Suppose that \(\{ \theta_i, i = 1, 2, \ldots, n \} \) are random variables in \(\Omega \), that \(G_0 \) is an arbitrary distribution on \(\Omega \), \(\alpha > 0 \) is a positive real, and that given \(\{ \theta_i \} \), \(\{ Y_i, i = 1, 2, \ldots, n \} \) are independent, with \(Y_i | \theta_i \sim f(\cdot | \theta_i) \). The following models are equivalent (in all cases the \(\theta_i \) are exchangeable):

Ferguson definition of Dirichlet process

The distribution \(G \) on \(\Omega \) is drawn from the Dirichlet process DP(\(\alpha, G_0 \)), i.e. for all partitions \(\Omega = \bigcup_{j=1}^m B_j \) (\(B_j \cap B_k = \emptyset \) if \(j \neq k \)), and for all \(m \),

\[
(G(B_1), \ldots, G(B_m)) \sim \text{Dirichlet}(\alpha G_0(B_1), \ldots, \alpha G_0(B_m))
\]

Then, given \(G \), \(\{ \theta_i \} \) are drawn i.i.d. from \(G \).

Stick-breaking

\(G \) is constructed as \(\sum_{j=1}^{\infty} w_j \delta_{\theta^*_j} \) where \(w_j = \prod_{r=1}^{j-1} (1 - V_r) V_j, V_r \sim \text{Beta}(1, \alpha) \) are i.i.d. and \(\theta^*_j \sim G_0 \) are i.i.d. and independent of \(\{ V_r \} \). Then given \(G \), \(\{ \theta_i \} \) are again drawn i.i.d. from \(G \).

Limit of finite mixtures

Draw the \(Y_i \) i.i.d. from the finite mixture model \(\sum_{j=1}^{k} w_j f(\cdot | \theta^*_j) \) where \((w_1, w_2, \ldots, w_k) \sim \text{Dirichlet}(\alpha/k, \alpha/k, \ldots, \alpha/k) \) and \(\theta^*_j \sim G_0 \) are i.i.d. and independent of \(\{ w_j \} \). Then let \(k \to \infty \).

A partition model

Partition \(\{ 1, 2, \ldots, n \} = \bigcup_{j=1}^{d} C_j \) at random so that \(p(C_1, C_2, \ldots, C_d) = (\Gamma(\alpha)/\Gamma(\alpha + n)) \)

\[
\alpha^d \prod_{j=1}^{d} (n_j - 1)! \text{ where } n_j = \#C_j.
\]

Draw \(\theta^*_j \sim G_0 \) i.i.d. for \(j = 1, 2, \ldots, d \). For all \(i \in C_j \), set \(\theta_i = \theta^*_j \).

Pólya urn representation

Draw \(\theta_1 \sim G_0 \), and then for all \(i = 1, 2, \ldots, n - 1 \), draw \(\theta_{i+1} | \theta_1, \theta_2, \ldots, \theta_i \sim (\alpha/(\alpha + i))G_0 + (1/(\alpha + i)) \sum_{r=1}^{i} \delta_{\theta_r} \).

Species sampling model (Pólya urn representation using allocations)

Set \(z_1 = 1 \), then for all \(i = 1, 2, \ldots, n - 1 \), draw \(z_{i+1} | z_1, z_2, \ldots, z_i \sim (\alpha/(\alpha + i))\delta_{d_i} + (1/(\alpha + i)) \sum_{r=1}^{i} \delta_{z_r} \) where \(d_i = \max\{ z_1, z_2, \ldots, z_i \} \). Then draw \(\theta^*_j \sim G_0 \) i.i.d., and set \(\theta_i = \theta^*_z \).