. 4, we describe how
inferences can be obtained in various data-poor scenarios
and in Sect. 5, the methods are illustrated using simulated
data.

2 Inferential issues for the general model
2.1 Analysis using complete data

Suppose the entire process y is observed over the interval
[0, T] and that the ith unit interval (i,i + 1] contains n; =
ZZ:I ry; reactions with reaction times and types (f;;, k;;),
j=1,2,...,n;, thatis, reaction Rk,._/ occurs at time #;;. The
likelihood function for the parameters 6 is

T—1 n;
ay10) = [T T T {00, }
i=0 j=1
T
XeXP{—f ho{y(t)ﬁ}dt}, (H
0

where t;0 = i (Wilkinson 2006). In the case of mass-action
kinetic rate laws typically used in this area, the hazard func-
tion can be written as

hi(Y,0) =6 g (Y), k=1,2,...,v. 2)

This leads to a convenient factorisation of the likelihood
function which in turn permits a conjugate choice of prior
distribution for the rate constants viz. independent gamma
components

Or ~T(ax,by), k=1,2,...,v. 3)

Application of Bayes Theorem produces a posterior dis-
tribution which retains parameter independence, with for
k=1,2,...,v

T
9k|y’”r(ak+”kv bk-i-fo gk{y(t)}dl), (€))

where ry is the total number of type k reactions occurring in
(0, T']. Note that the integrals here are simply finite sums as
the integrands are piecewise constant functions. Thus, with
complete data, parameter inference is straightforward.

2.2 Analysis using discrete data

Experimentally it is not feasible to observe the times and
types of all reactions. However, it is often possible to ob-
serve the levels of the species at a discrete number of time
points. We shall assume that data are observed on a regular
grid and scale time so that the data are

y= {y(t): (3100, y2(0), .. yu (@) 11 =0, 1,2,...,T].

Generalisations to a non-regular grid are straightforward but
not considered in this paper.

Assuming the independent gamma prior specification for
the rate constants in (3), the posterior distribution for 6 =
(01,02, ...,6,) given the discrete data y can be determined
using an MCMC scheme with two blocks. One block simu-
lates the entire process y(0, T'] conditional on the parame-
ters 0 and the observed data y, and the other block simulates
the parameters given the entire process as in (4).

The probability law for the entire latent process y(0, T']
conditional on the observations can be expressed as

xOoly,0) = [] 220 1060} )
1 2+ DIy, 0)

where

ya,i+1]1={@):tedi+1]}

denotes the latent process in interval i (i =0,1,..., 7 — 1)

and w{y( + 1)|y(i)} represents the conditional distribution
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of population levels at the end of an interval conditional on
those at the start of the interval. This factorisation shows
that, given the population sizes at the interval boundaries y
and the reaction rates 6, the latent process can be broken
down into a collection of independent intervals. Thus, the
problem of simulating an entire latent process can be sim-
plified into one of simulating each interval in turn from
y(@i,i+ 11|10, y(@@), y(@ + 1). The following section describes
two ways in which this can be achieved in the context of a
simple but analytically intractable example.

3 The Lotka-Volterra model

The stochastic kinetic Lotka-Volterra model describes the
evolution of two species Y1 (prey) and Y> (predator) using
three reaction equations:

6
Y| —> 2V, prey reproduction,
0 .
Y1+ 1, CN 2Y, predator reproduction,

Y N 7 predator death.

More conventionally we can express the probabilistic laws
governing the time evolution of the process as: in a (small)
interval (¢, t 4 dt], the process evolves according to

PriYi(t +dt) = yi1(t) + 1, Yo(t +d1r) = y2(0)[y1 (1), y2(1)}
=61y1(t)dt +o(dt),
PriY(t +dt) = y1(t) — 1, Ya(t + dt)
= y2(0) + 1iy1 (1), y2(0)}
=6Oy1(1)y2(1) dr + o(dr),
PriY\(t +dt) = y1(1), Yot +dt) = y2(t) — 1|y1(0), y2(1)}
= 03y2(t) dt + o(dt).
Thus the Lotka-Volterra model is a Markov jump process in
which each reaction occurs at a particular rate that depends
on the current state of the system. The three possible reac-

tions (reaction types 1, 2 and 3) have mass-action reaction
rates at time ¢ described by (2), where

g3(1) = »2(1).
(6)

g1(t)=y1(1), &2(1) =y1(1) y2(0),

Therefore, when the entire process y is observed over the
interval [0, T'] and we take a prior distribution with indepen-
dent gamma components (3) for the rate constants, the pos-
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terior distribution also has independent components, with

T
O1ly ~T (al +r1, by +/ yl(t)dt> ,
0
T
Oy ~T <a2+r2, b2+f yl(t)yz(t)dt>, @)
0

T
93|)’~F<a3+r3, b3+f yz(f)dt>,
0

where ry is the total number of type k reactions occurring in
0, T].

The problem of determining the posterior distribution
when the data are discretely observed as

y= {)’(f)= (v1(0), y2(1) 11 =0, 1,2,...,T}

rests on how to simulate a latent process within each interval
from y(i,i + 1110, y(i), y(@ + 1).

3.1 Reversible jump method

A complicating feature of simulating the latent process in a
particular interval is that not only are the times and types of
reaction not known but neither is the total number of reac-
tions that have taken place. A standard way of addressing
this problem is to use a reversible jump algorithm (Green
2003) which proposes small changes to the latent process;
see, for example, Gibson and Renshaw (1998) and Boys and
Giles (2007). Suppose that in interval i there are ry; reac-
tions of type k. These reaction counts are non-negative and
must satisfy the population counts of predator and prey at
the ends of the interval. This latter requirement imposes two
constraints on the three reaction counts and so they may be
decomposed as

Tki = Si + Ski, 8)

where si; is the (known) minimal number of type k reactions
that must have taken place, and s; is the (unknown) num-
ber of occurrences of all three types of reaction (“triples”).
These triples arise because a combination of all three reac-
tion types (in any order) produces no net change in popu-
lation levels. Determination of the s; is an integer linear
programming problem. However, in this simple case, it is
straightforward to write out the solution explicitly viz.

st =max{yi (i + 1) — y1(), 0},

s5; = max{y1 (i) — y1(i + 1), 0},

s3 = y2() — ya(i + 1) + 5

if 55, > O then s1; = s7;, 52i = 85;, $3i = 5%

/ / / /
else s1; = §|; — §3;, $2i = 89; — 83;, 83 =0.



Stat Comput (2008) 18: 125-135

129

The reversible jump scheme operates on the number of
triples in each interval and consists of three move types:

Birth move: with probability b, a new triple (reaction types
1, 2 and 3) is added with independent reaction times taken
uniformly within the interval

Death move: with probability d, a randomly selected triple
is deleted within the interval

Shift move: with probability 1 — b — d, a randomly selected
reaction is shifted within the interval.

The likelihood function for the latent process y(i,i + 1] is

w{yly@).0y = [ [ 1wy {yij-1). 0k, )

j=1

i+1
XCXP{—f ho{y(t),(?}dt}, ©)

where ;o =i and the hazards h;(Y,0) are as in (2) and
(6). Thus the Metropolis-Hastings acceptance probability
for each move that generates proposal y(i, i + 1], takes the
form min(1, Ay), M € {B, D, S}, where

d
ABZLRX s
(ri + D (2 + D (3 + 1)b
——
AD:LRX%, As=LR,

and LR =7 {y|y(i),0}/m{y|y(i),0}. Note that the simplic-
ity of these acceptance probabilities is due in part to the
cancellation of the (complicated) conditional distributions
m{y(@ + 1)|y(@), 0} in the acceptance ratio.

3.2 Block updating method

Reversible jump methods can be very inefficient in mov-
ing around the state space. An alternative and potentially

more efficient strategy is to propose an entire new interval
from a closely related process. Such block updating strate-
gies have been shown to be effective in a wide variety of
latent process models; see, for example, Shephard and Pitt
(1997), Liechty and Roberts (2001), Blackwell (2003) and
Wilkinson and Yeung (2004). Here we use a block updating
strategy which uses a random walk proposal on the number
of type 1 reactions and then proposes reactions times using
Poisson process approximations to the reaction processes.

Suppose a new value 7{; is proposed for the number of
type 1 reactions from f(ry;|ry;). This value, together with
the population sizes at the ends of the interval, then deter-
mines the numbers of type 2 and 3 reactions (5; and r3;) in
the proposed new interval. One choice of proposal is a (sym-
metric) discrete random walk in which the current value is
augmented by the difference (y) between two independent
Poisson random variables with same mean A, with proba-
bility function p(y) = e~2*I,(21), where I,(-) is a regu-
lar modified Bessel function of order v (Johnson and Kotz
1969; Abramowitz and Stegun 1984).

Proposals for the reaction times are made by approximat-
ing the reaction process for each reaction type with indepen-
dent inhomogeneous Poisson processes whose rates A; ()
vary linearly from the initial hazard to the final hazard for
the interval, that is, fork =1,2,3

Mi (@) = +1=hi{y@), 0k} + (¢ —Dhe{y( + 1), 0k},
teli,i+1].

These processes can easily be simulated (conditional on
the number of reactions 7;) using a homogeneous Poisson
process with mean rate {hi{y (i), 6c} + hx{y(G@ + 1), 6r}}/2
and then, for hx{y(i + 1), 6k} # hi{y (i), 6}, re-scaling time
with

f—id Vhdy @), 01 + hidy (i + 1), 0> — idy (), 621G — i) — hidy (), 64}

hi{y(@ + 1), 6} — i {y (@), Ok}

Clearly a proposal based on the homogeneous process could
be used but the additional complexity associated with the
linear inhomogeneous process is minor and leads to im-
proved mixing of the algorithm. Finally, a new proposal for
the latent process y(i,i + 1] is obtained by combining the
events in the three reaction processes.

The use of Poisson process approximations and random
walk move in generating the proposal can be corrected for
via a Metropolis-Hastings step. Let Q{y|y (i), r1i, r2i, 3i}
denote the law of the bivariate stochastic process produc-

ing the proposed new interval and P{y|y(i), y(i + 1)} de-
note the true “target” process. Then the new interval is ac-
cepted with probability min(1, A), where

%{ﬂy(i)} y Fulf) p(F1) p (i) p(F3:)

A= 75 =
oy} filr) pri)prai) p(rs;)

, (10)

p(rii) is the probability function of a Poisson random vari-
able with mean {h;{y (@), 6} + hi{y(@ + 1), 6x}}/2 (the dis-
tribution of r¢; under Q), and the Radon-Nikodym derivative
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of the true process with respect to the approximate process is

dP Ny o hk,-,-{)’(fi,j—l),ekij}
agP )= {1‘[ }

i=l Ay i (Bij)

{ho{y(i), 0} + holy(i + 1), 60}
exp >

i+1
—f ho{y(t),e}dt}.

Note that this derivative is simply a likelihood ratio and mea-
sures the accuracy of the linear approximation to the true
rate processes.

Finally, note that a quicker (but approximate) version of
the block updating method can be obtained by not correct-
ing for the use of approximate processes in the derivation
of the proposal. This has the effect of dropping the Radon-
Nikodym derivatives in (10) and, as the reaction times are
no longer needed, the update is obtained with fewer oper-
ations. Of course, the drawback is that the posterior dis-
tribution for 6 obtained from the resulting MCMC scheme
is only approximate. However, as demonstrated in Sect. 5,
this approximate posterior distribution may well be accurate
enough to enable correct inferences to be made about the
rate parameters.

4 Partially observed data

Suppose now that only prey can be observed at each of the
observation time points because the number of predators
is hard to measure. Thus the data on which to base infer-
ences are

yi={n@):t=012,...,T)

One question of interest is whether it is still possible to
make inferences for all three reaction rates (and also the
predator numbers), that is, whether the model becomes

8d
Ap=LR x

unidentifiable. This partially observed case requires the ad-
ditional specification of a marginal model for the initial
number of predators; we denote this (prior) distribution by
m{y2(0)}.

A MCMC scheme to simulate the posterior distribution
7 (y[0, T],0]y1) can be constructed in a similar fashion to
the previous algorithm but instead of updating single inter-
vals of the latent process one at a time, the scheme updates
intervals in pairs. In each pair update, the numbers of prey
and predator are fixed at the two ends, but in the middle,
the number of prey is fixed and the number of predators al-
lowed to vary. Thus, the entire latent process is updated by
simulating from y(i,i + 2]|0, y(i), y1(@ + 1), y(@ + 2) for
i=0,1,...,T — 2. Additional moves are also used to up-
date the number of predators at the beginning and end of
the process, that is, y»(0) and y>(T"). Note that our MCMC
scheme has the unusual feature of updating overlapping
blocks. This strategy has a sound theoretical basis (Carter
and Kohn 1996) and is used here to ensure that the unob-
served predator levels are all updated at each iteration of the
MCMC scheme.

4.1 Reversible jump method

This strategy requires few alterations to the reversible jump
method described earlier. The main change is that, in the
birth, death and shift moves, reactions can be added and
deleted anywhere within both unit intervals. However, only
new paired intervals with the correct number of prey at the
middle, y;(i + 1), are accepted. Note that a change in the
number of predators at the middle of the paired intervals
may necessitate a change in the triple counts s; and s;4+1
(in (8)) due to a change in sx; and sk ;+1, the (recalculated)
minimal number of type k reactions that must have taken
place (consistent with numbers of predator and prey at the
ends of the intervals). The Metropolis-Hastings acceptance
probability for each move type which generates proposal
Y@, i + 2] takes the form min{l, Ay X 85 G+1),y,G+1)}>
M €{B, D, S}, where §.. is Kronecker’s delta function,

(rii +riiv0) (i +r2,i41) (13 + 13, 11)b
8d ’

Ap=LR x

and

(rii +r1ie1 + Dr2i + 2010 + D@3 + 13,401 + Db

As=LR,

_ iy i+ Hy@, 02y + 1,0 + 2]y + 1), 326 + 1), 0}

LR

a{y@, i+ 1y, 0 m{yG@ +1,i +2]ly(@ + 1), 0}

’
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with 7 (-|-) as in (9). The reversible jump method for deal-
ing with the uncertainty about y;(0) and y>(7T') again uses
the birth, death and shift move types but now these are ap-
plied only to type 3 reactions within the unit intervals at
each end, as they produce no net change in the number of
prey and a single (unit) change in the number of predators.
The acceptance probability for a proposed new end inter-
val y(T — 1, T] takes the form min{1, Ay}, M € {B, D, S},
where
r3ib

ADZLRX—,

d
Ap=LR x ——,
(r3i + Db d

As=LR,

and LR == {y|y(T —1),0}/7{y|y(T — 1), 0}. The equiv-
alent calculations for a proposed new first interval y[0, 1)
are very similar but with an adjustment for the distribu-
tion of the initial number of predators, that is, taking LR =
7{y1y1(0), 2(0), O} {32(0)} /[ {y|y(0), O} {y2(0)}]. As
before, any accepted proposed new interval may require an
alteration to the triple counts in these intervals.

4.2 Block updating method

The block updating scheme for pairs of intervals again uses
random walk proposals f (7;|rx;). In the first interval of
each interval pair, new values 7j; and 73; are proposed
for the numbers of type 1 and type 3 reactions. These to-
gether with the number of prey at the ends of the inter-
val and the number of predators at the start of the inter-
val determines the number of type 2 reactions (r;) in the
proposed new interval. In the second interval, the reaction
counts are perturbed by proposing a change to the num-
ber of type 1 reactions (71,;+1). The numbers of types 2
and 3 reactions (72,41 and 73 ;41) are then fixed. Full re-
alisations of the intervals are proposed by simulating the
first and second interval in each pair from the approx-
imating processes Q{y|y(i), 71, 72,73} and Q{y|y1( +
1), y2G+1),71,i+1, 72.i+1, 3.i+1} respectively, as described
in Sect. 3.2. Finally, the proposed replacements y; and y, to
the interval pair y; = y(i,i +1]and y, = y(i +1,i +2] are
jointly accepted with probability min(1, A), where

G ®)

o frilr) f(r3ilr3) p (1) p(F2i) p(F3i)
Gnly@)

A=
F il fFilrs) pOr) p(rai) p(rai)

T2y + 1), 520 + 1)
45aly+ 1}

fLinlFLivDpFLi+DPT2,iv 1) P (73,i41)
FELixtlrLis) priv) pr2,is) p(r3,is)’

(1)

and the mass functions p(rr;) and the Radon-Nikodym
derivatives are as defined in Sect. 3.2. Note that the mass

functions p (7 i+1) are determined conditional on the pro-
posed number of predators y(i + 1) at the centre of the
paired intervals.

Random walk proposals can also be used to make adjust-
ments to the end unit intervals in a similar vein. A new pro-
posal y; for the final interval y(7T" — 1, T'] is determined us-
ing the technique described above to construct the first of the
interval pairs, and is accepted with a Metropolis-Hastings
probability calculated using the first line in (11) with i =
T — 1. A new initial interval y[0, 1) is constructed by us-
ing a random walk proposal distribution f{y(0)|y2(0)}
to perturb the initial number of predators and a random
walk innovation 71 for the number of type 1 reactions
in the interval. These, together with the numbers of prey
at the interval end-points and the number of predator at
the end of the interval, determine the other reaction counts
72,0 and 73,9. A proposed new interval is simulated from
Q{y1y1(0), y2(0), 1.0, 72,0, 73,0} and accepted with proba-
bility min(1, A), where

OO 200 £(30)50) 7 (520)
G0 F1720)[y2(0)} w{y2(0)}

fri0l71,0) p(F1,0) p(72,0) p(73,0)
fF1olro) p(rio) p(ra0)p(r3o)

5 Analysis of simulated data

We illustrate the method using data simulated from a Lotka-
Volterra process with rate constants 61 = 0.5, 8, = 0.0025
and 03 = 0.3 and initial population values of y; (0) = 71 prey
and y»(0) = 79 predators. These initial values are those ob-
tained after running the process for a short time from some
arbitrarily chosen population levels. In order to assess the
extent to which the data dominate the prior in this example,
we take weakly informative independent exponential prior
distributions with mean 100 for the rate constants.

We present here results using data from » unit intervals,
each contributing m observations on a regular grid giving
a further T = n x m data points in addition to the initial
values. We begin by considering the (n = 40,m = 1) case
in which the process is observed at the end of 40 subsequent
unit intervals. These data are shown in Fig. 1 and clearly dis-
play the oscillatory and interaction patterns between the prey
and predator populations typical of this process. Standard di-
agnostics were used to assess the convergence of the MCMC
algorithms. Thinning of the MCMC output was employed to
yield a posterior sample of size 20,000 with low autocorre-
lations. The reversible jump sampler (rj) with move proba-
bilities b = d = 0.3 required a burn-in of 50,000 iterations
and a thin of 1,000 iterates. In contrast, both the block up-
dating scheme (bu) and its approximation (a) needed only
500 iterations to burn-in and a further thin of 10. These
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Fig. 1 Simulated observations (-) of prey and predator levels (solid and dashed lines resp.)

schemes used random walk updates on r; with tuning pa-
rameter A = 1 + rl2 /200, a choice found to induce good
mixing. Here the approximate algorithm refers to simulation
from the approximate process Q. Interestingly, the approxi-
mate scheme typically demonstrated superior mixing prop-
erties to its exact counterpart. The rj algorithm was roughly
five times faster than the bu algorithm (per iteration). Also
the approximate scheme was typically over twenty times
faster than the bu algorithm, with slightly superior mixing
behaviour. For comparison purposes, we also include results
obtained by using the algorithm based on a diffusion approx-
imation (d) described in Golightly and Wilkinson (2008),
using the same burn-in and thinning as the bu and a algo-
rithms (and imputing nine latent observations between each
pair of actual observations). Combining iteration speed with
the convergence and mixing performances of the algorithms
gives job times for the rj : bu : d : a algorithms which scale
roughly as 500 : 25 : 5: 1. These figures illustrate the ef-
ficiency of the block updating schemes and the additional
benefit of approximating the underlying process.

Figure 2 contains a graphical analysis of a typical run
and includes plots of the traces and densities of con-
verged and thinned MCMC output for the rate constants
0 = (01, 62,03). The marginal means and standard devia-
tions of the posterior distribution are given in Table 1. They
clearly show that the two exact algorithms produce results
within Monte Carlo error and that there is little loss in infer-
ential accuracy when either approximate algorithm is used.
The table also shows results for larger datasets and, in partic-
ular, the trade-off between the numbers of intervals observed
and the number of observations per interval. For example,
the posterior standard deviations determined using single
observations from 200 intervals are less than half those ob-
tained from the same total number of observations but mea-
sured five times more frequently (except for d, which had
inflated standard errors in the case of 200 intervals). There

@ Springer

is also a suggestion from the tables that algorithm a outper-
forms d in the case of high frequency data, and that d outper-
forms a in the case of large amounts of low-frequency data.
This makes intuitive sense, as the approximation used by
a is likely to be very accurate in high-frequency scenarios.
The table also illustrates the relatively small gain in para-
meter accuracy achieved by increasing the sampling rate per
interval.

Not surprisingly, analyses of partially observed data sce-
narios present much more of a challenge for the MCMC al-
gorithms due to the additional complication of having to mix
over the uncertainty of unobserved predator levels. We illus-
trate the effect of data reduction on parameter uncertainty for
three scenarios based on the data values used for the n = 40,
m =1 case in Table 1. These scenarios are partly motivated
by results from fluorescence microscopy experiments which
typically measure only a few biochemical species but some-
times are initialised from known conditions. We begin by
assuming that predator levels are only available at the ends
of the observation period, then only the initial level is seen
and finally, that no predator level is observed. For the first
two scenarios, algorithms bu, a and d required a burn-in
of 10,000 iterations and a thin of 100 iterations to obtain
a posterior sample with tolerable autocorrelations. In con-
trast, the reversible jump algorithm needed a far longer burn-
in than before and mixing was significantly worse for the
same level of thinning. The third scenario we have posed
is particularly testing for the algorithm because no preda-
tor values are observed and we only assume a very diffuse
prior on their initial number. Specifically we take 7 {y»(0)}
to have an improper uniform distribution on 1,2, .... Not
surprisingly, this analysis required considerably more com-
putational effort and the algorithms suffered very significant
mixing problems. Indeed, CPU time constraints prevented
us from obtaining satisfactory results for the rj algorithm in
this case. Table 2 shows the summaries for a posterior sam-
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Fig. 2 Plots of traces and densities of converged and thinned MCMC output
Table 1 Posterior means I
(standard deviations) of rate Algorithm 01 62 63
constants using different
algorithms and based on T + 1 n=40,m=1 rj 0.4799 (0.0171) 0.00255 (0.000094) 0.3075 (0.0113)
data points, where T' =nxm bu 0.4797 (0.0170) 0.00247 (0.000094) 0.3073 (0.0113)
and n = number of unit intervals a 0.4840 (0.0170) 0.00307 (0.00005) 0.3104 (0.0113)
and m = number of
measurements within each 0.4800 (0.0163) 0.00254 (0.000091) 0.3067 (0.0110)
interval. Data simulated using .
6 =0.5, 6, = 0.0025 and n=200,m=1 rj 0.4997 (0.0063) 0.00250 (0.000030) 0.3036 (0.0038)
03 =0.3 bu 0.4998 (0.0062) 0.00251 (0.000031) 0.3036 (0.0038)
a 0.5071 (0.0063) 0.00254 (0.000039) 0.3082 (0.0039)
d 0.5028 (0.0104) 0.00252 (0.000051) 0.3058 (0.0065)
n=40,m =5 rj 0.4929 (0.0163) 0.00262 (0.000091) 0.3143 (0.0107)
bu 0.4927 (0.0163) 0.00262 (0.000090) 0.3142 (0.0108)
a 0.4929 (0.0161) 0.00262 (0.000090) 0.3142 (0.0107)
d 0.4925 (0.0160) 0.00263 (0.000088) 0.3146 (0.0104)

ple of 20,000 values. The results for the reversible jump al-
gorithm are within Monte Carlo error of those of exact block
updates. The table shows that, apart from the case where no
predator values are observed, the posterior means are not
particularly sensitive to the reduction in information and that
there is only a modest corresponding increase in parameter
uncertainty. However, removing the final remaining preda-
tor value had a considerable effect on both the posterior
mean and standard deviation. Clearly a wider range of pa-

rameter values are consistent with the observed prey levels.
The table also includes summaries for the first and middle
unobserved predator levels. The large standard deviations
(particularly for the unobserved predator case) indicate the
very wide range of predator values that are consistent with
the observed data and explain the additional mixing prob-
lems incurred within the MCMC algorithms. Note that, for
all data scenarios, the posterior distributions are consistent
with the parameter values from which the data were simu-
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Table 2 Posterior means (standard deviations) of rate constants and two unobserved predator levels using partially observed data. Data simulated
using 6; = 0.5, 6, = 0.0025 and 63 = 0.3

Data Algorithm 01 6s 63 w2 (1) ¥2(20)
yiUy rj 0.4799 (0.0171) 0.00255 (0.000094) 0.3075 (0.0113) 78 (0) 63 (0)
bu 0.4797 (0.0170) 0.00247 (0.000094) 0.3073 (0.0113) 78 (0) 63 (0)
a 0.4840 (0.0170) 0.00307 (0.000095) 0.3104 (0.0113) 78 (0) 63 (0)
0.4800 (0.0163) 0.00254 (0.000091) 0.3067 (0.0110) 78 (0) 63 (0)
y1 U y2(0) U y2(40) rj 0.4715 (0.0236) 0.00242 (0.000133) 0.2831 (0.0172) 72.87 (5.24) 81.35(12.52)
bu 0.4715 (0.0237) 0.00242 (0.000134) 0.2827 (0.0172) 72.94 (5.32) 81.40 (12.56)
a 0.4743 (0.0238) 0.00244 (0.000138) 0.2862 (0.0178) 72.62 (5.36) 80.24 (12.73)
d 0.4762 (0.0238) 0.00240 (0.000133) 0.2801 (0.0170) 73.40 (5.37) 83.86 (12.36)
y1 U y2(0) rj 0.4688 (0.0308) 0.00244 (0.000192) 0.2870 (0.0272) 72.47 (5.82) 80.25 (18.77)
bu 0.4693 (0.0311) 0.00244 (0.000193) 0.2868 (0.0273) 72.50 (5.88) 80.27 (18.80)
a 0.4898 (0.0331) 0.00236 (0.000190) 0.2728 (0.0268) 74.30 (5.87) 91.82 (21.30)
d 0.4729 (0.0283) 0.00256 (0.000188) 0.3036 (0.0270) 71.91 (5.40) 75.47 (16.47)
Vi bu 0.5718 (0.1088) 0.00201 (0.000417) 0.2357 (0.0504) 159.11 (97.84) 166.05 (102.62)
a 0.7522 (0.1735) 0.00151 (0.000389) 0.1760 (0.0458) 236.98 (227.10) 369.75 (239.00)
d 0.4318 (0.0608) 0.00291 (0.000417) 0.3471 (0.0593) 30.76 (39.50) 58.45 (37.49)

lated and the observed predator values in the “full” dataset
and are therefore strongly suggestive that the model remains
“identifiable” even in the case of no predator observations.
Also note that the discrepancies between the algorithms in
the final scenario are not within Monte Carlo error and are
not due to convergence problems of the MCMC algorithms.
Therefore, there is an indication (perhaps unsurprising) that
the accuracy of both of the approximate algorithms declines
as the proportion of missing data increases. Overall, the ta-
ble highlights the benefit of using the approximate algorithm
(a) in that little inferential power is lost and there is a much
needed reduction in computational overhead.

6 Conclusions

Although there has been some previous work on inferring
rate constants in deterministic networks, we believe this is
the first systematic attempt to conduct rigorous “exact” in-
ference for partially and discretely observed stochastic ki-
netic models. Inferences for the rate constants in the Lotka-
Volterra model can be made using MCMC methods in var-
ious data-poor scenarios. The model parameters are iden-
tifiable even when no measurements are available on one
of the species, though parameter uncertainty is considerably
reduced when measurements are available on both species.
Block updating algorithms are much more efficient than
more naive reversible jump methods, and an algorithm based
on an approximating process has been shown to perform
particularly well. These algorithms readily extend to larger
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more complex networks but their computational efficiency
relative to competing algorithms which exploit other ap-
proximations (such as a diffusion approximation) is the sub-
ject of on-going work.
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