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ABSTRACT. Composable Markov processes were introduced by Schweder (1970) in order to cap-
ture the idea that a process can be composed of different components where some of these only
depend on a subset of the other components. Here we propose a graphical representation of this
kind of dependence which has been called ‘local dependence’. It is shown that the graph allows to
read off further independencies characterizing the underlying Markov process. Also, some stand-
ard methods for inference are adapted to exploit the graphical representation, e.g. for testing local
independence.
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1. Introduction

Composable (finite) Markov processes (CFMPs) were introduced by Schweder (1970). The
idea is that often a process can be composed of different components according to its state
space, e.g. in an illness—death model there would be a component describing the illness state
(healthy/ill) and another one for the death state (alive/dead). We would only talk of different
components if they cannot change state at the same time, e.g. a transition from being healthy
and alive to being ill and dead at the same time can trivially be excluded. In more com-
plex situations certain independence assumptions among such components might be made
and CFMPs allow to model these. In particular, we are interested in so-called local inde-
pendence, where the transition intensity of one component does not depend on the state of
another specific component. Schweder (1970) investigated a number of properties of these
processes, addressing, e.g. the question when local independence implies stochastic indepen-
dence of whole subprocesses.

In the present article, we extend Schweder’s results and put them into the framework of
graphical models. Directed (possibly cyclic) graphs are used to represent the local (in)depen-
dence structure. It is shown that these graphs allow to read off further independencies char-
acterizing the Markov process based on graphical separations and collapsibility. Well-known
methods of inference for Markov processes can easily be adapted to deal with CFMPs taking
the graphical structure into account.

Some previous work on modifying classical graphical models for dynamic data situations —
time series or more generally stochastic processes — is closely related to our approach. The
graphs proposed in the present paper are a special case of local independence graphs devel-
oped by Didelez (2000) for general stochastic processes with Doob—Meyer decomposition,
which is due to the one-to-one relation between Markov processes and marked point pro-
cesses (Didelez, 2005). However, for the case of CFMPs it is more natural to represent a
whole component of the process as a node in the graph instead of every individual mark of
a marked point process because every transition constitutes a mark and hence graphs could
become very complex and contain many trivial dependencies. Gottard (2002) gives an ex-
ample and application of how Schweder’s local independence and graphical chain models can
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be combined, also based on marked point processes. Recently, graphs for Markov processes
have been used in artificial intelligence (Nodelman ez al., 2002, 2003), where they are called
continuous time Bayesian networks, and methods have been developed that enable fast com-
putations on the graphs so as to answer queries about the distribution of the Markov
processes. Also, there is a close connection between local independence and Granger-
non-causality for time series; essentially, local independence is the continuous time version
of the latter (Florens & Fougere, 1996). Hence, our local independence graphs can be re-
garded as the continuous time version of the ones put forward by Eichler (1999, 2000) for
representing dependencies in multivariate time-series based on Granger—causality.

The outline of the paper is as follows. In section 2, we revise the definition of CFMPs.
Section 3 gives the definition of local independence for CFMPs and derives some further
conditional independence properties for these processes that are implied by local indepen-
dence. The main topic, local independence graphs, is introduced in section 4. First, we give
some graph terminology as required by allowing for cyclic graphs. Secondly, the local inde-
pendence graphs are defined in terms of graphical Markov properties which we call ‘dynamic’
to distinguish them from the Markov properties of ‘classical’ graphs (e.g. Lauritzen, 1996,
ch. 3). Implications of these graphs are discussed in section 4.3 and methods of inference are
addressed in section 4.4. Section 5 discusses our proposal and points out possible extensions
as well as topics for further research.

2. Composable Markov processes

Throughout we consider a continuous time (finite) first-order Markov process Y ={ Y (?)[r€ T },
where S is the finite set of states of Y and 7 =[0, 1) is the time interval of interest. The dis-
tribution of such a Markov process Y is characterized by its transition intensities o, (t), t €T,
with

.1
o (1) = 1/1{61 %P(Y(t+h)=r| Y()=q), q#resS.

These transition intensities are assumed to exist, i.e. o, (f)<oo for all g#r, and to be con-
tinuous and bounded functions of ¢ on any closed interval in 7.

We make use of the following relation between Markov processes and counting processes
(cf. Andersen et al., 1993, p. 94). A finite state Markov process with state space S and with
the above transition intensities can equivalently be represented by its associated multivariate
counting process given by N=(N,|q,r €S, q#r) with

Np)=> 1{Y(s)=q and Y(s)=r}, q#r,

s<t

where Y(s7)=limyo Y(s — #). With the internal filtration F,=o{Y(s)|s <t}, t€ T, its
JF,-compensator has components

Ay ()= /0 Z,(8)ag(s)ds,

where Z,(1)=1{Y (1) =¢}. The compensator exists if the involved transition intensities o, (¢)
exist as assumed here. The corresponding intensity processes are given by

Ao =Z, ()0, (), q,r€S, qFr. €))

Later, we will also use the notation a(z;(q,r)), A(t;(q,r)), etc. because the subscripts become
more complicated.
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In order to model that state changes of a Markov process Y are due to changes in different
components, Schweder (1970) suggests the notion of composability. Note that in the following
the process will be denoted by boldface letters when it is regarded as consisting of different
components and ®5V=1 A; denotes the Cartesian product of sets A4i,..., Ay.

Definition 1

Assume that for K >2 there are spaces Si,k €V ={1,...,K}, |Sk| >2, with a one-to-one
mapping f of S onto Q. Sk so that elements 'y € S can be identified with elements
015> k) € Qpey Sk Then, a finite Markov process Y is a composable process with com-

ponents Yy,..., Yi given by f(Y(1))=(Y1(2),..., Yx(2)) if for all ACV, |A|>2,
o1
lim ; P ( Q{Yk(wh)a&yk} Q{Yk(n:yk}) =0 ©)

for all yr € Sk, keV, and t e T. We then write Y ~(Yy,..., Yx) and call this a composable
finite Markov process (CFMP).

Property (2) implies that the probability for changes in more than one component within a
short period of length / is of magnitude o(k). Therefore, any change of state can be repre-
sented as a change in only one of the components which justifies saying that the process is
composed of different components. Note that the compositioning is not necessarily unique. If
for example Y ~(Yy,...,Yx) then Y~ (Y,, Yp) with AC V and B=V\A4, where Y, denotes
the subprocess on the state space Sy =), Sk and Yy analogously.

It follows immediately for any y,y’ € @), Sy with y#y’ that the transition intensities
ayy () of a CFMP, denoted as o(#;(y,y')), equal zero if y and y’ differ on more than one
component. More formally, they are given by

o (2;(y, V), «Fy, and y_,=y_
a(t;(y,y/))={0k( @70 Z{se P ARG YT 3)

where y_r =yy\ (4}, and

! : 1 !
(6 (y, )= 1/5?01 Aatiy +h) =y [Y(O)=y).

Example 1. The idea of a composable finite state Markov process has been exploited in
an analysis by Aalen et al (1980). The aim was to investigate the dependence between two
events: (i) the occurrence of a specific kind of chronic skin disease and (ii) the beginning of
menopause. A third event was potentially relevant, (iii) death (in fact, a fourth event was
considered, ‘being sampled’, but we will ignore that for the moment). The states can hence
be defined as 0 for initial state, M for menopause having started, S for skin disease having
occurred, SM for both, and D, as well as Dg for death before or after occurrence of the skin
disease. The standard graphical representation of such a situation is via a transition graph
as given in Fig. 1, where the us denotes the transition intensities to death and the as the
transition intensities between the skin disease and menopause states.

We can see that it is not possible that the events skin disease, menopause or death occur
at the same time as there is no transition from 0 to SM. This allows us to regard the whole
process as being composed of three components: Y7, disease process; Y,, menopause pro-
cess; and Y3, death process. All these have two states, 0 (event has not yet occurred) and 1
(event has occurred). Hence S=38; x S, x S with §;={0, 1} such that (2) is satisfied and the
only non-zero transition intensities are o (z;((0,0,0), 1)) and o;(¢;((0, 1,0), 1)) corresponding
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Fig. 1. Transition graph for example 1.

to o, s(¢) and ayy, spr () for Yy, 0a(2;((0, 0, 0), 1)) and ax(#;((1, 0, 0), 1)) corresponding to o, ar(7)
and og sy (¢) for Y, as well as o3(4;((y1,12,0), 1)) corresponding to p(?),. .., pgy,(¢) for Y,
1L,y ESI X S).

While a transition graph clearly shows what states there are and which transitions are pos-
sible, in particular which ones are zero so that absorbing states are easily identified, it does
not show independencies between events that correspond to equalities between transition
intensities. For instance, if a,(¢; ((0, 0, 0), 1)) =0,(#;((1,0,0), 1)) then we can say that the occur-
rence of the event menopause is independent of prior occurrence of skin disease. It is this kind
of independencies that we want to focus on and provide an alternative graphically represen-
tation for.

3. Local independence

In this section, we introduce and discuss the property of local independence for composable
Markov processes. In section 3.2 further properties and implications regarding independen-
cies in these processes are derived.

3.1. Definition

The above property (3) of the transition intensities of a CFMP Y ~(Y1,..., Yx) implies that
the dependence structure of its components is determined by the quantities o (#;(y, ;). YE S,
Vi €Sk, ke V, alone. As

h-ou(£:(y, y)) = P(Yi(t + ) =y [ Y() =) “)

we can say that if o (¢ (y, »,)) is independent of some components of the origin state y then
this is also the case for the probability P(Yy(z+h)=y,|Y(1)=y) of an instantaneous change
in Y, and one would intuitively speak of local independence, ‘local’ because it only holds
for infinitesimal /. This motivates the following definition.

Definition 2
For a CFMP Y we say that a component Y is locally independent of Y;, j#k, given Yy, 1}
if and only if oi(t;(y,y})) is constant in the jth component y; of the first argument for any
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Y- €S, and y; € Sk, v, F yk. Local independence is symbolized by Y; #+ Yi|Y\yj, xy (or shorter
J#kIVAY, k}).

Note that the property j/ k|V\{j,k} is not a marginal property of the two components Y;
and Y} as it may depend on the other components y_; in o (#;(y,);)). For example, if the
information contained in y_; is altered by ignoring some components then local indepen-
dence of Y on Y; might not be preserved.

The case of local independence between subprocesses, i.e. between more than two individ-
ual components, is a straightforward generalization of definition 2. For a partition 4, B, C of
V, we say that Yz Y.4|Yc if and only if for all k € 4 the transition intensities o (2;(y, v}))
are constant in all the components y;, j € B, of the first argument for any y,uc € Squc and
Vi €S> Vit V-

Example 1 continued. Based on background knowledge, Aalen et al. (1980) assumed that
occurrence of death, Y3, is locally independent of skin disease and menopause, Y; and Y,
i.e. there was no differential mortality. Note that if a different type of disease were considered
this might not be plausible, but in this particular case it is. It was further found, as one result
of the analysis, that menopause is locally independent of skin disease given the person is still
alive, i.e. given Y3. In contrast, the intensity for developing the skin disease increased after
menopause had started given Y3. Formally, this means that o (z;((0, 0, 0), 1)) <oy (#;((0, 1,0), 1))
while o,(2;((0,0,0),1))=us(2;((1,0,0),1)). Note that ¥; and Y, must be locally dependent
on Y; because once death has occurred all other transitions are zero. In order to avoid such
trivial dependencies we may instead consider the stopped process, where we stop at the time
when death occurs (more details on this are addressed in Didelez, 2000, p.107; see also
Didelez, 2005). A graphical representation using arrows for local dependence is given in Fig. 2.
This will be formalized in section 4 below.

Note that arbitrary subprocesses of a CFMP are not necessarily Markov processes. We
therefore do not formally consider the situation Yz Y 4|Yc when 4, B, C are not a partition
(but see proposition 5 and corollary 2 further down). In this context it should be mentioned
that a generalization of local independence to non-Markov processes can loosely be defined
as ‘the present of Y, is independent of the past of Y given the past of Y;\p’. In time-series
analysis, the corresponding concept is known as Granger non-causality (Granger, 1969). This
intuitive notion of general local independence can be made more formal as a property of the
transition-specific compensators (Didelez, 2005; see also Aalen, 1987). We say that a process
Y, is locally independent of another process Y given Y when its F45¢ compensator (or
intensity process, if it exists) is measurable with respect to F/ ¢, where F45¢ and F/€ denotes
the internal filtration generated by the three/two subprocesses respectively.

That this is the case for CFMPs can be seen as follows. The associated multivariate count-
ing process for a single component Y;, j=1,..., K, is given by the set of counting processes,
each counting a change of state where the destination state differs from the origin in the jth
component, i.e. N;(t)=(N(t; (v, Yy, vi €S, y;# y}) with

1;
°
Y,® <« °y, Y,® D S °y,

Fig 2. Local independence graph for example 1, original process (left) and stopped process (right).
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Ny =) WY )=y, Yi()=p}.
s<t
Let F, be the filtration generated by the whole process Y. Then, the F,—intensities of N; are
given by 4;(t) = (A(#; (v, ¥))|yj» ¥ €S,y # ) with

WGGpy= > Zy0ys ), j=1,..., K.
YjES
From this and recalling (1) as well as Zy(1)=1{Y(¢")=y}, it is obvious that the following
statements are equivalent: (i) o;(#;(y,;)) is constant in y; for all y x €S 4 and all y; €S,
Vi#y;; and (i) 4,(7) is F;* measurable for all 1€ 7.

3.2. Properties of local independence

It can easily be seen that local independence is not symmetric, i.e. if Y4 is locally independent
of Yp then Yj is not necessarily locally independent of Y4. Similarly it is not transitive; if
Y, is locally independent of Yz and Yy is locally independent of Y¢ then it is not necessary
that Y, is locally independent of Y. We will assume that local dependence is reflexive, i.e.
Y, is always locally dependent of Y 4.

As detailed in Didelez (2006) we can regard local independence as an asymmetric irrele-
vance relation comparable with (symmetric) graphoids (Dawid, 1979; Pearl & Paz, 1987). In
the following, however, we only require two particular properties of graphoids stated in the
next proposition.

Proposition 1
Local independence for CFMPs satisfies the following properties for a partition (A, B, C, D)
of V.

1. A4 B|(CUD) and C + B|(AUD) then (AU C) -+ B|D (left intersection)
2. A/ B|(CUD) and A+ C|(BUD) then A+ (BUC)|D (right intersection)

Proof.

1. We know that all the transition intensities o (#;(y,,)), k € B, are constant in all the
components y;, j € A, of the first argument for any ysucup € Spucup and are also con-
stant in all the components y;, j € C, of the first argument for any y,usup € Sausup-
Hence they are constant in all the components y;, j € (AU C), of the first argument for

any ygup € Spup-
2. is obvious from the definition of local independence.

Note that left intersection relies on property (2), e.g. if Y} is locally dependent of all other
components except Y; and Y; then

o (65,0, i) = o (85.(Y 5 i) = o (5 (Y1, V)

The case o (4 (Y g, 11> V) F (£ (y, ¥,.)) can only occur if Y; and Y; carry the same infor-
mation, but this contradicts (2).

Example 1 Continued. In this example, we have that Y, /4 Y3|Y; and Y, 4 Y3|Y, hence by
left intersection we obtain Yy ) /+ Y3, or in words, the intensity for death is independent of
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whether and when the skin disease and/or the menopause have occurred in the past. Further
Y, /> Y5| Y3 yields Y| /4 Yy, 33 by right intersection. As this example is fairly simple, we give
a more complex one next.

Example 2. Consider, as a hypothetical example, a CFMP with four components Y= (Y71,
Y, Y3, Y4), where Y, describes the employment status of women with states y; =0= ‘not
employed’, y; =1= ‘employed’, Y, the fertility with states y, = ‘number of children’ (choos-
ing a maximum m so as to make the state space finite), Y3 the martial status with states
y3=0= ‘single’, y3=1= ‘married’, y3 =2 = ‘divorced’ and Y, indicating whether the person
still lives with her parents or not with states y,=0= ‘not at home’ and y,=1= ‘at home’.
Note that a transition graph would have to represent 2 x m x 3 x 2 states, even though there
are only four components. One might hypothesize the following local independencies: given
the information about whether the woman is employed and married, knowing that she lives at
home or not adds no new information w.r.t. the intensity of having a child, i.e. Y4/ Y>|Y{1 3.
Further, knowing the number of children, the employment status as well as the information
about where the women lives adds no information w.r.t. the intensity of getting married or
divorced, i.e. Y1/ Y3|Y24y and Y4+ Y3|Y(1 2. (These assumptions are represented in Fig. 7
later, when local independence graphs have formally been introduced.) With the first local
independence it holds that

OCZ(t; ((ylﬂ X, )3, 0),X+ 1))2062([; ((yls X, )3, 1),X+ 1))7

for y;=0,1,2, y3=0, 1, and for all x€{0,...,m}. From the second pair of local independen-
cies we have

063([; ((0, X, 05 0)> 1)) = 063([; ((13 X, 05 0)7 1)) = ‘“3(1; ((O> X, 05 l)a 1)): “3(& ((17 X, 0» l)a 1))

for all x € {0,...,m}, and analogous equalities hold for transitions between the states
‘married’ and ‘divorced’. Thus we can write o3(z; ((y1, X, 0, y4), 1)) =o3(2;((x,0), 1)), etc. This
confirms the property of left intersection, by which Yy 4 /4 Y3|Y,. With regard to the cor-
responding formulation via the intensity processes for all possible transitions from y; to )}
in component Y3, which are 0— 1, 1 —2 and 2—1, we have that

A5t (3, )= Y 0a(55 (06, 13), I Ya(1) = x, Y3( ) =y}

which is obviously measurable w.r.t. ]-',{23} again confirming left intersection.

3.3. Conditional independence in CFMPs

Schweder (1970) has shown that local independence is equivalent to a specific conditional
independence within a partition (Y4, Yp) of Y. If Y, is locally independent of Y, i.e. B/ A4,
then (and only then) the following conditional independencies hold

Y, (t+h)LLYp(2)|Ya(t) VA>0; t,t+heT, 5)

where X 1L Y|Z means X is conditionally independent of Y given Z (Dawid, 1979). Hence
the infinitesimal independence in (4) holds for any time lag / in this case. Further, the sub-
process Y,(f) is again a Markov process with transition intensities o (#;(y4,)})), k € A.
Property (5) suggest the heuristic interpretation of the local independence B /4 A that the
future of Y, is independent of the present of Yp given its own present value. It also implies
that the independence structure of Y, and Yz may be depicted in a graphical chain model
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IQ (t+h) D YA( )

®
Y, (t+h) Y (1)
Fig 3. Graphical chain model representing the local independence B/ A.

(Wermuth & Lauritzen, 1990; Frydenberg, 1990) as depicted in Fig. 3. In this graph, the only
conditional independence is the one given in (5) as represented by a missing directed edge
from Yp(¢) to Y,(t+h). However, it is not straightforward to generalize (5) to more complex
local independence structures. In the above situation, no other conditional independencies
hold if Yj locally depends on Y 4. In particular, it does not hold that Yg(¢r + /) LLY 4(1 4+ h)|Y(2)
due to marginalizing over Y(s), t <s<t-+h. Hence, in the graphical chain model of Fig. 3 we
must include a directed edge from Y 4(¢+ /) to Yg(t+h).

Example 1 continued. As explained earlier it follows from left intersection that in equa-
tion (5) and Fig. 3 we can choose B={1,2} and A= {3} yielding Y3(¢t+ ) 1LY (1) Y3(?)
meaning that the state of the alive/dead process at time ¢+ / is independent of the states of
menopause and skin disease at time ¢ given its own state at time ¢. Alternatively, we can
choose B={1} and 4={2,3} to obtain Y, 3(r+h)LLY(#)|Y (2, 3;(?).

Next, property (5) is generalized to the case where (A4, B) is not a partition of V.

Proposition 2
Let Y~ (Yy,...,Yx) be a CFMP and A,BCV with ANB=0 and AUB#+V. Define C=
V\(AUB). Assume that B+ A|C.

1. If C/ A|B then Y, is a Markov process and property (5) still holds.

2. If B/ C| A then Y ¢ is a Markov process and we have the following conditional inde-
pendence:

Y((t+h) LY 5(0) | Yaoc(t) Vh>0it,t+heT. (6)

Proof. The first part follows as (B4 A|C)A (C 4 A|B)=(BU C 4 A) (left intersection),
and property (5) yields Y4(¢+/4)LLY pyc(2)| Y4(2), where Yc(2) can be dropped due to the
properties of conditional independence (Dawid, 1979). In order to show the second part,
note that B4 A|C and B/ C|A4 implies B/ AU C by right intersection. Therefore, we obtain
again with property (5)

Y oc(t+h)LLYp(2)| Yauc(t) Vh>0;t,t4+heT,
which implies the desired result.

In the above proposition, the remaining case is the situation where Y4 locally depends on
Y given Yp, and Y locally depends on Yjp given Y,. Then, no conditional independence
statement similar to (5) is possible without further restrictions due to possible inter-
mediate transitions in Yc(s), 1 <s<t+h, which may induce a dependence between Y (¢ + 1)
and Yj(7).

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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Example 2 continued. From the local independencies Y3 /4 Y>|Y(; 2y and Yy 4 /4 Y3|Y>
we cannot infer any independencies using proposition 2. If, in addition, we assumed Y, /4
Y1|Y s, 3}, i.e. the employment status is locally independent of whether the person still lives
at home or not, then Y/ Yy 5 3, where Yy 5 3 would still be a Markov process, and using
part 2 of proposition 2 we obtain

Yi(t+h)LLY4(#)| Yi1,2,3(2),

for k=1,2,3, where the conditioning set cannot be reduced any further.

The above results have consequences for the situation where a continuous time CFMP can
only be observed in discrete time, say at ¢y, »,.. ., t,. Proposition 2 implies that the conditional
independence structure of Y(z;),..., Y(¢,) cannot be captured by a graphical chain model.
At least, the characteristic independencies could not be read off a conditional independence
graph since there would typically be several dependencies on past components as well as re-
lations among the components at a given discrete point in time due to marginalizing over
the time in between measurements.

The results can also be linked to theorem 1 of Hoem (1969) in the following way. As-
sume that by some intervention we are able to set some of the transition intensities regarding
changes in the subprocess Yz to zero, e.g. if a cure for a certain disease is found then death
from this cause can be eliminated. Hoem (1969) calls the resulting process a partial process. A
consequence of proposition 2 is that in this partial process the transition intensities regarding
changes in Y, remain the same as in the original one if 4, B and C satisfy its conditions.

4. Local independence graphs

Graphical models for the representation of conditional independence structure have become
more and more popular in the last decades (e.g. Whittaker, 1990; Cox & Wermuth, 1996;
Lauritzen, 1996; Edwards, 2000) as they offer many advantages regarding the interpretation
and communication of models as well as computational feasibility of statistical and proba-
bilistic inference. The idea of graphical models will now also be exploited to depict the local
independence structure of a CFMP.

4.1. Graph terminology

A directed graph is a pair G=(V,E), where V'={1,...,K} is a finite set of vertices repre-
senting the components of a CFMP and E is a set of directed edges (j,k)e V x V, j+k.
In the visualization of a graph directed edges (j, k) are represented by arrows, j — k. In
contrast to the usual conditional independence graphs, we allow that (j,k) € E and (k,j)€ E
which is shown using two stacked arrows, j = k. An undirected edge is given by {j,k} and
represented as j—k. An ordered (n+ 1)-tuple (jo,...,j,) of distinct vertices (except possibly
Jo=Jn) is called a directed path of length » from j, to j, if (ji_i,j;) € E for all i=1,...,n. For
Jjo=Jj. we speak of a directed cycle. Such directed cycles are also allowed in the graphs we
will consider, as opposed to the well-known directed acyclic graphs (DAGs). For A C V' the
induced subgraph G, is defined as (4, E4) with E4=FE N (A x A). Furthermore, the parents
of ACV are defined as the set pa(4)={ke V\A|3 jeA:(k,j)€ E}, i.e. as the set of those
vertices of 7\ 4 pointing to at least one vertex in 4. A vertex where a directed edge points to
is called a child. Thus, the set ch(4)={ke€ V\A|3j€A:(j, k)€ E} is called the children of A.
The union of pa(A4) and 4 itself is referred to as closure of A4 or cl(4). If we consider paths
instead of single directed edges we can define the ancestors of A as an(4)={kecV\A4|3jec A4
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Fig 4. Directed cyclic graph illustrating the terminology.

10(:)02 ®:

Fig. 5. Subgraph Gy ; 4) of graph in Fig. 4.

1o — o2 o4

30— o5

Fig. 6. Moral graph of graph in Fig. 4.

with a path from k to j}, where in case of pa(4)=0, A is called ancestral. Analogously the
descendants are de(A4)={ke V\A|3 je A with a path from j to k} and the non-descendants
are nd(4)=V'\(4Ude(4)). For general A C V', An(A) is the smallest ancestral set containing
A, given as AU an(A). For cyclic graphs we can construct the so-called moral graph G™ in
the same way as for DAGs: connect all parents of a common child in G by an undirected
edge (if there is no directed edge) and then make G undirected, i.e. replace all directed edges
by undirected ones; formally, G" =(V, E™) with E" ={{j,k}|(j,k)€E or (k,j)€EE or JieV
with (j,i)€ E A(k,i)€ E}. In these undirected graphs we speak of C separating A and B if
every path between 4 and B is intersected by C.

Example 3. The graph in Fig. 4 is an example of a directed graph that contains some cycles.
Here, V'={1,...,5} and E={(1,2),(2,1),(3,1),(3,5),(4,3),(4,5),(5,4)}. Hence, for instance,
we have that (4, 3, 1,2) forms a directed path from node 4 to 2, while (3, 5,4, 3) forms a cycle.
Further, for example, pa(l)={2, 3} while ch(1)={2} and cl(1)={1,2,3}. Ancestors are, for
instance, the sets an(1)=1{2, 3,4, 5} or an(3)={4, 5}. The only ancestral set apart from (trivi-
ally) V itself is {3,4,5}. An example of an induced subgraph G4 with 4={1,2,4} is shown
in Fig. 5. The moral graph G™ is given in Fig. 6. This has an additional edge between nodes
2 and 3 due to their common child node 1. For instance, from G” we see that node 1 is
separated from node 4 by 3, or that nodes 2 and 3 are not separated due to the new edge.

4.2. Dynamic graphical Markov properties

Combining now the notion of graphs and the concept of local independence, a local inde-
pendence graph of a CFMP is defined as follows.
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Definition 3
The local independence graph of a CFMP Yy ~(Y1,..., Yx) is defined as a directed graph
G=(V,E), where for all j,keV

GROEE = Ak VY K} 0]

Property (7) is called the pairwise dynamic Markov property (Didelez, 2000 p. 88). For our
purposes we will exploit the equivalence of the above pairwise property to the following.

Proposition 3
Let Y~(Yi,...,Yx) be a CFMP and G=(V, E) a directed graph. Then property (7) is equiv-
alent to

YkeV: W\c(k)A {k}|padk). )

Proof. That (7) implies (8) follows from the left intersection property. Now we show that
(8) implies (7). From definition 2 it follows with (8) that oy (z;(y,)})) is a constant function
of any y;, j € V\{cl(k)} so that (£ (y, ;) = o (t; (Yeir)» ;) for all ya) € Sar and y; € Sy
with y, #yi, ke V. As V\{cl(k)}={j e V|(j,k)¢E, k+j}, (7) follows.

The above proposition implies that we can from now on write o (Z; (¥, ;) = o (¢; (Yeik)» V1))
Property (8) may be interpreted such that at any time ¢ the relevant information for determin-
ing the intensity for a transition in the kth component is completely contained in the states
of the components Y.

Further, the above means that for every component Y; of a CFMP Y we can specify con-
ditional intensity matrices (Nodelman et al., 2002) given the states of the components Yy
that are parents of Y in the local independence graph G. Let a conditional intensity matrix
be denoted by Ok jpar)(; Ypak)) then the (¢, r)th entry is given by 7,,(2 Ypag) = ok (% (Y 1)
where in yuw), vk =¢q and ¢,r € Si. The transition behaviour of Y; is hence characterised by
a set of these matrices, one for each value ypax) € Spa)-

Example 2 continued. Let us again consider the example of a CFMP Y=(Y1,...,Y,), where
Y, describes the employment status of women, Y, the fertility, Y3 the martial status, and
Y, indicates whether the person still lives with her parents or not. The pairwise local in-
dependencies Y, /4 Y>|Y(i3 and Y; 4 Y3|Y 24y as well as Yy Y3|Y( 2 result in the local
independence graph shown in Fig. 7. By the local dynamic Markov property we have that
Y14y 7 Y3|Y> as pa(3)={2}. As pa(1)={2, 3,4}, the conditional intensity matrices for Y,
for instance, are given by the 2 x 2 matrices Qy234(#;¥1123;), and there are 6m of them. In
contrast, the conditional intensity matrices Qs»(#;y>) for Y3 are 3 x 3 matrices and there are
only m of them, one for each state of Y, as this is the only graph parent of Y;.

employment YI ® R — e Y4 leave home

fertility Y, L] (_E [ J Y, marital status
Fig 7. Local independence graph for the CFMP of example 2.
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4.3. Further properties of local independence graphs

For classical conditional independence graphs, collapsibility is an important property which
allows reduction of complexity in different regards. Collapsibility of local independence graphs
for CFMPs is considered next.

Proposition 4

Let Y~(Y,,..., Yx) be a CFMP with local independence graph G. If pa(A)=0, ie if A is
ancestral, then Y 4 is a CFMP and its local independence graph is given by the induced sub-
graph G,=(A, Ey).

Proof. Tt follows from Schweder (1970, theorem 2) that for pa(4)=0, Y, is a Markov
process with transition intensities

o(t; (¥4, 7)), if yeFy, and =y
OCA(I;(YA,Y/))z{Ok( (Y4 yk)) Ot})ierJi’ske Yavtky = Ya\ iy

This proves the claim.

We now restate proposition 2 in graphical terms.

Corollary 1
Let Y~(Y,,..., Yx) be a CFMP with local independence graph G, and A, BCV with ANB=1)
and AUB+ V. Define C=V\(AUB). Then

1. if pa(A)=0 property (5) holds;
2. if pa(AUC)=0 property (6) holds.

Proof. The first condition implies (BUC)#/ A and the second B/ (4U C) from where the
proof of proposition 2 applies.

Situation 1. of corollary 1 is depicted in graph Fig. 8A (but note that each of 4, B or C
could be a collection of more than one vertex). Here the subprocess Y, is ‘exogenous’, i.e
there is no ‘input’ from the other processes. Hence it is plausible that property (5) applies. In
graph (B) we have situation 2. from the corollary. In this case the subprocess Y 4 ¢ is ancestral
and hence a Markov process even when we ignore Y. Again it is plausible that (6) holds.
Note that both of these arguments can be applied to the situation of example 1, depicted
in Fig. 2, with A={3}, B={1} and C={2}. In example C of Fig. 8 we can also say that
Y (24 1) LLY 5(#)| Y 4(?) without conditioning on Y¢(7) as past values of the subprocess Y¢
are not informative about Y. More formally this is a consequence of proposition 5 below.

So far we have discussed the implications of a local independence structure for (in)depen-
dencies between the future of some components and the past of others. The following results

PAYEEFA YEEVAN

Fig. 8. Graphs illustrating corollary 1.
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state which independencies between the whole processes can be read off the local indepen-
dence graphs. We will denote by Y () the whole (sub)process up to ¢, {Y ((s)|s <t}.

Proposition 5
Let Y~(Y1,..., Yx) be a CFMP with local independence graph G. If A, B, C are disjoint sub-
sets of 'V such that C separates A and B in G}, 4 p ¢, then

Y () 1LY ()| Ye(t) VteT.

Proof. This follows from the corresponding property for general counting processes shown
in Didelez (2000, p. 100) or Didelez (2005).

Note that in the above either Y 4,c or Yp,c must be a Markov process because A4 has no
parents in B and vice versa, and C cannot have parents in both, 4 and B, otherwise moraliza-
tion would create an undirected edge between these nodes which would not be intersected by
C. Hence either pa(4U C)=0 or pa(BUC)={. This is, for instance, the situation in Fig. 8C
with roles of 4 and C inverted, so that here Yz(¢) 1L Yc(2)| Y.4(2).

Example 1 continued. Figure 9 shows the moral graphs relevant for example 1 (cf. the
two local independence graphs in Fig. 2). The graph on the left is for the original process
and shows that at any time 7 the histories of the three processes are mutually dependent. The
second graph shows the moral graph of the stopped process and can be interpreted as
follows: Y,(f) and Y»(¢) are mutually dependent but independent of Y3(¢) as long as ¢ is
smaller than the stopping time when death occurs.

A consequence of the above is stated next and corresponds to theorem 3.9 of Nodelman
et al. (2002), resembling the local Markov property of DAGs (Lauritzen, 1996, ch. 3).

Corollary 2
Let Y~(Y1,..., Yx) be a CFMP with local independence graph G. Then

Y 4 (1) LL Y nacappaca(t) | Ypaca(£) VIET.

Proof. This is easily seen from proposition 5 by noting that 4 and nd(A4) are always
separated by pa(4) in G4 .4 )

In order to illustrate the above proposition we need a more complex example than those
used so far.

Example 4. The example in Fig. 10 is taken from Nodelman et al. (2002). It depicts how a
drug takes effect as mediated by how fast it reaches the blood stream, which could be affected
by how recently the person has eaten, and further its effect on joint pain or drowsiness. Most
of the components of this process can be formulated as having two states, e.g. Y, feeling joint

Y; Y,
° [ J

7\

Y, @ ——— oy

1 2 YI._.Y

2

Fig. 9. Moral graph for example 1, original process (left) and stopped process (right).
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concentration Y Y uptake
4 41 4
jointpain ¥, ® X X ° ® Y, eating
barometer Yl ° °® ® H ° Y7 hungry
Y; drowsy Y, stomach

Fig. 10. Local independence graph for drug effect example.

pain has states ‘yes’ or ‘no’ at any given time ¢. Only atmospheric pressure, Y, and concen-
tration of the drug in the blood, Y, may have more states, such as ‘low’, ‘middle’ and ‘high’.
The local independence assumptions here are that whether or not a person feels joint pain
(Y>) is locally independent of any other information once we know the level of concentration
of the drug in the blood (Y;) and the atmospheric pressure (Y;). Further, whether a person
is drowsy or not (Y3) is assumed to be locally independent of any other information once we
know the level of concentration of the drug in the blood, while this concentration is itself
locally independent of the rest once it is known whether the drug has been taken in the past
(Ys) and whether the person has a full stomach (Ys). Being hungry (Y7), eating (Ys) and
having a full stomach (Y5) form an obvious cycle.

We can apply proposition 4 in order to identify all subprocesses that are Markov pro-
cesses; apart from V itself these are all ancestral sets, {5,7,8}, {6}, {4,5,...,8}, {3.4,...,8}
and {1}. From proposition 5 and the corresponding moral graph G}, 4 5 ;.5 in Fig. 11 we
can further infer that

Y540 LY 50| Ys() VieT,

meaning that at any given time ¢ the past history of concentration and drowsiness is inde-
pendent of the past history of being hungry and eating given we know the history of full
stomach. From corollary 2 we see for example with pa(4)={5, 6} and nd(4)\pa(4)={1,7,8}

Ya(t) LY (1750 | Ys.60() VEeT.

4.4. Inference for local independence graphs

The likelihood of a composable Markov process can be derived from the likelihood of count-
ing processes (Andersen et al., 1993, p. 95) exploiting the relation described in section 2.
With the local Markov property (8), the likelihood can be factorized according to the graphi-
cal structure such that the kth factor of the likelihood only depends on the states yqu)
taken by those components that are in the closure of the kth component (Didelez, 2005).
More formally, let Y, be a CFMP and G the associated local independence graph. With

Y uptake
concentrationY, @ ——— @ ® Y, eating
drowsy Y, o o—— o Y, hungry
Y, stomach

Fig 11. Moral graph for drug effect example.
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Y, (6)={Y,(5)|0<s<t}, the likelihood L(¢[Yy(¢)) then reads as
LY (0) = ] Le(t| Vet (D),

keV

where

L@V =TT TT (T )-exp (— / xk(s)ds> ©)

Yk ?ﬁy}( Tx(ycl(k).,\'j()gl

and where T, (Y v,) AT€ the times of occurrences of a transition in the kth component from
V& to y, given that the remaining components have the values yuu cj. The intensities
(T, :(ycl(k).,v;)) are defined analogously to (1), where the transition from ¢ to r is now the one
from yqq) to y, but for ease of notation the index (ye), ;) is replaced by k.

When aiming at inference about the local independence structure the main hypothesis is
the one on pairwise local independence of, say, Y, from Y; given the remaining components.
Assume that G=(V, E) is the local independence graph of a CFMP Y containing the edge
(j, k)€ E. We want to test whether the latter can be omitted. This yields the following null
hypothesis: for all yei), Yei) € Seiry Where You) and Yei) only differ in the jth component,
and for all y| # y, it holds that

(13 (Ve Vi) = o (5 Ferry» v3))  VeeT. (10)

A likelihood ratio (LR) test of this hypothesis can be carried out based on the log-
likelihoods 7, and 2,‘3 (Andersen et al., 1993, p. 420), derived from maximizing (9) under the
model G and under the null model, i.e. the graph G without the edge (j, k) respectively. Simi-
larly, we may construct more general LR tests for testing a graph G°=(V, E®) versus a graph
G'=(V,E"Y), E°CE!", i.e. they may differ in more than one edge but are nested. Then, the
LR test is based on comparing the log-likelihoods for those k € IV where j# k exists with
(i, k)€ E' and (j, k)¢ E°. In the stationary case, explicit formulae for the maximum likeli-
hood estimators and hence the LR test statistic can be derived (Didelez, 2000, p. 131); for a
Bayesian approach to inference in homogeneous graphical Markov processes (see Nodelman
et al., 2003). In the non-stationary case, a parametric assumption about the time dependence
is required for likelihood-based inference.

Alternatively, if no parametric assumptions are made for the intensity processes non-
parametric inference can be based on the cumulative hazards

t
Akt (Yot » 1)) = / o(s3 (Yeiqhy» Vi) ds.
0

These can be estimated by the Nelson—Aalen estimator. If we then want to test for omission
of the edge (j, k) the null hypothesis is similar to (10) but replacing intensities by cumulative
hazards. To carry out the tests the methods of Andersen et al. (1993, p. 345) can be used, i.e.
essentially we compare the estimators of the above cumulative hazard for each y; € S; with
the one where the origin state ye) is replaced by ye) (3, and this has to be performed for
each value of yei) g3

Example 4 continued. Consider the situation of Fig. 10 but with an additional arrow from
Ys (full stomach) to Y; (drowsiness). Assume we want to test whether this directed edge
can be omitted, i.e. whether drowsiness is locally independent of full stomach given the
concentration of the drug in the blood. The assumption of the remaining local independencies
means that we do not need to take Yy 5 6 7,53 into account at all. Under a parametric model
we would test whether a3(2;(y(3, 4,51, ¥3)) is equal to as(#;(yg3,4y,5)) for all ¢ and for each
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value of ys and each value of (yy3 43,5). This means we investigate whether for each given
level of Y, (concentration of drug in blood) the transition intensities for becoming drowsy
is the same for those with full stomach and those with empty stomach. And this has to be
repeated for the transition intensities for becoming awake.

5. Discussion

We have proposed a graphical way of representing local independencies within a compos-
able Markov process, i.e. a process that can be thought of as consisting of several compo-
nents. These graphs provide a simple and intuitive way of reading off local independencies
and further properties of the Markov process, such as which subprocesses are again Markov
or which subprocesses are independent of each other possibly conditional on some third sub-
process. Hence, local independence graphs facilitate and help to structure the communication,
reasoning and analysis in complex dynamic data situations.

It is possible to include time-constant variables in these graphs, representing them by nodes
that cannot be children of any of the nodes that represent processes in order to reflect that
time-constant variables are fixed at =0, before any of the processes start. Also, a generaliza-
tion to non-Markov processes is possible (Didelez, 2005, 2006), but requires a more general
definition of local independence. It is then possible to define a suitable notion of graph sepa-
ration for cyclic graphs that allows to read off local independencies between subprocesses
without requiring to stay in the class of Markov processes.

One of the main benefits of graphical models is that they allow to simplify computations
by exploiting the graphical structure. This is particularly relevant for expert system which are
based on DAGs representing conditional independencies (Cowell et al., 1999). Such expert
systems require a fully specified probability model and are then used to compute fast answers
to ‘queries’ such as ‘if we observe that a patient has a specific side effect what is the probabil-
ity that he will recover within a day?’. In the case of local independence graphs such queries
can in principle be answered exactly based on the matrix of transition intensities for the whole
process but computations quickly become very complex with increasing number of compo-
nents. As discussed by Nodelman et al. (2002) an acceleration of such computations exploit-
ing the graphical structure is not straightforward even in the homogeneous case. Instead,
they propose a much faster approximate method which is based on the cliques of the graph.
A different type of query would be to ask what the local (in)dependence structure is when
we condition on certain events happening in the future, e.g. because we have only sampled
the ‘cases’ so that the data represent a process of which we know that by a certain time the
transition into the state ‘ill’ has taken place. Hoem (1969) deals with this question and calls
such processes ‘purged’ processes. Again, it is in principle possible to calculate the transition
intensities of a purged process exactly, but approximations based on the graphical structure
may be much faster. Also, it would be desirable to have additional graphical rules that can
tell us which local independencies of the original process are preserved in the purged process.

Another situation where acceleration of computation is called for is when the graph is
unknown and has to be found from data. This seems to be simpler for local independence
graphs than for DAGs as they are allowed to be cyclic, which means that there are no restric-
tions on the parent sets, and there is no problem of Markov equivalence of different graphs,
i.e. different local independence graphs always represent different probabilistic models. For a
Bayesian approach to model search in homogeneous Markov processes see Nodelman et al.
(2003). Clearly, more research into the fitting of local independence graphs for specific appli-
cations as well as into fast computations and model search is still needed.
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