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Introduction

The statistical modeling and analysis of multivariate data typically deals with com-
plex association structures due to various direct and indirect relations among the
variables. If the data structure comprises a time dimension, as for instance in event
histories, the additional dynamic character of the associations has to be taken into
account. A typical example for this kind of data is given by clinical studies, where
the time up to a specific event is investigated, e.g. recovery, relapse, or death. A
deeper understanding of the underlying physiological mechanisms mostly requires
the consideration of additional time constant and time varying variables such as on-
set, of specific side effects, medicamentation during the observation period, and other
physiological indicators. In this situation, it is not sufficient to examine associations
among the processes since the direction of these associations in time often plays an
important role. A specific harmful side effect might for instance be prevented by a
suitable medicamentation, but this could on the long term have a negative effect on
survival because the drug possibly affects not only the side effect but indirectly also
the whole subsequent development of the system. Therefore, models and methods
that permit a careful analysis of these dynamic associations are called for. Obvi-
ously, such models should meet the demand of complexity and still facilitate a clear

interpretation.

For general multivariate data, graphical models have been developed to satisfy the
above requirements. The idea of graphical models is to represent the dependence
structure of a multivariate random vector by a graph, where the vertices correspond
to the variables, and the absence of edges between vertices stands for conditional
or marginal independencies. As a framework for analyzing dependence structures

in multivariate data sets, graphical models mainly offer three features. (1) The

9



10 INTRODUCTION

graphical representation allows a direct and intuitive understanding of the possi-
bly complex underlying dependence structure; (2) qualitative information about
conditional independencies in the underlying statistical model is given a precise rep-
resentation and can thus unambiguously be read off the graph; and (3) the structure
of the graph yields direct information about various aspects related to the statistical

analysis, e.g. collapsibility or decomposability of estimating procedures.

However, a direct application of the present theory of graphical models to event his-
tory analysis is not satisfactory: The inherent dynamic character of the associations
cannot be taken into account, except under restrictive assumptions. This problem
is mainly due to the convention that vertices represent variables and to the concept
of conditional independence that does not include the time dimension. Therefore,
we choose to base the graphical representation of dependencies in event history data
on counting processes as the underlying random structure and on a dynamic asso-
ciation concept called local independence. The idea of local independence is quite
simple. Consider for instance the question of how the two events of finding a job
and giving birth to a child are related in a female population. One could formulate
the following (maybe unrealistic) hypotheses: (1) The event of finding a job is more
probable if a woman has no child than if she has, whereas (2) the event of getting
a child is as probable if she has a job as if she has no job. In the described situ-
ation we say that the event of finding a job locally depends on the event of giving
birth to a child because it depends on whether and when the latter has occurred
in the past. In contrast, getting a child is locally independent of finding a job be-
cause it is irrelevant whether the latter has occurred in the past. The independence
is called local since the time when the job is found and the time of birth are of
course stochastically dependent due to the first hypothesis. This example already
illustrates the main features of the concept of local independence as compared to

conditional independence:

e It is a dynamic concept in the sense that it explicitly formulates dependencies

of a present random structure on a past development.

e It is an asymmetric concept, i.e. if an event A is locally independent of B then

it is not necessarily implied that B is locally independent of A.

e It encompasses more information than captured by conditional independence
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structures among the corresponding times of events.

e Similar to conditional independence, local independence is a conditional con-

cept since it always involves conditioning on the past.

The present thesis explores models defined through local independence structures
induced by suitable graphs and investigates the properties of the resulting local
independence graphs with particular respect to their interpretation and their impli-

cations for statistical inference. For this purpose, we proceed as follows.

The first chapter provides the necessary notation and background on graph the-
ory. Since local independence graphs represent asymmetric dependencies the usual
graph terminology has to be generalized to apply for instance to cyclic graphs. In
particular, we introduce a new asymmetric graph separation which will turn out to
capture precisely those separations induced by local independence structures. The
properties of this separation are discussed along the lines of an axiomatic framework
developed for irrelevance relations, the so—called graphoid axioms. These, too, have
to be generalized to cope with asymmetric relations.

In Chapter 2, different approaches to the application of conditional independence
graphs to event history data are addressed. This mainly serves to give a first idea
of the specific difficulties one has to face when modeling random structures in time.
Two of the presented models are already based on the idea of representing the com-
ponents of multivariate time series as the vertices in the graph. The same principle
underlies local independence graphs.

The notion of local independence, which is fundamental to the subsequent mod-
els, is introduced in Chapter 3. For the general definition we adopt the framework
of marked point processes. In analogy to graph separation, the discussion of the
properties of local independence refers to the graphoid axioms. As a special case
of marked point processes we consider local independence for composable Markov
processes.

Chapter 4 is the core of this thesis. Here, local independence graphs are defined,
and it is shown which information on local independencies can be read off the graph.
This includes statements about subprocesses, i.e. about the local independence struc-

ture resulting from discarding information on the occurrence of some of the events.
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To this end, we define, in analogy to conditional independence graphs, the so—
called pairwise, local, and global dynamic Markov properties and show their equiva-
lence, where the asymmetric graph separation plays a key role. Further insight into
the relation between local independence and conditional independence properties is
gained by investigating the factorization property of the likelihood which is very
similar to the well-known factorization for independence models on directed acyclic
graph. The equivalence of the Markov properties is also used to derive conditions
for collapsibility which is central to any complexity reduction in statistical models.
Another important aspect of local independence graphs is their potential causal in-
terpretation. It should be clear that they are a—priori no causal models. However,
the graph semantics are useful for causal reasoning as will briefly be addressed in
the last section.

The final chapter gives an overview over the application of different inference pro-
cedures to local independence graphs. These include non— and semiparametric ap-
proaches as well as likelihood based inference. The non—parametric models, however,
are limited to the case of Markov processes. More complicated forms of dependencies
among the events may instead be modeled by (semi)parametric regression models.
For all these standard models, statistical tests on local independence are derived.
The thesis is concluded by a discussion of the results as well as some open questions

regarding the application and generalization of local independence graphs.



Chapter 1
Graphs

We begin by establishing the terminology and conventions concerning graphs that
will be used throughout the thesis. A very general introduction to the terminology
is presented in Section 1.1. Special attention is given to the notion of separation in
Section 1.2 where a new kind of separation is defined, d—separation. This is suitable
for cyclic graphs and has the unusual property of being asymmetric. Due to the
asymmetry, —separation does not meet the usual axioms for independence relations

so that we discuss its properties in terms of an asymmetric irrelevance relation.

1.1 Notation and terminology

The approach to apply graphical models in event history analysis presented later
requires the definition of special graphs. We therefore present the required notation
and some results from graph theory in necessary generality. The following definition
of a graph not only allows for cycles but also for more than one edge between two

vertices and thus for bidirected edges.

Definition 1.1.1 Graph / edges / subgraph

A graphis apair G = (V, E), where V = {1,..., K} is a finite set of vertices and E is
a set of directed and/or undirected edges. Undirected edges are members of the class
E*(V) = {{j,k}|j,k € V,j # k}. Directed edges belong to E*(V) = {(j,k)|j, k €
V,j # k}. Thus, E C E*(V)U E4V).

For A C V the induced subgraph G 4 is defined as (A, E4) with E4 = EN (E4(A) U
E(4)). //

13



14 1.1. NOTATION AND TERMINOLOGY

In the visualization of a graph undirected edges {j, k} are represented by lines, j —
k, and directed edges (j, k) by arrows, j — k. If (j,k) € E and (k,j) € F this is
shown as bidirected arrow, j «— k. The meaning of the different edges depends on
the specific statistical model represented by the graph as will become clear later. As
mentioned above, the definition allows for the possibility that for two vertices 7 and
k each of {j,k}, (j,k), and (k,j) are edges in the graph. This is unusual for most
of the common graphs and we therefore mainly consider graphs, where {j,k} € E
prevents (j,k) € FE or (k,j) € E and vice versa. The definition of such graphs given
below requires first the notions of paths and cycles (cf. Koster, 1996, Anderson et
al., 2001).

Definition 1.1.2 Paths / trails / cycles
Consider a graph G = (V, E).

1. An ordered (n + 1)-tuple (jo,...,Jn) of distinct vertices (except possibly
Jo = Jn) is called a path of length n from jy to j, if {ji 1,5:} € E or
(Jii1,jdi) € Eforalli=1,...,n.

It is called undirected if {j;_1,5;} € EVi=1,...,n.
It is called semidirected if 34 : {j; 1,7:;} ¢ E, and directed if the latter holds

foralli=1,...,n.

2. A path of length n with j, = 7, is called a cycle. Directed, semidirected, and

undirected cycles are defined as obvious.

3. Let v(j) = {k € V|3 undirected path from j to k£ or £ = j}. Then,
Y(G) = {v(j)|j € V} is the set of (undirected) path components of G.

4. Let £(j) = {k € V|3 path from j to k£ and from k to j or k = j}. Then,
Z(G) ={&(j)|j € V} is the set of cycle components of G.

5. A subgraph 7 = (V', E') of G with V' = {jo,...,jn} and E' = {ey,...,e,} C
E is called a trail of length n between jo and jy, if e; = {ji_1,7:} or e; = (Ji—1, Ji)
or e; = (ji, ji—1) foralli=1,... n. //

Different undirected path components as well as different cycle components are
necessarily disjoint and Y(G) as well as Z(G) form partitions of V. Note that a
trail is defined as a subgraph in order to permit different trails on the same set of

vertices. But this is only possible when there are more than one edges between two
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vertices. Paths and cycles may be regarded as special cases of trails.
Graphs without simultaneously undirected and directed edges between two vertices

are now defined as follows.

Definition 1.1.3 Reciprocal graph
A graph G = (V, E) with ENE%(v) = () for all v € Y(G) is called reciprocal graph.//

Note that reciprocal graphs still allow for (j,k) € E and (k,j) € E, where this
means that there is a bidirected edge between these vertices as for instance in the

following example.

Example: Figure 1.1 (a) shows the graph G = (V, E) with V = {a,b,¢,d} and
E = {{a,b},(a,b), (b,c),(c,d),(d,c),(d,a)}. The set of (undirected) path compo-
nents is given as Y(G) = {{a,b},{c},{d}} and the set of cycle components as
E(G) = {{a,b,c,d}}. Since EN E%(v) = {(a,b)} # 0 for v = {a,b} € T(G) we can
see that G is not reciprocal. Deleting the directed edge (a, b) as shown in Figure 1.1

(b) yields a reciprocal graph. //

Figure 1.1: Examples for (a) a non-reciprocal and (b) a reciprocal graph.

(a) (b)

e (

The following definition describes the most common graphs.
Definition 1.1.4 Common graphs
We say that a graph G = (V, E) is

1. undirected if it has no directed edges, i.e. EN E4(V) = (;

2. directed acyclic (DAG) if it has no undirected edges and no cycles, i.e. Y(G) =
E(G) =V;
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3. a chain graph if it is reciprocal and does not contain any (semi)directed cycles,
ie. T(G) = Z(G). The sets T(G) are then called chain components. //

Obviously, undirected and directed acyclic graphs are special cases of chain graphs.

Example: The graph given in Figure 1.1 (a) is not reciprocal and thus no chain
graph. The ones in Figure 1.1 (b) and Figure 1.2 (a) contain semidirected cycles, so
that they are no chain graphs, too. In contrast, the graph in Figure 1.2 (b) is a chain
graph since it is reciprocal and the only cycle is an undirected path component, i.e.
YT(G) = Z(G) = {{a,b},{c},{d}}. Figure 1.2 (c) shows a directed acyclic graph.//

Figure 1.2: Examples for (a) a semidirected cycle, (b) a chain graph, and (c) a
directed acyclic graph.

Statistical models describing the dependence structure of a set of random variables
by the above common graphs are by now well known and elaborated (Lauritzen,
1996). Such graphical models formulate the distributional assumptions in terms of
conditional independencies in a way that they can unambiguously be read off the
corresponding graph (cf. Chapter 2). This is formalized by considering a random
vector X = Xy which is indexed by the vertex set of the graph. If X contains
continuous as well as discrete components the vertex set V' is divided correspond-
ingly into disjoint sets I' and A. In contrast, in event history analysis we consider
ordinary random variables, for example covariates, as well as stochastic processes
that describe the occurrences of events. When representing this through a graph,

it is necessary to distinguish between the set Vg of vertices representing random
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variables and Vp representing the processes. In addition, the dependence structure
among the processes may be cyclic whereas it must not be cyclic among the random
variables. This leads to the following definition of a dynamic graph, the statistical

implications of which will be addressed later (cf. Chapter 4).

Definition 1.1.5 Dynamic graph / directed graph
Given a graph G = (V, E) with V. = Vp U Vp, VRN Vp = (. Then, G is called a
dynamic graph if

1. the subgraph Gy, is a chain graph and
2. the subgraph Gy, is a directed graph, i.e. EN E*(Vp) = () and
3.VjeVrkeVp:{jk} ¢ E and (k,j) ¢ E.

If Vi = () we have a simple directed graph. //

The graphs shown in Figure 1.1 (a) and (b) as well as Figure 1.2 (a) are no dynamic
graphs for any choice of Vz and Vp. This can be seen as follows: Vi would have to
include @ and b since Gy, has to be directed. In Figure 1.1(a) we have that for any
Ve D {a,b} the subgraph Gy, is no chain graph. In Figures 1.1 (b) and 1.2 (a) we
have that for any Vi D {a, b} condition 3 of the above definition can not be satisfied
or Gy, is no chain graph. In contrast, the graphs in Figure 1.2 (b) with Vi = {a, b}
and (c) with Vi = () are dynamic graphs.

The following terminology can be applied to general graphs.

Definition 1.1.6 Graph terminology
Consider a graph G = (V, E). For A C V,

1. the set pa(A) ={k € V\A|Fj € A: (k,j) € E} is called the parents of A.

2. the set nb(A) = {k € V\A|Tj € A: {j,k} € E} is called the neighbors of A.
3. the set ch(A) = {k € V\A|Fj € A: (j,k) € E} is called the children of A.

4. the set bd(A) =pa(A)U nb(A) is called the boundary of A.

5. the set cl(A) = bd(A) U A is called the closure of A.

6. the set an(A) = {k € V\A|3j € A with a path from £ to j} is called the

ancestors of A.
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7. the set de(A) = {k € V\A|Fj € A with a path from j to k} is called the

descendants of A.
8. the set nd(A) = V'\(de(A) U A) is called the non-descendants of A.
9. if bd(A) = 0, then A is called ancestral. For general A C V, An(A) is the

smallest ancestral set containing A, given as A U an(A). //

In the above definition, each set may — in case of ambiguities — be indexed by the

graph from which it is constructed, for example pa;(A) are the parents of A in G.

Example: Let us consider an example to see how the above notions apply to cyclic
graphs. The graph shown in Figure 1.3 is given as G = (V, E) with V = {a,b,..., g}
and F = {(a,b), (b,¢), (¢,d), (d,e), (e,b), (d, f), (f,9), (g, f)}- As the graph contains
no undirected edges, it is reciprocal. Thus, it is directed but obviously not acyclic.
The cycle components are given by =(G) = {{a},{b,c,d,e},{f, g}}, i.e. there are
some vertices which are connected by a directed path but only in one direction. For
instance, there is a path from e to g given as (e, b, ¢, d, f, g) whereas there is no path
from g to e. Instead, we have a trail between g and e given by the vertices {d, e, f, g}
and edges {(g, f), (d, f), (d,e)}. In cyclic graphs some vertices can be parents as

well as children of another vertex at a time.

Figure 1.3: A directed cyclic graph.

a .—>./.\. [ J [ J
b\./d f g

In Figure 1.3, for instance, we have that pa(f) = {d,g¢} and ch(f) = {g}. This
is similar for ancestors and descendants. In the example, an(d) = {a,b,c,e} and
de(d) = {b,c,e, f,g}. Obviously, all vertices that are members of the same cycle

components are simultaneously ancestors and descendants of each other. Finally,
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the only ancestral sets in this graph are {a}, {a,b,c,d, e}, and {a,b,...,g}. //

As will be seen later, complete subsets of undirected graphs play a special role in
the theory of graphical models, in particular the maximal ones which are defined as

follows.

Definition 1.1.7 Complete set / clique
A set A CV is called complete in an undirected graph G = (V, E) if E*(A) C E.
A complete subset A is called a clique if for all j € V\A: E*(AU{j}) ¢ E. //

In order to reduce the properties of distributions on directed graphs to the ones on
undirected graphs it is often helpful to first construct a suitable undirected graph.

This is mostly based on the so—called moral graph.

Definition 1.1.8 Undirected version / moral graph
Let G = (V, E) be a reciprocal graph.

1. The undirected version of G is defined as G~ = (V, E~) with E~ = {{j, k}|
(j,k) € E or (k,j) € E or {j,k} € E}, i.e. G™ is the undirected graph pre-
serving all undirected edges and replacing all arrows by undirected edges.

2. The moral graph G™ = (V, E™) is given by adding all necessary undirected
edges so that pag(v) is complete for all v € T(G), i.e. the parents of children
which are in the same undirected path component are married, and then taking

the undirected version of the resulting graph, i.e. E™ = E~ U {{j,k}|qv €
T(G) : j, k €pag(v)}. /]

Note that in a directed graph T(G) = V, implying that moralization is equivalent
to adding edges between vertices with common children and substituting all directed

edges by undirected ones.

Example: Figure 1.4 shows (a) the undirected version of the graph in Figure 1.3
and (b) the corresponding moral graph. The only vertices in G with unconnected
parents are b and f so that two undirected edges are added to form the moral graph,

where it does not matter that g is parent and child of f at the same time. //
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Figure 1.4: (a) Undirected version and (b) moralized version of the graph in Figure

N
b\./d f g
(z).% .\. ------------------------------- .
b\./d f g

1.2 Graph separation

Separating sets play a key role in the theory of graphical models. A very obvious

way to define separation is given as follows but is restricted to undirected graphs.

Definition 1.2.1 Graph separation

Let G = (V, E) be an undirected graph and A, B,C C V pairwise disjoint. Then, C
is said to separate A and B if every path between any two edges j € A and k € B
contains elements in C'. We denote graph separation by A1l ¢ B|C. //

As mentioned above, properties of directed graphs are often attributed to those of
corresponding undirected ones e.g. when separation in DAGs is considered. This is
defined as d-separation (Pearl, 1988).

Definition 1.2.2 d-separation
Let G = (V,E) be a DAG and A, B,C C V pairwise disjoint. Then, C is said
to d-separate A and B in G if Allg B|C in the moral subgraph on the smallest

ancestral set containing A, B, and C, i.e. in (G Ancaupuc)™ //
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The original formulation of d-separation does not make use of the moralization
operation, but is instead a condition on the trails between A and B. It is often more
convenient to use this equivalent definition because it avoids the construction of the
moral graph (for the equivalence cf. Lauritzen, 1996, p. 48). It is therefore given in

the next remark.

Remark 1.2.3 Trail condition for d—separation

Given a DAG @G, we say that a trail between 7 and k is blocked by C' if it contains a
vertice y such that (1) either directed edges of the trail do not meet head-to-head
at v and v € C, or (2) directed edges of the trail meet head-to-head at y and 7 as
well as all its descendants are no elements of C'. Otherwise the trail is called active.
Two disjoint subsets A and B are d—separated by C' if all trails between A and B
are blocked by C. //

The above notions of separation are well known in the literature and central to
the theory of conditional independence graphs especially when simplifications of
computational procedures are of interest (Pearl, 1988; Lauritzen, 1996; Cowell et
al., 1999) . For our purposes, however, we need a new kind of graph separation
which is on the one hand applicable to directed cyclic graphs and has on the other
hand some special properties like for instance asymmetry. The proposed separation

is called d—separation and defined below. Note the similarity to d-separation.

Definition 1.2.4 j—separation

Let G = (V, E) be a directed graph. For B C V, let G® denote the graph given
by deleting all directed edges of G starting in B, i.e. G® = (V, EP) with Ef =
E\{(5,k)|j € B,k € V}.

Then, we say for pairwise disjoint subsets A, B,C C V that C d—separates A from B
in G if A1l B|C in the undirected graph (Gﬁn(AUBUC))
of An(A U B U C), where the directed edges starting in B have previously been
deleted.

In case that A, B and C are not disjoint we define that C' d—separates A from B if
C\B d-separates A\(B U C) from B. The empty set is always separated from B.
Additionally, we define that the empty set d—separates A from B if A and B are

™ i.e. the moral subgraph

unconnected in (ng(AuB))m' //
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An example for §—separation is given after the next proposition. Note that the mor-
alization criterion in the above definition only applies to disjoint subsets. This is

important for the proofs of the properties of d—separation given below.

As for d—separation we can also find a trail condition to check for )—separation. But
since this may now also be applied to cyclic graphs we have to modify the original

formulation and to show that both versions of d—separations are equivalent.

Proposition 1.2.5 Trail condition for §—separation

Let G = (V, E) be a directed graph and A, B, C pairwise disjoint subsets of V.
Define that any allowed trail from A to B contains no edge of the form (b,k),b €
B,k € V\B. For disjoint subsets A, B, C of V', we have that C' 6—separates A from
B if and only if all allowed trails from A to B are blocked by C.

Proof:

We have to show A1l B|C in (Gﬁn(
A to B in G is blocked by C.

We start with some preliminary remarks. Let 7 be an allowed trail from A to B in
G. Note first that the situation of (j, k) € E and (k,j) € F for j,k on = implies

AU BUC))m if and only if every allowed trail from

that there are two different trails, one for each directed edge. Second, a trail always
consists of distinct vertices. From both statements it follows that cycles within a
trail are not possible. Further, we know that if there is a trail 7™ between A and

: B
B in (GAn(AUBUC))
same vertices or containing additional ones which are in G common children of some

™ then there exists an allowed trail 7% from A to B in G on the

of the vertices in 7™. In reverse, if there is an allowed trail 7¢ from A to B in G

then either there exists a trail 7" in (Gﬁn( ™ which differs from the former

AUBUC))
in that it can omit some of the vertices on 7¢ because they are common children
of some other vertices on 7¢ (this is called a short cut). Or the trail 7¢ contains
vertices that are not in An(A U B U C) from where it follows that there exists a
vertex v on ¢ with v & An(AU B U C) where the directed edges on this trail meet
head-to—head.

Let now Allg B|C in (Gﬁn(AUBUC))m and 7¢ be an allowed trail in G from A to B.
If this trail contains vertices which are not in An(A U B U C) then it follows from

the above considerations that there exists a vertex v on 7% where the edges meet
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head-to—head and which is not in C as well as all its descendants. Thus, this trail is
blocked by C'. Otherwise, there exists a trail 7 between A and B in (Gﬁn( AU BUC))m
with the same vertices or some short—cuts which is intersected by C. In case that no
short—cuts are possible, there are no vertices in 7¢ where edges meet head-to-head
and therefore there has to be at least one such vertex v € C'. In the other case, it
holds for all 7y € {pa(n)| n on 7% and edges meet head-to-head at n}, that no edges
meet head-to—head in 7. Since 7™ is intersected by C, it follows that at least one
of the vertices in 7 where no edges meet head-to-head is element of C. Thus, this
trail is also blocked by C'.

Finally, let any allowed trail from A to B be blocked by C' and consider a trail
7™ between A and B in (Gﬁn( AuBUC))

either holds that at least one of its vertices where no edges meet head-to-head is

™. For the corresponding allowed trail 7¢ it

an element of C'. In this case it has to be in 7™, so that we have that the latter is
intersected by C. Or there exists a vertex v on 7% where edges meet head-to-head
and v as well as all its descendants are not elements of C'. Note that - has to be an
ancestor of AU B U C because otherwise its parents would not be married and no
elements of ¢ . Thus, there is a directed path from v to A or to B (not to C by
definition of «y). Since one of these directed paths would yield an allowed trail from
A to B without vertices where edges meet head—to—head it has to be intersected by
C which is again not possible because then some of the descendants of v would be
elements of C. This argumentation applies to all vertices in 7¢ where edges meet
head-to-head. Thus, any allowed trail from A to B in G which yields a path be-

tween A and B in ( ™ always includes at least one vertex which is an

B
GAn(AUBUC))
element of C' and where no edges meet head-to-head, and therefore any such path

is intersected by C. a

Example: As mentioned above, d—separation is not symmetric in A and B. This
can already be seen in the simple graph G = (V,E) with V = {a,b,c}, E =
{(a,b), (b,¢),(c,a)}, and A = {a}, B = {b}, C = {c} given in Figure 1.5 (a). Here,
we have that (E*)™ = {{a,c}, {b,c}} and (E®)™ = {{a,c}, {a,b}} as in Figure 1.5
(b) and (c), respectively. From the moral graphs we get that allgb|c in (G*)™
but not in (G®)™. Alternatively, there are two trails between a and b: {(a,b)} and

{(c,a), (b,c)}. Consider separating b from a, then the first trail is not allowed and
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the second is blocked by c since the directed edges do not meet head—to—head in c.

In contrast, if we want to separate a from b, the second path is not allowed and the
first is not blocked by c. //

Figure 1.5: Example for the asymmetry of d—sparation.

(a) G (b) (G*)™ (c) (G°)™
SRR :
N / N
b b b

General graph separation can be regarded as irrelevance relation in the sense that
A is irrelevant for B given C and vice versa if Allg B|C. It seems sensible to
demand that such a relation satisfies specific properties, which are given by the
semigraphoid and graphoid axioms (Pearl and Paz, 1987; Pearl, 1988, p. 84; Dawid,
1998). These axioms hold for instance for graph separation in undirected graphs and
for d-separation (Verma and Pearl, 1990). This implies that a graphical representa-
tion is available for all relations that fulfill these axioms as for instance conditional
independence (cf. Appendix A). Symmetry is one of the basic (semi)graphoid prop-
erties. Unfortunately, there is no general framework for asymmetric irrelevance
relations available yet although other examples for such concepts exist (e.g. Dawid,
1979, 1980; Galles and Pearl, 1996; Cozman and Walley, 1999). Nevertheless, it
seems promising to try to gain some insight into the properties of é—separation by
checking if the other (semi)graphoid properties hold. Due to the asymmetry we have

two versions of the original formulation as given in the following definition.

Definition 1.2.6 Asymmetric (semi)graphoid

Consider a space V equipped with a semi—order '<’, i.e. ’<’ is reflexive and transitive.
Assume that for any elements A, B € V there exists a least upper bound denoted
by AV B such that for all C € V with A < C and B < C we have (AV B) < C.
The largest lower bound is similarly given by AA B. Then, (V, <) is called a lattice.
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Further, let (A1R B|C) be a ternary relation on this lattice. The following properties

are called the asymmetric semigraphoid properties:

Left redundancy: AIRB | A
Right redundancy: AIRB | B

Left decomposition: AIRB|C, D< A= DIRB|C
Right decomposition: AIRB | C, D < B = ARD |C

Left weak union: AIRB|C, D<A = ARB|(CVD)
Right weak union: AIRB|C, D< B = AIRB|(CVD)

Left contraction: AIRB|C and DIRB | (AVC) = (AVD)IRB |C
Right contraction: AIRB |C and AIRD | BVC = AR(BV D) |C

If additionally the following properties hold we have an asymmetric graphoid:

Left intersection: AIRB | C and CIRB| A= (AVC)IRB|(AAC)
Right intersection: AIRB | C and AIRC | B= AIR(BVC) | (BAC). //

While Definition 1.2.6 applies for possibly overlapping sets, the following lemma

clarifies the conditions under which it suffices to consider only non-overlapping sets.

Lemma 1.2.7 Irrelevance for disjoint sets
Let V be the power set of V and A, B,C € V. For a ternary relation A1r B|C that

holds left redundancy, decomposition, and contraction we have that
ARB|C < A\CIRB | C. (1.1)

For a ternary relation that holds right redundancy, decomposition, and contraction

we have that
ARRB|C < AIRB\C | C. (1.2)

Proof:
To see (1.1) note that it follows directly from left decomposition that AR B|C =
A\C 1R B|C. To show A\C'IR B|C = AIR B|C, note that trivially A\C'1r B|C' U
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(C'n A). Additionally, it follows from left redundancy (i.e. C'1R B|C) and left de-
composition that (C' N A) IR B|C. Left contraction now yields the desired result.

Equivalence (1.2) is shown analogously. O

Properties (1.1) and (1.2) are very useful because they permit to generalize results
for disjoint sets to the case of overlapping sets. The following corollary, for instance,

exploits this to reformulate the intersection property.

Corollary 1.2.8 Alternative intersection property

Let V be the power set of V and A, B,C € V. Given an ternary relation with
property (1.1), left decomposition, and left intersection. For pairwise disjoint sets
A,B,C,D €V it holds that

ARB|(CUD)and CIRB | (AUD)= (AUC)IRB | D. (1.3)
With property (1.2), right decomposition, and right intersection it holds that
ARB|(CUD)and AIRC | (BUD) = AIR(BUC) | D. (1.4)

Proof:

With property (1.1) we have that AIR B|(CUD) < (AUCUD) R B|(C'UD) from
where it follows with left decomposition that (AU D) IR B|(C' U D). With the same
argument we get C IR B|(AU D) = (C U D)IRB|(AU D). Left intersection yields
(AU C U D) 1R B|D which is again equivalent to (A U C) IR B|D because of (1.1).

Implication (1.4) can be shown analogously. O

Finally, the following lemma is useful and easily checked.

Lemma 1.2.9 Converse of contraction
In Definition 1.2.6 we have that the converse of left (right) contraction follows from

left (right) decomposition and left (right) weak union. //

Note that all the properties in Definition 1.2.6 hold for graph separation and d-
separation (Verma and Pearl, 1990). Thus, properties (1.1) — (1.4) and the above
lemma also hold with the dual formulation being redundant since both notions of

separation are symmetric.
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Let us now return to the special case of d—separation. Due to the asymmetry we

have to make clear how this translates to the notion of irrelevance relation.

Remark 1.2.10 §-separation as irrelevance relation

The interpretation of d—separation as irrelevance relation should be that if C' §—
separates A from B in G then A is irrelevant for B given C. This is denoted by
A1Rs B|C. The semi-order is given by the set inclusion 'C’, the join and meet

operations by union and intersection, respectively. //

The following proposition states which of the properties of asymmetric graphoids

hold for d—separation.

Proposition 1.2.11 Graphoid properties for é—separation

Let G be a directed graph. The §—separation satisfies the following graphoid axioms:
1
2
3

left redundancy,
left decomposition,
left and right weak union,

4) left and right contraction,

(1)
(2)
(3)
(4)
(5) left and right intersection.
Proof:
(1) We have by definition for non—disjoint sets that A 1Rs B|A < A\(BUA) IRs B|A\B
< (P 1rs B|A\ B which is again by definition always true.
It is easily checked that for properties (2), (3), and left contraction we can assume
that all involved sets are pairwise disjoint without loss of generality.
(2) It follows from All; B|C in (ng(AUBUC’))m that D1l B|C in (ng(AUBUC’))m
for D C A since decomposition holds for Ll . Further, (Gﬁn( BUCU D))
of (Gin(AUBUC))m or has even less edges. Thus, D1l ¢ B|C in (ng(
(3) Left weak union can easily be shown: Allg B|C in (Gfin(
AJ'LG B‘(CUD) in (G]Agn(AUBUCUD))m = (Gﬁn(AUBUC))
holds for graph separation and because An(A U BUC U D) =An(AU BUC) for
D C A. Right weak union is trivial since application of the definition for overlapping
sets yields that (C U D)\B = C.

(4) For left contraction we have to show that

™ is a subgraph

)m
BucuD)/ -

T
AUBU C)) implies
™ because ordinary weak union

Allg B | Cin (GXyu0pue)™ (1.5)
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and
D1gB|(AUC) in (Gf;n( AUBUCUD))W (1.6)

imply (AU D)1l B|C in (ng(AUBUCUD))
graph separation it is sufficient to show that A1l s B|C in (ng(AUBUC’UD))m' Thus,
we have to show that there is no path between A and B in the latter graph
not intersected by C. Let F be the additional vertices in (Gﬁn( AUBUCUD))’”,
F =An(D)\An(AU BUC). If F = () left contraction trivially holds. Otherwise

we do not only have these additional vertices but also the additional edges due to

™_ Since contraction holds for ordinary

i.e.

directed edges starting in F' and due to marrying parents of children in F'. By defi-
nition of F' we have that for all vertices f € F' there exists a directed path in G from
f to some d € D which is not intersected by An(A U B U C). From this it follows
first of all that any path between B and F' in (ng(AUBUCUD))
by A U C because otherwise (1.6) would be violated. Thus, there is no new path
between A and B through F' not intersected by A U C. Secondly, for all parents

™ has to be intersected

k in GP of some f € F there can be no path between k and B not intersected by

AuCin (ng(AUBUCUD))
not yield a new path from or through pa(F) to B not intersected by AUC. A path

™ for the same reason. Thus, marrying parents of F' does

from A to B not intersected by C would therefore have to be a direct one. This is in
turn not possible because of (1.5) and because A and B trivially have no common
children in F (in GP?).

In order to show right contraction in full generality we have to apply the definition
for overlapping sets. Let A* = A\(B U C) and C* = C\B, then we have to show
that from

A*lLe B | C*in (GRyausue)™ (1.7)

and
A\DALg D | (BUC)\D in (GXyausucup)™ (1.8)
it follows that A*\DLg (BU D)|C*\D in (G0 pucup))™- From (1.7) we get by

left decomposition that A*\D 1l s B|C* in (ng(AuBuC))

similar arguments as applied in the proof for left contraction that A*\ Dl s B|C*

BUC )m
An(AuBuUCUD)

™. From this it follows by

in (G )™. The same separation also holds in (G since

An(AuBuUCUD)
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the latter graph results by deleting some edges of the former. Thus, we have

A\D 1L B|C* in (GXpliusucupy)™- From (1.8) we get that A"\Dllg D|(B U
C*)\D in (G‘KE(DAU BUCL D))m since the latter graph has again the same or less edges

than the original one. With A = A*\D we can show by the properties of ordinary
graph separation (decomposition, contraction, and intersection) that All g B|C* and
Allg D|(B\D)U(C*\D) imply A1l ¢ (BUD)|C*\D as desired. This can be seen as
follows: With decomposition we get AL g B\D|(C*\D)U (C*N D) and Al g (C*N
D)|(C*\D) U (B\D). Intersection and decomposition yield AL B\D|C*\D. This,
together with A1l D|(B\D) U (C*\D) and the contraction property, provides the
desired result.

(5) To see left intersection, note that all conditions for (1.1) to hold have been
gathered. Thus, we can assume that A, B,C are pairwise disjoint without loss of
generality. We then have to show that A1l B|C and C1llg B|A in (ng(AUBUC))m
imply (AUC) 1L B in the same graph. This is fulfilled by the intersection property
of ordinary graph separation.

For right intersection, we can again assume that AN B = () and AN C = () because
of (1.1). We have to show that Allg B|C\B in (G§ z,c)™ and Al ¢ C|B\C in
(GSuBue)™ imply Allg (BUC) in (G52%,c)™. The first two graph separations also
hold in the third graph because it has the same or less edges. Applying weak union

and intersection for ordinary graph separation yields the desired result. O

Figure 1.6: Counterexample for property (1.2) of é—separation.
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Note that with these results not only property (1.1) but also (1.3) hold for ¢-
separation. So far, however, the conditions for (1.2) and (1.4) are not satisfied be-
cause right redundancy does not hold. By definition this would imply that A 1rRs; B|B
< A\B1Rs B|() which is only true if A\B and B are unconnected in (ng(AUB))m.
A simple counterexample is given by the graph with V' = {a,b} and E = {(a,b)}.
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Additionally, property (1.2) does not hold, as can be seen by another example shown
in Figure 1.6: Let V = {a,by,be,c}, E = {(a,b1),(c,b2)}, A = {a}, B = {b1,b-},
and C' = {b,c}. Then, A1rs B\C|C but not A1Rrs B|C since the latter only holds
if A1rs B|C\B. In contrast, the converse does hold because it is a special case of

the subsequent result.

Lemma 1.2.12 Special case of right decomposition for d—separation
Given a directed graph G, it holds that:

ARsB |C, D C B= A1rR; D | (CUB)\D

Proof:
Due to property (1.1) we can assume that AN C = . Let A* = A\B and
C* = C\B. Then, we have to show that A*ll; B|C* in (Gﬁn(AUBUC))m im-

plies A*1l ¢ D|C* U (B\D) in (Gﬁn(

: B
m (GAn(AUBUC))
separation. Changing the graph to (ng( AUBUC))m means that all edges that are

AUBUC))’”. Note that A* 1l s D|C* U (B\D)

"™ holds due to weak union and decomposition of ordinary graph

present in G as directed edges starting in B\ D are added. Additionally, those edges
have to be added which result from vertices in B\D having common children with
other vertices. Since all these new edges involve vertices in B\ D there can be no ad-
ditional path between A* and D in (GKH(AUBUC))’” not intersected by C*U(B\D). O

Although (1.2) does not hold in full generality it is easily checked that (1.4) holds.

Proposition 1.2.13 Alternative intersection property for é—separation

Property (1.4) holds for d—separation, i.e.
ARsB | (CUD) and AIRsC | (BUD) = ARs (BUC) | D
for pairwise disjoint sets A, B, C, D.

Proof:

Given that A1l ¢ B|[(CUD) in (G5 z,c0p)™ and Allg C|(BUD) in (GS s0cup)™,
both graph separations also hold in (G5 ., p)™. With the properties of 1L it
follows that Allg (BUC)|D in (GBS, cop)™ O
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Note that the above proposition does not necessarily hold if B, C, D are not disjoint.
But it can be shown by a very similar proof that it remains valid if AN B # ) or
ANC #0.

As mentioned above, right decomposition does not hold in general for —separation.
A simple counterexample is for instance given by the graph G = (V, FE) with V =
{a,b,¢,d} and E = {(a,c), (b,c),(b,d)}. Then, {c} d—separates {a} from {b,d}
but it is not true that {c} d-separates {a} from {d} since in (G%)™ we have the
undirected edge {a, b} due to moralization, and the edge {b, d} yielding a path from
{a} to {d} that is not intersected by {c}. However, under suitable conditions we

get the following result.

Proposition 1.2.14 Right decomposition for d—separation
Given a directed graph G = (V, E). Right decomposition as formulated in Definition
1.2.6 holds for d-separation in the special case that (AN B)\(C U D) = and

(1) either Birg D|(AU C)

(2) or B1rs A\(CUD)|(CUD) and for all k € C\D either A1rs {k}|(C\{k})UB
or BIr,; {k}|((C\{k})U DU A).

Proof:

Due to property (1.1) we can assume that A N C = ). Since the other involved
subsets are not necessarily disjoint, we have to show that A\Birs B|C\B implies
A\D1rs D|C\D for D C B. Let A* = A\D and C* = C\D. Equivalently we then
have to show that A* IRs B|C*\B = A* IRs D|C*, where the assumption A*NB =)
has been used.

The first step is to reduce the graph by deleting all vertices in An(AUBUC)\An(AU
CUD). Let B* = (BNAn(AUC UD))\D, then A* IRs; B|C*\ B implies A* IR (B* U
D)|C*\B* since (Gﬁl‘ﬁucum)m is just a subgraph of (ng(AuBuC))
less edges. With Lemma 1.2.12 we get A*1Rs D|C* U (B*\C*). Thus, we have to
show that B*\C* can be discarded in the conditioning set.

With assumption (1) it follows by definition that B\(C*U D) 1rs; D|(A*UC*). With
left decomposition we get B*\C* 1Rs D|(A* U C*). Application of left intersection
and left decomposition (according to (1.3)) to this and A* 1Rs D|C*U(B*\C*) yields

™ or has even
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the desired result.

In case of (2) we allow B*\C* to be relevant for D given A* U C*. With Lemma
1.2.12 applied like above we get A* IRy B*\C*|(C* U D) so that any trail between
A* and B*\C* ending with a directed edge headed in B*\C* is blocked by C* U D.
From the first part of (2) it follows that B*\C* 1r; A*|(C* U D) so that any trail
between A* and B*\C* ending with a directed edge headed in A* is also blocked
by C* U D. With the second part of (2) we finally get that any other trail between
A* and B*\C* is also blocked by C* U D. Therefore, A*1 ; B*\C*|(C* U D) in
(ng(AUCUD)) must hold. With A* 1L D|C* U (B*\C*) in (GKH(AUCUD)) as shown
above, application of the contraction and decomposition property of ordinary graph

separation yields A* 1Lz D|C* in ( as desired. O

D
GAn(AUCUD))
With the preceding propositions we have shown that almost all properties of an
asymmetric graphoid hold for d—separation and that conditions can be found for
right decomposition. Similar properties and conditions can be shown for the con-

cept of local independence, which is asymmetric, too, in Chapter 3.

In contrast, conditional independence and graph separation as well as d—separation
are symmetric and hold all the graphoid axioms, as already mentioned. This is
the basis for constructing meaningful conditional independence graphs which are

considered in the following chapter.



Chapter 2

Graphical models for random

structures in time

Before introducing graphical models based on the concept of local independence, we
revise in this chapter some other approaches to the application of graphical models to
event history data and time series as can be found in the literature. Typically, these
are closely related to the classical conditional independence graphs. This overview
serves as a first idea about the specific difficulties encountered when modeling ran-

dom structures in time.

In Section 2.1, we start by presenting models that are based on conditional indepen-
dence graphs, i.e. the graphs describe conditional independencies induced by suit-
able Markov properties. The vertices may either represent random variables, e.g.
the components of multivariate survival times (Section 2.1.1 and 2.1.2), or whole
time series as proposed by Dahlhaus (2000) and addressed in Section 2.1.3. These
approaches are mainly based on undirected graphs so that the dynamic character
cannot be the main focus of the representation. However, since in event history
and time series analysis the dynamic development is of particular interest, directed
graphs seem more natural to represent the independence structure. In this context
we can find two approaches. The first is an application of directed acyclic graphs to
multivariate survival times that occur in a fixed order (cf. Section 2.1.1). The second
is based on chain graphs, where each chain component represents one discrete point

in time (Section 2.1.2) as proposed by Lynggaard and Walther (1993).

33



34 2.1. CONDITIONAL INDEPENDENCE GRAPHS

A basically different approach consists in representing dynamic independencies in-
stead of conditional independencies. This has been explored for time series with a
discrete time parameter by Eichler (1999, 2000) and is addressed in Section 2.2. The
dynamic independencies are closely related to the notion of Granger-noncausality
(Granger, 1969) wherefore the graphs have been termed causality graphs. Note,
however, that this refers to a different concept of causality than usually discussed
in the context of graphical models (Pearl, 1995; Lauritzen, 2000) which is addressed

in Section 4.5.

2.1 Conditional independence graphs

In order to present conditional independence models for time series and event history
data, we give a brief and rather informal introduction to conditional independence
graphs. For a deeper insight we refer to the monographs by Edwards (2000), Lau-
ritzen (1996), or Whittaker (1990). In general, a graph induces a statistical model
for a multivariate random vector Xy = (Xy,...,Xk), V = {1,..., K}, by postu-
lating that subvectors X 4, Xp, and X, satisfy specific conditional independence
relations whenever the subsets A, B, C C V fulfill corresponding separations in the
graph G = (V, E). The precise formulation of the Markov properties depends on
the type of graph.

Undirected conditional independence graphs

Undirected graphs are the most intuitive and therefore treated first. The basic
notion of conditional independence is denoted by X 4 1L Xz|X¢, or briefly A1l B|C,
meaning that X 4 is conditionally independent of X g given X (Dawid, 1979). Some

background on conditional independence is given in Appendix A.

Definition 2.1.1 Undirected conditional independence graph
Let G = (V, E) be an undirected graph. A distribution P for a multivariate random
vector Xy is said to be G—Markovian if it satisfies for all disjoint subsets A, B,C C V

Xall Xp | X¢ whenever All ¢ B|C in G. (2.1)

Property (2.1) is called the global undirected Markov property. //
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The following result is central to most simplifications of statistical inference proce-

dures for conditional independence graphs.

Proposition 2.1.2 Factorization
Consider an undirected graph G and a G-Markovian distribution P. If P admits a
positive and continuous density f w.r.t. a product measure p, we have that (2.1) is
equivalent to the existence of the following factorization of the density:
F0) =[] tolxo), (2.2)
cec
where C is the set of cliques of G and ¢, C' € C, are some positive functions on the

space of X¢.

Proof: Lauritzen (1996, p. 36). O

Example: Consider the graph in Figure 2.1. With (2.1) we have X; 1l X3|X5. As-
suming the existence of a positive density it follows from the above proposition that

f(z1, 29, 23) = t12(21, T2)a3(x2, 23). Such a factorization is for instance given by

f(x1, 29, 73) = f(21|22) f(72) f (23] 22)- //

Figure 2.1: Example for an undirected conditional independence graph.

X3 X X3
° ° °

Directed acyclic graphs

Another type of conditional independence graph is given by directed acyclic graphs.
The corresponding Markov properties yield, in specific cases, conditional indepen-
dencies that could not be read off an undirected graph, so that DAG models consti-

tute a real extension to the latter.

Definition 2.1.3 DAG model
Let G = (V, E) be a DAG. A distribution P for a multivariate random vector Xy

is said to be G—Markovian if it satisfies
Xyl Xnd\pa(k) |Xpa(k)- (2.3)

Property (2.3) is called the local directed Markov property. //
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The local directed Markov property implies even more conditional independencies
than apparent at first sight. It can be shown that (2.3) is equivalent to the global
directed Markov property.

Proposition 2.1.4 Global directed Markov property

Consider a distribution P for a multivariate random vector Xy and a DAG G =
(V,E). Then, P being G-Markovian is equivalent to the following implication: For
all disjoint subsets A, B,C C V with Allg B|C in (Ganupuc))™ it holds that
Xall Xp|Xc.

Proof: Lauritzen (1996, p. 51). a
Note, that separation in DAGs can also be verified with the d—separation criterion
mentioned in the first chapter since this is equivalent to the separation in the moral

graph.

Example: A very simple example illustrates the logic of moralizing directed acyclic

graphs when looking at separation.

Figure 2.2: Examples for directed conditional independence graph.

Xy X X3
() o ° °
X; Xs X3
(b) e ° °

The graph in Figure 2.2 (a) has vertices V = {1, 2,3} and edges E = {(1,2), (3,2)}.
The only independence in this model is X; Il X3, i.e. these variables are marginally
independent. In addition, both ’influence’ a third variable X,. Thus, conditioning
on X, corresponds to selecting a subsample of the population and for this subsample
X; and X3 are not necessarily independent anymore, i.e. X; . X3|X5. Representing

the conditional independencies induced by this DAG in an undirected graph, where
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no information on marginal distributions of subvectors can be retained, therefore
requires that parents of common children are linked. Thus, the moral graph for
Figure 2.2 (a) has edges E™ = {{1,2},{1,3},{2,3}}. This also implies that no
undirected graph can be found to represent the conditional independencies induced
by Figure 2.2 (a). In contrast, the graph in Figure 2.2 (b) encodes the same con-
ditional independencies as the undirected graph in Figure 2.1 which is the moral

graph of the former. //

Similar to the undirected Markov property, the local directed Markov property (2.3)

results in a specific factorization of the density.

Proposition 2.1.5 Recursive factorization
Consider a DAG G and a multivariate distribution P. If P admits a density f, then
(2.3) is equivalent to the following recursive factorization:

F(x) = 1] f(exlxpam), (2.4)

keVv

where f(xk|Xpag)) denotes the conditional density of X, given the parents in G.

Proof: Lauritzen (1996, p. 51). O

Most of the properties of DAG models have been developed and applied in the
field of artificial intelligence and expert systems (Pearl, 1988; Cowell et al., 2000).
This is mainly due to the above factorization which provides a simple method for
constructing a multivariate distribution with specific conditional independencies:
Specify univariate regression models such that the explanatory variables in each re-
gression are those which are thought to have a direct influence. Due to the acyclicity
this has to be done in a recursive way. Then, the resulting multivariate distribution
holds the global directed Markov property. The specification of a complex multivari-
ate distribution through univariate regressions induced by a DAG can be regarded
as local modeling because the single regression models typically involve considerably

less variables than the whole multivariate vector.

Graphical chain models
The most general class of conditional independence graphs is the one of graphi-

cal chain models. These comprise undirected conditional independence graphs and
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DAGs as special cases. Chain graphs have been defined in the preceding chapter as

reciprocal graphs without (semi)directed cycles.

Definition 2.1.6 Chain graph Markov property

Let G = (V,E),V ={1,..., K}, be a chain graph. For disjoint subsets A, B,C C V,
let (G'An(ausuc))™ denote the moral graph on the smallest ancestral set containing
AUBUC. If the distribution P of a multivariate random vector Xy = (X7, ..., Xk)
satisfies for any disjoint subsets A, B,C C V:

All g B|C in (GAH(AUBUC))m = Xyl Xpg | X, (25)
then P is said to satisfy the (global) chain graph Markov property. //

The chain graph Markov property (2.5) is very similar to the global directed Markov
property (cf. Proposition 2.1.4). To see the difference, recall that an ancestral set in
a chain graph includes vertices which are connected by undirected or semidirected

paths, in particular all the neighbors of the involved variables.

Example: Consider the chain graph in Figure 2.3. The chain components are
given by T(G) = {{a}, {b},{c,d,e},{f},{g}}  These can also be grouped as blocks
Vi ={a,b}, Vo = {c,d, e}, and V3 = {f, g} forming a partition of V, as shown by the
boxes in Figure 2.3. Each block may contain one or more chain components as long
as there are no directed edges within one block. The ordering of the blocks underlies
the restriction that all directed edges point from prior levels to higher ones. We do
not discuss all conditional independencies that can be read off the graph, but instead
highlight some important and maybe unapparent characteristics. The chain graph

Markov property induces for instance the following conditional independencies:

(1) It holds that Xyqp 1L X103/ X(c,a,e}- This can be seen from the corresponding
moral graph (Ganapiviederoiron)™ = (Vs E™) with An({a,b} U {c,d,e} U
{f,9}) =V and E™ = {{a,b}, {a,c}, {b,¢e}, {c,d}, {c, [}, {d,e}, {d, [},
{d,g}}. Another way to verify the claimed independence is to show that in
this special case V; L V3|V, since there is no directed arrow from any variable
in V] to the variables in V3. In general, the dependence structure among the
blocks of a chain graph may be represented by a directed acyclic graph as

addressed below.
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(2)

We further have that X_.l1L Xe|X{a,b,d}. This may again be verified in the
corresponding moral graph (Gan({asiufcdey)” With An({a,b} U {c,d,e}) =
{a,b,c,d,e} and E™ = {{a, b}, {a,c}, {b,e},{c,d},{d,e}}. From this it fol-
lows more specifically that X, 1l XXy, 4 as well as X 1L X[ Xy q3. The set
{f, g} can be discarded since it contains only descendants of the involved vari-
ables. Another argument for the above conditional independence is that for
each block V; those conditional independencies, that can be read off the undi-
rected subgraph GYy;, hold conditional on all prior blocks Vi,...,V;_1, i.e. Gy,

describes the independence structure of the conditional distribution of Xy,

given Xy,u.ov;_, -

Finally, we have for instance that X, 1 X |X,;. The relevant moral graph
(G An({a,a,gy))™ Where off this independence can be read consists of the vertices
An({a, d, g}) = {a,b,c,d, e, g} and the undirected edges E™ = {{a, b}, {a, c},
{b,e}, {c,d}, {d,e}, {d,g}}. The vertex f can be discarded since it is a pure
descendant of the others, whereas {b, e} are ancestors of d and g so that they
are included in the ancestral set. Moreover, we have by the same argument
that Xy 1l X4 5.}/ Xa similar to the local directed Markov property (2.3) for
DAGs. //

Figure 2.3: Example of a chain graph.

V3 Va Vi
c
fo\ ° e«

\\
//

The idea of chain graphs with blocks Vi, ...,V as described above is to reveal the

conditional independence structures of different marginal and conditional distribu-

tions. We can read off the graph the conditional independencies in the (marginal)

distribution of X,y uv;, 7 = 1,...,J, as well as those in the distributions of Xy,
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conditional on Xy;y..uv;_,- A reformulation of the chain graph Markov property

which is better suited for the interpretation of the graphs reads as follows.

Corollary 2.1.7 Chain graph Markov property (revisited)

Consider a chain graph G = (V, E) with blocks Vi,...V; as described above. If
the distribution P of X admits a positive density f w.r.t. a product measure p
we have that the chain graph Markov property is equivalent to the following three

properties:

(1) Let D = (VP,EP) be a directed graph with VP = {1,...,J} and EP =
{(4,7)|3k € V; and | € V; such that (k,l) € E}. Then, D reflects the depen-

dence structure among the blocks, i.e. similar to (2.3) we have
VidL{Vili € VP\pap(j)} | {Vilk € pap(j)}-
(2) The conditional distribution of Xy, given (Xy;u..uv;_,) holds the undirected
Markov property (2.1) w.r.t. the subgraph Gv;.
(3) With C; = [J7_, V; it holds for all k € V; that
XL Xeneltey | Xbder)
forall j=1,...,J.
Proof: Frydenberg (1990b). O
Note that in the preceding example we considered three conditional independence
statements corresponding to (1) — (3) of the above proposition. For a detailed

discussion of further properties of chain graph models confer e.g. Wermuth and
Lauritzen (1990) and Frydenberg (1990b).

2.1.1 Conditional independence models

Based on the above graphical models, we now consider a specific setting for event
history data. It is assumed that for any individual a fixed number of survival times
Ti,...,Tk is observed, where T} denotes the time of the occurrence of a specific

event e;. The main two approaches to a graphical representation of the conditional
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independence structure of the survival times are: (1) undirected conditional inde-
pendence graphs, where the essential problem consists in finding an appropriate
multivariate distribution, and (2) DAGs, where the dependencies have to be spec-
ified through appropriate regression models according to (2.4). Both approaches
have some disadvantages as illustrated in the following. The problem of censored

data, although obviously relevant in this setting, is not explicitly addressed.

Undirected conditional independence graphs

In principle, it is possible to represent conditional independencies of the joint distri-
bution of the survival times 77, ..., Tk by an undirected graph. The basic problem,
here, lies in finding an appropriate class of multivariate distributions which permits
to parameterize all conditional independencies induced by the graph. The most
popular distributional assumption for graphical models is the conditional Gaussian
distribution (CG-distribution) which is investigated in this context by Lauritzen
and Wermuth (1989) and Frydenberg and Lauritzen (1989). However, the CG-
distribution is obviously not suitable for survival times which are usually measured
continuously taking only positive values. Nevertheless, it is difficult to find in the
literature a more general class of multivariate distributions which allows for a flexible
modeling of conditional independence structures. The most promising approach is
investigated by Caputo (1998) and is based on a general way of constructing a mul-
tivariate distribution from almost arbitrary marginal distributions. The underlying
idea is proposed by Koehler and Symanowski (1995). Its main advantage consists
in that the properties of the corresponding classes of multivariate distributions are
almost independent of the choice of marginal distributions, i.e. the association struc-
ture is driven by separate parameters and based on a specific copula (Heinicke, 1999).
It is therefore possible to investigate the independence structure without referring
to some specific distributional assumptions. This even broadens the potential field
of application beyond survival analysis. Caputo (1998) indicates the restrictions on
the parameters induced by the Markov properties of undirected graphs and shows
how ML-estimation can be performed and simplified by decomposition in a subclass
of these multivariate distributions.

However, this approach has some drawbacks, too. It turns out that in the classes

of distributions constructed in accordance with Koehler and Symanowski (1995),
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marginal and conditional independencies are equivalent. This constitutes a severe
limitation to the practical suitability since important forms of dependencies cannot
be modeled, as for instance Simpson’s paradox (Simpson, 1951). Further, Heinicke
(1999) shows that among other unpleasant properties the association parameters
are very difficult to interpret. No simple relation between the parameters and well—
known association measures, such as marginal and partial correlations, can be es-
tablished. In addition, situations can be found where the ML—estimator does not
exist.

A flexible modeling of the association structure is required for the application to
graphical models. However, the only model class known to fulfill this requirement,
besides the CG-distributions, is the one based on the Koehler and Symanowski—-
principle. Since this class has severe limitations no sensible and implementable
approach to undirected conditional independence graphs for multivariate survival

data seems available at present.

Models based on directed acyclic graphs

From the factorization (2.4) it can be seen that DAGs are suitable for the repre-
sentation of the conditional independence structure when the variables can be semi
ordered like a data generating process such that the parents of a vertice in a graph
represent the direct influences, the ancestors the indirect influences and the descen-
dants the consequences, whereas variables that are neither ancestors nor descendants
of each other are independent. As mentioned above, the construction of a multivari-
ate distribution only requires the specification of appropriate univariate regression
models which is a well-known method in survival analysis. Directed acyclic graphs
may therefore be used for event history analysis if the events occur in an almost
fixed order, i.e. when the semi order induced by the DAG is compatible with the
order of occurrences of the events. The idea is to specify the regression model for a
survival time T} through the corresponding hazard rate conditional on the previous
events which are potential explanatory variables for 7). In order to formalize this

approach we first define some basic notions of survival analysis.

Definition 2.1.8 Survival function / hazard rate

Let T be a continuous nonnegative random variable with probability distribution P
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and assume that the density f exists. The survival function S(t) is given as
S(t)=P(T >t), t>0.

The hazard rate a(t) of T is given as

1
a(t) = 1}551 EP(t <T<t+hT>t), t>0, (2.6)
which equals in the absolutely continuous case f(t)/S(t). //

Note that the distribution function of 7" is uniquely determined by the hazard rate
through the relation

S(t) = exp (— /Otoz(s) ds), £>0,

or, equivalently, through

F(t) = a(t) exp (— /0 als) ds) Ct>0

The hazard rate can be regarded as describing the dynamic development conditional
on the past. For instance, in the case of two survival times 7} and T, with P(7T7 <

T5) = 1 and joint density f(t1,%2) we may specify the joint distribution through
ft) [Ty =1t1), t1 <ty
0, otherwise.

f(ti,t) = {

Correspondingly, the conditional hazard rate for 75 reads as

1
Of(t2|t1) = 1}3})1 EP(tQ S T2 < t2 —+ h|T2 2 tz,Tl = tl)

f(talt1)
S(talt1)’

yielding the conditional density

0<t <ty (2.7)

to
Ftolty) :a(t2|t1)exp/ a(slt)ds, 0<t <t
t1

Note that the above definition of a conditional hazard rate is indeed only sensible
if P(T) < T3) = 1. Otherwise, the condition 77 = ¢; for ¢; > t5 in the conditional
probability P(ty < Ty < to + h|Ty > t9,T7 = t;) would contain information on
the development of the process beyond ¢, which could lead to degenerate hazard
rates. The dependence structure among several survival times 77, ..., Tx may thus
be represented by a DAG with the restriction that if j € an(k) in the graph then
P(T; < Ty) = 1. This is specified in the following definition.
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Proposition 2.1.9 DAG model for survival times

Let T = (T3,...,Tk) be a multivariate vector of nonnegative random variables and
G=(V,E),V ={1,...,K}, a DAG. Assume that for any pair j,k € V such that
J € an(k) we have P(T; < T}) = 1. Then, it holds that

Ti L Toa\dw | Tpagy VK€V,

if and only if

f(t) = H f(tk|tpa(k))a

kevV
where

t

f(teltpacr)) = a(teltpa)) eXP/ a(sltpag)) ds, 0 <t <y, (2.8)

t*

with #* = max(tpa))-

Proof:

The first part of the statement follows from the equivalence of the local Markov
property for DAGs (2.3) and the factorization property (2.4). Further, the factors
may be expressed through the hazard rates as in (2.8) due to the assumptions that
ancestors have to occur before their descendants so that the conditional hazard given

precedent survival times are well defined. O

With the above proposition we have that model specification may be performed by
choosing appropriate regression models based on conditional hazard rates given the
times of previous events. Some specific regression models are for instance addressed
in Chapter 5. From these, statistical tests may be derived to select those previ-
ous events on which the hazard of a considered event depends in order to identify
the set of parents for each vertex. Note that due to the assumption of a fixed or-
der of the survival times we implicitly use an asymmetric dependence concept which

determines the direction of the edges. This is extended and formalized in Chapter 3.

Example: Let us elucidate the foregoing proposition by a fictitious example. Con-
sider for instance the following survival times relevant in life histories: 77 = "begin-
ning of vocational education’, 75 = ’end of vocational education’, T3 = ’beginning of

first job’, T, = ’first promotion’. Although it has to be supposed that these variables
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cannot be measured continuously, we treat them as if they were continuous. It is
almost sure that the life history events described by these survival times occur in
the stated order. We might then assume the following conditional (in)dependence
structure: T, usually depends on 77 since it cannot be assumed that the duration
of the vocational education follows the same distribution for those who start late as
compared to those who start early. Further, 75 may depend on the duration of the
education, thus on both 7} and 75. In contrast, it might be reasonable to assume
that the time of the first promotion only depends on the performance in the job
so that Tyl T{1,2}|T3. These assumptions result in the conditional independence

graph given in Figure 2.4. //

Figure 2.4: Fictitious conditional independence graph for 7} = ’beginning of voca-
tional education’, 75 = ’end of vocational education’, 75 = ’beginning of first job’,

T, = ’first promotion’.

start vocational education 77 @ e 7T, first promotion

end vocational education 7> @ e T3 first job

Directed acyclic graphs for multivariate survival times can be generalized to include
for instance time constant covariates, which would be regarded as prior to the other
variables in the graph, as well as situations, where events do not occur in a fixed
order as far as the corresponding survival times are independent given the preceding
ones.

However, for even more general situations with recurrent events, no fixed order of
occurrences, or a different number and type of events for the sample units, it becomes
complicated to apply the above approach and to interpret the resulting graphs in a

reasonable manner.
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2.1.2 Dynamic interaction models

While the preceding subsection deals explicitly with event history data, in the
present and the next subsection, we mainly consider time series. These are typ-
ically modeled with a discrete time parameter 7 = Z so that it is straightforward to
use chain graphs for the representation of the independence structure, where each
discrete point in time forms a chain component. The same principle can be applied
to longitudinal data including survival times (e.g. Klein et al., 1993).

An explicit theory for the modeling of multivariate time series through chain graphs
based on the CG—distribution is developed by Lynggaard and Walther (1993). The
corresponding models are called dynamic interaction models. In the following, we
do not consider the problems arising from the specific distributional assumption nor
the estimation and prediction task, but restrict ourselves to an outline of the idea

of dynamic interaction models.

First, note that the underlying graphs have to take into account that at any discrete

point ¢ in time the same kind of variables are measured. This is formalized as follows.

Definition 2.1.10 Dynamic chain graph

Let Dy = {V4,...,Vr} be a dependence chain, where V; are time indexed copies of
a given set of vertices V. Then, GPr = (VT, EPr) with VT = (JI_, V; is called a
dynamic chain graph. //

Regarding the independence structure of the multivariate time series, the authors

propose to assume certain stationarity properties.

Definition 2.1.11 Stationarity conditions
Let P be the distribution of a multivariate stochastic process {Y ()| ¢ € T}. This
is said to be of M-th order Markovian if

POYD|Y(t—1),Y(t—2),..)=P(YD|Y(t—1),....,Y({Et - M) (29

for all t € T. Further, P is said to have stationary dynamics if in addition to (2.9)
it fulfills

POY(t)|Y(t = 1),...,Y (t, — M) = P(Y(t2)|Y(tz — 1), ..., Yt — M)) (2.10)

for all tl 7é tQ, tl,tQ S T //
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The property of stationary dynamics implies for instance that the conditional means
and covariances are time independent, whereas the marginal parameters may depend
on time. Note that in case of longitudinal data from a large sample of individuals
stationarity is typically not required. For time series analysis, however, it is a
usual assumption. Combining the notion of a dynamic graph with the stationarity

property yields the following definition of a dynamic graphical interaction model.

Definition 2.1.12 Dynamic graphical interaction model

Let GPr = (VT, EP7) be a dynamic chain graph and {Y (¢)| ¢t € T} a multivariate
stochastic process such that the components of Y (¢) can be identified with V;, i.e.
Y (t) = Yy,. Consider a class of distributions P, where any P € P is of M-th order
Markovian with M < T and satisfies the stationarity condition (2.10). Then, P

is called dynamic graphical interaction model on GP7 if the joint density of any T

successive points in time t1,...,t7 € T given by
tr
f(yt17"'7ytT) = Hf(yt|Yt—M:-"aYt—1)’ (211)
t=t,
fulfills the chain graph Markov properties (2.5) induced by GPr. //

Note that due to (2.9) and (2.10) it suffices to consider dynamic graphs with as
many components as the order of the process. It further follows from the stationar-
ity properties that every chain component is a copy of a fixed undirected graph and
the dependence structure between the vertices V; and (V;_ps, ..., Vi_1) is the same
for allt € 7. An example for the graph of a dynamic interaction model of first order

is given in Figure 2.5.

Figure 2.5: Conditional independence graph of a dynamic interaction model with

first order Markovian distribution.

t+1 t t—1

. //. //.Y1
e e

o ° oY,
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The specific shape of the graph is one of the two main differences between general
chain graphs and dynamic interaction models. The second difference lies in the sta-
tionarity assumptions which not only imply that the dependence structure between
present and past is stationary but also that the conditional distributions are the
same at different points in time as postulated by (2.10). The factorization (2.11) of
the density may therefore be regarded as analogy to the one for DAGs (2.4) except

that each factor constitutes the same multivariate regression model.

In the following, we describe some relations between dynamic interaction models
and vector auto regressive (VAR) models. This also serves as prerequisite for the

subsequent sections.

Definition 2.1.13 VAR-model
Let {Y(¢)| t € T} be a g-variate stochastic process. A VAR-model (of M-th

order, VAR(M ) is given as a parametric class of distributions P = {P, 41
R?*', A™ € R?*Y, m = 1,..., M} such that under P, 414 it holds that

.....

M
EY®)Yt-1)=yr 1, ., Yt =M) =y m)=a+ Y A"yi
m=1
If, in addition, the conditional distribution P, 41 am (Y (¢)|Y (t—1) = y4—1,..., Y (t—
M) = y;_u) is the g-variate normal distribution with mean a4 3_"_ A™y, ,, and
covariance matrix X, then we have a Gaussian VAR(M )-model. Further, if the
class is restricted to those distributions, where ¥, is positive definite, we speak of a
regular Gaussian VAR (M )-model. //

A VAR—model as defined above is obviously of M-th order Markovian with station-
ary dynamics. For simplicity we consider in the next corollary only VAR(1)-models.
The restrictions induced by a dynamic graphical interaction model are then given

as follows.

Corollary 2.1.14 Dynamic graphical VAR-model

Let P = {P, 4} be a regular Gaussian VAR(1)-model. Let further GPr = (VT EPr)
be a dynamic chain graph. Then, P, 4 € P fulfills the chain graph Markov properties
of GPr iff
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(1) forallt € T, j,k € V;: {j,k} ¢ EP* = (£7');, =0 and
(2) for all t € T, JE Vi_iand k € Vi (], ]{3) g_f EPr = (E;IA)]C’]' = 0.

Proof:
The first condition implies that whenever there is no undirected edge between two
vertices j, k € V; within a block then

V()AL Y5 (t) [ Yy gy, Y(E—1). (2.12)

This conditional independence holds because it is equivalent to the parameter re-
striction in (1) (Lynggaard and Walther, 1993, p. 81). The second condition states
that whenever there is no directed edge from a vertex j in a preceding block to a

vertex k in the following block, then we have
V@)L Y;( = DY vy Yvioniy (2.13)

because this is in turn equivalent to the parameter restriction in (2) (Lynggaard and
Walther, 1993, p. 81). To see this, note that by the properties of conditional dis-
tributions from multivariate Gaussian distributions we have A = Cov(Y (¢), Y (t —
))War(Y(t—1))""

Finally, it can be shown that the pairwise conditional independencies (2.12) and
(2.13) induced by missing edges in the graph are equivalent to the global chain
graph Markov property for Gaussian distributions with positive definite covariance
matrices (Frydenberg, 1990b). O

Due to the stationarity assumptions (2.9) and (2.10) the relevant chain graphs in
the above corollary are actually those where the subgraphs Gy, ,uy, have the same

structure for all t € T.

Let us further point out a property which is important for the correct interpretation
of dynamic chain graphs: It follows from condition (2) in the above corollary that in
a VAR(1)-model the Matrix A alone is not responsible for the presence or absence
of directed edges from earlier chain components to later ones. Instead we have that

a zero entry Ay ; = 0 yields

Yi(t) AL Y (t — 1) | Yoyt - 1), (2.14)
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which differs from (2.13) by the conditioning set. For a missing directed edge from
Jj € Vi1 to k €V, it is instead required that in addition to A ; = 0 there exists
no i € V such that 4;; # 0 and (X71); # 0, i.e. Yi(¢) should not be partially
correlated with Y;(¢) given the past if Y;(¢) is affected by Y;(t —1).

A deeper insight into this specific interpretational aspect can be gained by con-
sidering the so—called Granger—causality. According to this concept, a process is
regarded as cause for another process if the precision of the prediction w.r.t. the
latter decreases when the former is discarded. More formally, we have the following

definition.

Definition 2.1.15 Granger—causality

Let €2; be the information set containing ’all the relevant information in the universe’
up to and including time ¢. Consider the optimal (minimum mean squared error)
one step prediction process of Y (¢+1) given €, denoted by Y;(t+1|€2;), and let the
corresponding forecast mean squared error be denoted by Xy, (¢ +1]€2;). The process
X = {X(t)|t € T} is said to Granger—cause Y = {Y ()|t € T} if the difference

Sy (8 + 1QA{X(s)[s < 1}) — Sy (¢ + 1[82)
is positive definite. //

For VAR(M)-models it can be shown that Y; is noncausal for Y, based on the
information in the whole process Y if and only if Af"; = 0 for allm =1,..., M
(Tjgstheim, 1981). As argued above, this cannot be read off the dynamic interac-
tion graph by verifying whether there are directed edges from vertices j in earlier
blocks to k£ in later ones. An exception is given when the models are restricted
by the assumption that X, is a diagonal matrix, i.e. there is no association among
the components left after conditioning on the past. In Figure 2.5, for instance, we
can see that Y3 is no Granger—cause for Y9 since Y 0 (¢) L Y3(2)[Y (¢t — 1) as
well as Y103 (t) 1L Y5(2 — 1)[Y1,93(t — 1). Another possibility to read associations
like Granger—causality off the graph is to define a new type of graph where missing
arrows stand for conditional independencies like (2.14) instead of (2.13). This has
been proposed by Andersson et al. (2001) for chain graphs and by Eichler (2000) for

time series. The latter approach is addressed in Section 2.2.
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Note that in the framework of Granger—causality, it makes no sense to consider
whether a component Y;, j € B C V, is a Granger—cause for Y}, £ € B, w.r.t. a
subprocess Y g, since the definition explicitly states that all relevant information has
to be included, i.e. in particular Yy\p. Thus, Granger—causes have to be ’direct’
causes, i.e. a process which affects another one only through mediation of other
processes is not regarded as cause. In practice, however, it might be important to
asses the effect even if it is only mediated through other processes because sometimes
we cannot intervene in the ’direct’ causes but only in the ’indirect’ ones. This is

considered in more detail in Chapter 4.

2.1.3 Partial correlation graphs for time series

This section discusses graphical models which are still based on the idea of reflecting
conditional independencies. The difference to the above concepts consists in that the
vertices now represent the components of multivariate time series. The correspond-
ing models have been termed partial correlation graphs by Dahlhaus (2000) since
the main tool for identifying the conditional independence structure only applies to
linear dependencies. However, since these are equivalent to conditional independen-
cies for the Gaussian case, we restrict ourselves to this distributional assumption.
As shown by Dahlhaus (2000), the well-known results for undirected conditional
independence graphs can be carried forward to the case where the vertices represent
the components of multivariate time series. We now give a brief outline of this ap-
proach without going into the technical details (cf. Dahlhaus, 2000; Eichler, 1999).

Again, we have a discrete time parameter 7 = Z.

Let Y = Yy = {Yy(¢)|t € T} be a multivariate time series with components
indexed by V' ={1,..., K'}. In order to define partial (un)correlation of Y; and Y,
j,k € V., we have to consider subprocesses where the linear effect of the remaining

components has been removed: The partial error process Y\ (jx}(t) is given by

Vi (8) =Y — 5 = > Y 65t — 5)Yi(s),

s€T ieV\{j,k}
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where p* and ¢%(u) are the values minimizin
H; J &

E Y}(t)—,uj—z Z ¢;(t — s)Yi(s)

seT ieV\{j,k}

Both, ¢%(u) and p} can be expressed through the spectral matrix f*(u) of the process
Y (Brillinger, 1981).

Definition 2.1.16 Partial correlation for time series
Consider a multivariate time series {Yy ()|t € T}. We say that Y; and Yy, j, k € V,

are partially uncorrelated given the remaining components Yy ;) and write

(VL A{Ye} [ {Y v\ (imy}

if the partial error processes Yjy\ ;.3 (t) and Yy (k) (¢ + u) are uncorrelated at all
lags u € Z. //

It can be shown that partial correlation for time series as defined above satisfies the
graphoid axioms, where for the intersection property we have to assume that the
eigenvalues of the spectral matrix f*(u) are positive and bounded (Dahlhaus, 2000).
This ensures that none of the components of Y are pure linear transformations
of other components and may therefore be regarded as analogy to the assumption
of a strictly positive density which ensures for conditional independence that the
intersection property holds (cf. Appendix A; Lauritzen, 1996, p. 29). Once the
validity of the axioms has been established, it is straightforward how to define partial

correlation graphs for time series and to show the separation theorem.

Definition 2.1.17 Partial correlation graph
Let G = (V, E) be an undirected graph and Yy = {Y(¢)|[t € T} a multivariate
time series. Then, G is said to be the partial correlation graph of Yy if the following

implications hold

{5k} ¢ E = {V;} L {Y} [ {Ynyry}

for all j,k € V. //
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Corollary 2.1.18 Separation in partial correlation graphs
Let G = (V, E) be the partial correlation graph of Yy and assume that the eigenval-
ues of its spectral matrix are positive and bounded. For disjoint subsets A, B,C C V'
it holds

AllgB |C = {Ya}L{Ys}|{Yc}

Proof:

This can be shown exactly like the equivalence of pairwise and global Markov prop-
erty for conditional independence graphs by exploiting the graphoid axioms (cf.
Lauritzen, 1996; Dahlhaus, 2000). a

Note that the separation theorem also holds when the joint distribution of the time
series it not Gaussian. In this case, the graph indeed only represents partial un-
correlation, whereas in the GGaussian case it represents conditional independencies.
In general, the uncorrelatedness of Y}y (.3 (t) and Y g6y (t 4+ u) at all lags u is
equivalent to corresponding zero entries in the partial cross spectra. This suggests
a simple method for identifying the partial correlation graph of a multivariate time
series: First, estimate the spectral matrix f*(u) by smoothing the periodogram and
then test whether the functions occurring in the rescaled inverse are zero. An ap-

plication may be found in Dahlhaus (2000).

If Y is a regular Gaussian VAR(M)-process with X, diagonal, it can be shown for
its partial correlation graph G that an edge is absent, i.e. {j,k} ¢ F, if and only
if (1) ATy, = A}, = 0 and (2) there exists no 7 € V such that A7} # 0 A A7 # 0.
Restating this in terms of Granger—causality reveals that {Y;} 1L {Yi}{ Y\ } if
and only if (1) neither Y; is a Granger—cause of Yj nor vice versa and (2) for all
other components Y;, i € V\{j, k}, either Y} or Y; is no Granger—cause of Y;. The
latter condition can be justified by the same principle which motivates the moraliza-
tion in DAGs (cf. the global directed Markov property given in Proposition 2.1.4):
Conditioning on a common consequence of marginally independent Y; and Y; may

induce an association.

A drawback of partial correlation graphs is that they contain no information on the

dynamics of the process. In particular, since the time dimension plays an important
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role in interpreting the missing edges, as described above in terms of Granger—
causality, it is desirable to include this information in the graphical representation.

This idea underlies the approach presented in the following section.

2.2 Causality graphs

Causality graphs have been introduced by Eichler (1999, 2000). As for partial cor-
relation graphs, the vertices represent the components of a multivariate time series.
But instead of considering only undirected graphs, the information on associations
like Granger—causality is included by suitably defined directed edges. This motivates
the name of these models, while the author is aware of the fact that (any version of)
Granger—causality is only a measure for the association between lagged variables.
As we have seen in the case of VAR—models, there are two basic types of association
relevant for time series models. First, there is the dependence of the 'presence on
the past’. Second, we have the correlation at any point in time that cannot be ruled
out by conditioning on the past. Therefore, causality graphs allow for multiple edges
between two vertices: undirected and directed ones, where the latter may have both
directions and are then considered as two different edges. Thus, the general defini-
tion of a graph given in the first section has to be applied. In order to formalize the
’dependence of the presence on the past’ we define the (strict) past Y (¢) of Y(¢) as
Y(t) = {Y(s)|s < t}.

Definition 2.2.1 Noncausality
Consider a multivariate time series {Yy (¢)[t € T}. We say that Y; is noncausal for
Y,ifforallte T

Yi() L Y5(2) | Yo (2). (2.15)

This is denoted by Y; /Y, [Yy], or briefly j Ak [V].

Further, we say that Y; and Y}, are instantaneously noncausal if for all t € T
V(0L Yilt) | Y0), Yo (0): (2.16)

This is denoted by Y; + Y [Yv], or briefly j £ k[V]. //
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Note that noncausality (2.15) equals the conditional independence statement (2.14)
given earlier in the context of dynamic interaction models. It follows for Gaussian
VAR-models that noncausality is determined by zero entries in the matrices A™,
m = 1,... M, whereas instantaneous noncausality can be parameterized by corre-

sponding zero entries in the inverse conditional covariance matrix X

A causality graph shows noncausality by missing directed edges and instantaneous

noncausality by missing undirected edges as follows.

Definition 2.2.2 Causality graph
The causality graph of a multivariate time series { Yy (¢)|t € T} is given as a graph
G = (V, E) with vertices V = {1,..., K} such that

(J,k) ¢ E & Y; AYi[Yy]

and
{j,k} ¢ E < Y; o Yi[Yv]

forall j,k €V, j#k. //

Example: An example for a causality graph is given in Figure 2.6. Here, the set
of vertices is given by V = {1,2,3} and the edges by E = {{1,2}, {2,3}, (1,2),
(2,3), (3,2)}. This implies the noncausalities {2} /{1} | {3}, {3} ~{1} | {2},and
{1} {3} | {2}. In addition, the missing undirected edge indicates an instantaneous
noncausality, i.e. {1} + {3} | {2}. For a Gaussian VAR(1)-model the induced pa-

rameter restrictions are as follows: A;, = A1 3= A3; =0 and ()73 = 0. //
Figure 2.6: Example for a causality graph.

Y Y, Y3

-—
[ ] o —————— 0

Causality graphs are thus an appropriate graphical representation for the condi-
tional independence structures as they occur in Gaussian VAR(M )-models or for

the partial correlation structure if the normal distribution is not justified. This is not
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possible with the classical chain graphs as shown above in the context of dynamic
interaction models since these usually have more edges and encode different condi-
tional independencies due to the difference between (2.13) and (2.15). The same
problem is considered by Andersson et al. (2001) who therefore define so—called al-
ternative Markov properties, where the essential difference is that property (2.13)
is replaced by (2.15) (see also the notion of summary graphs introduced by Cox
and Wermuth, 1996, p. 204). Thus, causality graphs could be represented as chain
graphs similar to dynamic interaction models by interpreting the edges according
to the alternative Markov properties. Note, that a parametrization other than for
the Gaussian case is quite difficult as indicated by Andersson et al. (2001). The
notations and results of Andersson et al. can be applied to causality graphs in or-
der to explore their relation to partial correlation graphs as well as their separation
properties. Since an appropriate treatment of these properties requires substantial

notational effort, we desist from going into details, here, and refer to Eichler (2000).



Chapter 3
Local independence

For general random structures involving the time dimension, we may translate the
notion of noncausality considered in the foregoing chapter more appropriately into
the statement that 'the past of Y} is not informative for the presence of Y}, as long
as we know the past of Y, and of the other relevant components’. The concept of
local independence presented in this chapter formalizes this idea for quite general
processes, in particular for event history data, where an important aspect is that a
continuous time dimension is considered. Processes with a continuous state space
which vary steadily are obviously difficult to measure in continuous time so that a
discrete time approach seems more reasonable. In contrast, point processes which
provide the theoretic framework for event history data may indeed often be regarded
as measured in continuous time and this entails several specific properties and prob-
lems not encountered in discrete time which are addressed in this and the following

chapters.

In this chapter, local independence is presented with special regard to marked point
processes. Thus, in the first section we review some basic concepts of this theory as
far as needed to understand the subsequent parts. Some additional background is
given in Appendix B. Section 3.2 gives the general definition of local independence.
Its properties are further discussed along the lines of asymmetric irrelevance relations
already introduced in the first chapter for 6—separation. Then, it is shown how local
independence applies to multi—state processes and, finally, we consider the special

case of Markov processes.

57
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3.1 Basic concepts of event history analysis

Event history analysis is concerned with analyzing the occurrence and interaction of
different events in time and their possible dependence on time varying or time con-
stant covariates. Often, the events can be described as transitions between different
states as for example the event of loosing a job, which can be regarded as change
from the state employed to the state unemployed. Here, the set of interesting events
or states is assumed to be finite and rather ’small’ and we restrict ourselves to time
constant covariates or to covariates which can themselves be modeled as events or
changes of state. A suitable theoretical framework to describe this data situation is

given by the so—called marked point processes (Arjas, 1989).

Definition 3.1.1 FEvent history / marked point process

Let £ = {e1,...,ex}, K < oo, denote the mark space, i.e. the set containing all
events of interest, and 7 the time space in which the observations take place. If
time is measured continuously we usually have that 7 = [0,7) or 7 = [0, 7] where
T = 00 is possible.

Consider a measurable space (2, F). An event history or marked point process is
then given by a set {(Ts, E;)|s = 1,...,S} of pairs of random variables on (2, F)
where T, € T,0 < T; < T, ... < Tg, are the times of occurrences of the respective
events E; € £. //

Note that the number of possible events K and the actually observed set of events
may be different for each individual, i.e. S may be random. The theory of marked
point processes also applies to the more general situation of an infinite mark space
£. Since this is not considered here, we mainly refer to marked point processes as
event histories.

Usually an additional vector (Xi,...,Xg) of time constant random variables is
recorded describing the information available at time ¢ = 0. Most of the following
concepts and results can be generalized to this situation but we do not take it ex-

plicitly into account.

Examples: In survival analysis one is interested in the single event of death, so
that the data for a single person consists of some covariates, for example age, gender

and some kind of exposition, and the time of death which is often measured as time
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from a defined starting point such as a surgery. In addition to observing the time of
death one could measure the general health status with states good, medium, bad,
and e.g. the smoking status with states smoker and non-smoker, where transitions

from each status to the others and back are possible. //

There are further possibilities of formalizing the random structure of event histo-
ries, the same information as given by the times of the events is for example given
by the time between the events with a defined starting time. It is evident that
there are several ways of looking at event history data and consequently different
possible concepts of dependence. Application of graphical models to this type of
data is therefore not straightforward, as already illustrated in the previous chapter.
Here, we pursue the approach that consists in assessing how one event affects the
probability for the occurrence of another. Consider for example two events e; and
eo. If ey is more likely to occur (or less likely) when e; has already occurred than
if it has not, one can say that the occurrence of e; depends on the occurrence of
e1. This intuitive notion of dependence of events has been called local dependence
by Schweder (1970), generalized by Aalen (1987) and applied for instance by Aalen
et al. (1980) and Gottard (1998). To make it more rigorous in the next section
we need some notation and definitions concerning stochastic processes. Additional

terminology and results can be found in Appendix B.

In event history analysis a special kind of stochastic processes plays an important
role. These are multivariate counting processes where each component counts the

number of occurrences of one specific event.

Definition 3.1.2 Counting process
A stochastic process N with with state space S = {0,1,2,...}, zero at time zero,
paths which are right—continuous, where the left-limits exist, piecewise constant,

and non—decreasing with jumps AN(t) = N(t) — N(t7) = 1 is called a counting

process.
A multivariate process N = (NVy,..., Ng), where the components Ny are counting
processes, k = 1,..., K, is called multivariate counting process if for the continuous

time situation no two components jump at the same time. //
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A given finite state process Y can be associated with a multivariate counting process
N = (N |q,r € §) where N, (t) denotes the number of transitions from state ¢ to
state r before or at time ¢. In terms of events £ = {ey, ..., ex} occurring for a single
observational unit the information about the event times is analogously contained
in the multivariate counting process N = (NVy,..., Ng) with Ni(¢) the number of
events e, that have occurred prior to or at time . More formally this is defined as

follows.

Definition 3.1.3 Counting process for marked point processes
Let {(Ts, Es)|s =1,...,S} be a marked point process as in Definition 3.1.1. Then,

the associated mark specific counting processes are given by

s
Ne(t) =) UHT,<t;E,=e}, k=1,...,K.
s=1
Alternatively we also write N (¢;ex), ex € €, which is easier to read when the sub-

script gets more complicated. //

The distribution of the marks and their occurrences is often described in terms of
the infinitesimal development of the corresponding counting process given the past
of the process, i.e. by their intensity process defined further below. This means
that we need a notion suited to describe the evolution of the process in time. It is
common to take this to be the internal filtration of a stochastic process Y which
is given as {F|t > 0} with F, = o{Y(s)|s < t}. Note that F; C F, where
(Q, F) is the measurable space on which Y is defined. The left hand limit is given
as Fi- = o{Y(s)|s < t}. In case of a marked point process we have that the
internal filtration is given by F;, = o{(Ts, E;)|Ts < t,E; € £} which is equal to
o{(Ny(s),...,Nk(s))|s < t}. The internal filtration is sometimes augmented by
an additional o-field Fy generated by random variables realized at time ¢t = 0,
for instance by the vector (X7i,...,Xg) of time independent covariates. But if
not stated otherwise, we use the internal filtration. Further, we assume that all
considered filtrations satisfy the 'usual conditions’ (cf. Appendix B).

A stochastic process can now be decomposed under quite general conditions into a
Fi—predictable part, i.e. a process that is predictable from the information in F;-,

and a 'residual’ part which forms a martingale. The former is called its compensator.
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Definition 3.1.4 Compensator
Given a stochastic process Y on (2, F, P) adapted to a filtration {F;}. Then, any
Fi—predictable, cadlag, and finite variation process A such that M =Y — A is a

local F;—martingale, zero at time zero, is called F;—compensator of Y. //

The decomposition Y = A + M is called the Doob—Meyer decomposition. If such a
process A exists it is unique. The conditions for the existence of a compensator are
rather general and they hold for any counting processes (cf. Fleming and Harrington,
1991, p. 61).

Remark 3.1.5 Compensator for counting processes

Let N be a counting process. The compensator A(t) is given by fot A(ds) with
A(dt) = E(N(dt) | Fi-).

The compensator A(t) may thus be regarded as the expected number of events that
occur before or at time ¢ given the strict pre—¢ history (cf. Fleming and Harrington,
1991, p. 38). In this sense, it provides a kind of ’short—term’ prediction for the

counting process. //

In the following we mainly consider processes where the compensator has a certain

smoothness property.

Definition 3.1.6 Local characteristic / intensity process
Let A be the compensator of a stochastic process Y. The compensator A is absolutely

continuous, if there exists a process A = {A(¢)|t € T} with

The process A(t) is called local characteristic. If Y is a counting process A is also

called the intensity process and A the cumulative intensity. //

As mentioned above, the compensator has to be F;—predictable, i.e. it is determined
by all events that have occurred up to but not at time ¢. Thus, it is important to
note that compensator and intensity process depend on the considered filtration. If
the information about the past is restricted or extended worse or better 'predictions’

are possible, respectively. This is the objective of the following remark.
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Remark 3.1.7 Innovation theorem
Let F; be the internal history of Y and A its F,—compensator. In general, if one
considers a smaller filtration {F|t € T} with F, C F, for all t € T, i.e. if less
information about the past is included than given by the process Y itself, the corre-
sponding ftfcompensator A may differ from A. By the innovation theorem we have
the heuristic relation

/AX(dt) = E(A(dt)\]:'t—) VteT.

For the exact statement as well as the required assumptions concerning the involved

processes and filtrations see Brémaud (1981, pp. 83). //

In case of a marked point process with mark specific counting processes we also
have mark specific compensators Ag(t) and intensities A\g(t), ex € €. Again, we
write A(t;ex) and A(t; ex) in case that the subscript gets more complicated. All the
above notions apply analogously to these mark specific processes. But note that the
processes are defined w.r.t. to the internal history of the whole multivariate process
{Ng|k = 1,..., K} and not w.r.t. the internal history of the single mark specific
counting process Ny which would contain less information on the past. If one is
interested in the latter the innovation theorem has to be applied. More generally,
this theorem may be used to determine the intensity of an event given that only
a subset of the previous events have been observed. Note that this is a special
filtering problem (Brémaud, 1981, pp. 83) which has been treated for marked point
processes by Arjas et al. (1992). Let £ be the set of all possible events and £ C £ the
set of all observable events. Consequently, F; = o{(T,, E)|Ts < t,E, € €} is the
filtration generated by the observable marked points and F C Fi,t € T. In oder
to determine the F,—intensities ;\(t; é), é € £, we need to specify the distribution
of the unobserved events given the observed. This is simplified by introducing the

additional notion of a history process.

Definition 3.1.8 History process
Consider a marked point process {(Ts, Es)|s = 1,...,S} with mark space & =
{e1,...,ex}. The pre—t history process Hy is defined as the set of those marked

points which occurred before or at time ¢, i.e.

H={T,EB)|T,<ts=1,...,8}).
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As for filtrations, H,~ denotes the strict pre-t history process. Additionally, H/,
A cC{l,...,K}, defined as

HA={(T,,E,) |T,<tand 3k € A: B, =¢;,5=1,...,5}

denotes the history process restricted to the events in A.
Any set of marked points for which it holds that t; = ¢,,s # u, implies e; = e,
can be a history, i.e. a realization of H;. Let thus IH be the set of all histories. We

denote the corresponding o—field of Borel sets by #. //

Note that the different filtrations can be regarded as being generated by the history
process, i.e. F* = o{ HAY, A C {1,..., K}, such that if £ = {e, € |k € A} then
j}t = O'{HtA}

As outlined by Arjas et al. (1992) the basic problem in determining A(t; €) consists
in calculating the conditional distribution of the underlying pre—t history given the

observations in ;. For this purpose, let
#(B)=P(H,e B|F), BeHt>D0.

As stated by the innovation theorem, the intensities of the observed events can now
be written as

~

A(dt;é) = / fi- (dH)A(dt,e), ée€é,
H

which in the absolutely continuous case reduces to

At e) = / f (dEDA(LE), écé. (3.1)
H
Note that in both formulae above, A and A, respectively, depend on the integrand H
since they are conditional on the strict pre—t history. The conditional distribution
7 may be calculated either explicitly using the Bayes formula or via an integral
equation. The former requires the specification of a parametric model. The latter
shows how the probability 7 is updated whenever an observable marked point (s, é;),
¢, € &, occurs. This result is quoted in the following theorem for the absolutely

continuous case.

Theorem 3.1.9 Partially observed marked point process

Consider a marked point process and its corresponding counting processes. Assume
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that the sample paths of N = 215:1 Ny, are a.s. finite—valued, A = Zszl Ay is abso-
lutely continuous and that the sample paths of A = Zle Ak are uniformly bounded
on finite intervals. Then, the conditional distribution 7; is uniquely determined

through the recursive equation
w(B) = 1{0 € B}
+/0 /}HW (@H) S1{H U{(s, )} € B} — 1{H € BY)A(s; €)ds

Y [0 - e BN - Asod). Ben (2
where
o Ju T (dH)I{(HU{(t,e)} € B}X(t;e) . 4
= [PESTANCD o oes
Proof: Arjas et al. (1992) O

The recursive equation (3.2) can be understood as follows: Assume that the prob-
ability 7;,(B) at a specific time ¢, is known. If we continue to observe the partial
marked point process then we collect further information for instance when observ-
ing the next event é € £ at time t; > ty. This additional information consists of
knowing that nothing observable has occurred between ¢, and ¢; and the event at
t;. Consequently the probability for B is updated on the one hand due to the non—
occurrence in (ty,?;) and on the other hand due to the occurrence of {(¢1,€)}. The
innovation gain, i.e. the change in the intensity due to observing what happens at
¢, is given as the difference Z;(e) — #,- (B) weighted according to whether an event
occurs at ¢ or not, tp < t < t;. Note that N(d¢; €) in (3.2) equals one if and only if

the event é occurs at ¢ and zero otherwise.

Let us consider the updating of 7;(B) in more detail assuming first (1) that no
observable event occurs at ¢ and then (2) that an observable event occurs at ¢. In
case of (1) we have that T, < t < T,y1, where T, denotes the time of the latest

observable event before ¢. Then, it follows from Theorem 3.1.9 that

+/ #,(dH) Y [1{H U{(s,e)} € B} — 1{H € B}|A(s;¢) ds

ec&
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/n/ s—(dH) Zl{HU {(s,6)} € B}\(s; é)ds

/ Z/\ S5 €)
= i, (B)
/ / Fo(dH) {3 1{HU{(s5,0)} € BYA(s:¢)
" ect\E
—1{H € B}\(s) B) > A(s;é) ¢ ds, (3.3)

écé

where we exploited (3.1) which occurs in the denominator of Z(e) and A(t) =
>« Ak(t). The last equation (3.3) shows how the non-occurrences of observable
events contribute to the conditional probability for B.

In case of (2), assume that the event é occurs at ¢t = T, 1. We then have

S fr=, (@H)1{H U{(Th11,8)} € B}MTss; )
le 7ATT,;FI (dH)A(Th415 €) ’

T (B) (3.4)

which can be regarded as a continuous time version of the Bayes formula.

In the following section we define local independence for marked point processes
with the aim to describe the independence structure among events. The above
considerations are used to find conditions for the independence structure among
a subset of events to stay the same when the remaining events are discarded. The
definition of local independence is based on the mark specific counting processes and
compensators and thus assumes that they exist. Further basic results concerning

likelihood based inference for marked point processes are given in Chapter 5.

3.2 Local independence

Following the definition given by Aalen (1987) the above mentioned intuitive notion
of dependence of events is now formulated for general stochastic processes allowing
for a Doob—Meyer decomposition. We first consider a bivariate process Y = (Y7, Y5)

and the respective componentwise F;—compensators A, with local characteristics Ay,
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k = 1,2. Note that the latter two are assumed to be w.r.t. the internal filtration
of the whole bivariate process Y. Let FF = o{Yi(s)|s < t}, k = 1,2, be the
componentwise filtrations. As mentioned above, the FF—compensators Ay may in
general differ from Ay since the former are restricted to the information given by
the history of the k-th component alone instead of both components. However,
the equality Ay=A) implies that the other component carries no information for
the infinitesimal development of Yj given its own past. This is the key to the
following definition which was originally given by Aalen (1987) but restricted to the
situation where an intensity process exists. We state it for the more general case of

a compensator which is not necessarily absolutely continuous.

Definition 3.2.1 Local independence (bivariate)

Let Y7 and Y, be two stochastic processes on (Q, F, P). Let further F = o{V;(s)|0 <
s<th k=1,2,and F, = F}VF} = o{F} UF?}, t € T. Assume that the processes
permit a Doob—Meyer decomposition with respect to F; and that the F;—martingales
Y. — Ag, k= 1,2, are orthogonal.

Then, Y; is said to be locally independent of Yy over T if A;(t) is measurable w.r.t
F} for all t € T. Otherwise we speak of local dependence. //

The process Y; being locally independent of Y5 is symbolized by Y, /Y] which can
also be read as Y; being irrelevant for Y;. The interpretation of local independence
as irrelevance property is discussed in the next section. As already suggested earlier,
local independence may be regarded as generalization of Granger-noncausality to
the continuous time situation by interpreting the compensator as short—term pre-
diction (cf. Remark 3.1.5). A brief discussion of this aspect is given by Florens and
Fougere (1996).

As can easily be checked, local independence needs be neither symmetric, reflexive

nor transitive. However, we make the following assumption.

Assumption 3.2.2 Reflexivity
Since in most practical situations a process depends at least on its own past we only

consider stochastic processes where local dependence is reflexive. //

With regard to the interpretation of local independence one could heuristically say

that if Y3 - Y] then the presence of Y; is conditionally independent of the past
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of Y, given the past of Y; symbolizing this by Y;(¢) L F2 |F-. However, this is in
general a stronger property than local independence but it holds for marked point
processes as shown in the next chapter. The relation between local and conditional
independence is also explored in Section 3.2.3 for Markov processes.

Note that in special situations there are trivial forms of local dependence. In sur-
vival analysis, for instance, each internal covariate process is locally dependent of
the survival process since failure implies that the intensities for any further transi-

tion are zero.

Let us now consider local independence for counting processes which are of special
interest when considering marked point processes. If Ny /4 Ny, where Ny, k = 1,2,
are counting processes, we have that the compensator A; of Vi is a function of N,
itself, and not of IV, i.e. the ’infinitesimal prediction’ of the current development of
N; cannot be improved by including N,. In the absolutely continuous case we even
have by the innovation theorem for the F}intensity A;(t) of Ny that A (t) = Ay (t) if
N5 4+ N;. Thus, the intensity process remains the same if the included information
is changed from F; to F! which contains only the information about the develop-

ment of Ny, i.e. about whether and when event e; has occurred up to time ¢t € 7.

An important aspect of Definition 3.2.1 is the assumption that the martingales
M, =Y, —A; and My = Yy — Ay are orthogonal. The implications are elucidated in

the following remark.

Remark 3.2.3 Assumption of orthogonality

The assumption of orthogonality means that the innovations of the two processes
are unrelated given the past. This can be seen as follows. Formally, we have by this
assumption that (My, M) = 0 so that Cov(M,(dt), My(dt)|F,—) = 0. From this it
follows for the increments of the counting processes N;(dt) and Ny (dt) that

Cov(Ny(dt), Na(dt)|F;-) = E(Ny(dt) No(dt)|F-) — E(Ny(dt)|F- ) E(No(dt)| Fi-)
= Ay (dt)E(Ma(dt) | Fi-) + Ag(dt) E(M(dt) | Fi-) + E(My My(dt) | Fi-)
= 0,
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where the last transformation is due to the predictability of the compensators, the
properties of martingales and the orthogonality assumption. Since Ni(dt), k =
1,2, can be regarded as Bernoulli variables and since it holds that two Bernoulli
variables are stochastically independent iff their covariance is zero, we have that
the increments of the considered counting processes are conditionally independent
given the history F;,-. The orthogonality condition seems reasonable, since one
could hardly speak of independence if the same innovations fed the two processes
even if the compensators are independent. In the continuous time situation and
assuming the existence of an intensity process, i.e. for A absolutely continuous, the
orthogonality of My = Ny — Ay, k = 1,2, is attained precisely when the processes
cannot jump simultaneously. This can e.g. be made sure by a suitable choice of the
mark space for the corresponding marked point process, i.e. if events may occur at
the same time with a positive intensity, then a corresponding mark has to be added.
In this case one could of course not assume any kind of independence between these

processes. //

Example: An example for local independence has be investigated by (Aalen et al.,
1980). The two events were (1) first occurrence of a specific kind of chronic skin
disease and (2) beginning of the menopause. The findings indicate, as expected,
that 'menopause’ is locally independent of ’skin disease’ but not vice versa. The au-
thors found enough evidence for concluding that the skin disease is more probable

for women who have started their menopause. //

The extension of the definition of local independence to a collection of more than
two processes deserves special attention since it has to be made clear which history a
subprocess is independent of. Note that for a multivariate process Y = (Y3, ..., Yk)
the F;—compensator is itself vector—valued and given by A = (Ay,..., Ak), where
Ay is the Fi—compensator of Y;. The compensator A4 of a subprocess Y, A C

{1,..., K}, is given in a similar manner.

Definition 3.2.4 Local independence (multivariate)

Consider a multivariate process Y = (Vi,...,Yx) with individual filtrations FF =
o{Yi(s)|0 < s < ¢} and joint filtrations Fi* = \/,., Ff corresponding to sub-
processes Ya, A C V = {1,...,K}. For A,B,C C V assume that FA“BUC—

compensators A4 and Ap exist such that Y4 — A4 and Yp — Ap are orthogonal
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FAUBUC _martingales.

We then say that a subprocess Y is locally independent of Y 4 given Y if all
FAUBUC compensators Ay, k € B, are measurable with respect to FPYC. This is
denoted by Y4 4 Yg|Yc or briefly A 4 B|C. Otherwise, Y is locally dependent

of Y4 given Y, i.e. A — B|C. //

We have, again, as heuristic interpretation of A —4 B|C that the prediction of
the infinitesimal development of Yz cannot be improved by including information
on the past of Y4 given that the past of Yp and Y is already known, i.e. A is
in a sense discussed below irrelevant for B given C'. Note that the past of the

considered process, here F2, is always included in the condition which is justified

t—
by the reflexivity Assumption 3.2.2.

3.2.1 Local independence as irrelevance relation

The interpretation of the set C' in the local independence statement A - B|C' is
important for the graphical representation of local independencies as addressed in
Chapter 4. If A 4 B|C we would expect that in a graphical representation C is a
separating set for A and B. As shown in that chapter, this can be achieved through
directed graphs and d—separation. The discussion of the properties of such a graph-
ical representation is simplified by first considering in more detail the properties of

local independence as an irrelevance relation.

An obvious way to translate local independence as irrelevance relation is by letting
AR B|C stand for A 4 B|C, A,B,C C V. In this case we have that 'A < B’
=ACB,’/AvB = AUB and 'AAN B = AN B. Local independence does not
satisfy all the asymmetric graphoid properties. For the decomposition as well as for
intersection we need further conditions. But let us first consider those properties
that always hold.

Proposition 3.2.5 Graphoid properties of local independence

The following properties hold for local independence according to Definition 3.2.4:

(1) left redundancy,

(2) left decomposition,
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(3) left and right weak union,
(4) left and right contraction,
(5) right intersection.

Proof:
(1) Left redundancy holds since obviously the FAYB—compensators of Y are FAYB-
measurable, i.e. if the past of Y 4 is known, then the past of Y 4 is of course irrele-

vant.

(2) Left decomposition holds since the FAYBYC—compensators Ax(t), k € B, are

FBYC_measurable by assumption so that the same must hold for the FPU¢-P—

compensators Ag(t), k € B, for D C A.
(3) Left and right weak union also trivially hold since adding information on the
past of components that are already uninformative (left) or included (right) does

not change the compensator.

]:AUBUCUD
t

(4) Left contraction holds since we have that the —compensators Ay,

j:AUBUC

k € B, are by assumption F; —measurable and these are again by assumption

FBYC—measurable.

fAUBUCUDi
t

compensators Ay, k € BU D, are FPY““P—measurable. This holds for k € D by
assumption. For k € B, consider first the case that D /4 B|(AUC). Then, we have
with left contraction that (A U D) -+ B|C showing that the assertion is true. In
case that D — B|(AUC), we have that the assumption of A 4/ B|C implies that D

Right contraction is not so easily seen. Here, we have to show that the

cannot affect A because if it was a ‘common cause’ of A and B then there could not
be this local independence. Further, C' cannot contain any ’common consequences’
of A and D because this would in turn induce a dependence between A and D con-
tradicting A 4> B|C. Further, we already know that A does not affect D. Therefore,
the additional information 2 on the past of process Y, cannot generate an effect
of Y4 on Yg.

(5) The property of right intersection can be checked by noting that in the defini-
tion of local independence (Definition 3.2.4) the filtration w.r.t. which the intensity

process should be measurable is always generated at least by the process itself. O

Note that with the above proposition we have that (1.1) holds, i.e. A 4 B|C <
A\C -4 B|C. In contrast, it is clear by the definition of local independence that
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right redundancy does not hold because otherwise any process would always be
locally independent of any other process given its own past. It follows that property
(1.2) does not hold. This is also clear because A - B\C|C does not contain any
information about Agne at all, so that it cannot imply A 4 B|C. It is easily seen
that the converse is always true, i.e. A 4 B|C = A - B\C|C. This is in turn a

special case of the following result which parallels Lemma 1.2.12.

Lemma 3.2.6 Special case of right decomposition for local independence

The following implication holds for local independence:

ASB|C,DCB=A+,D|(CUB)\D

Proof:
If the FAYBYC compensator Ag is FBYC-measurable, so is any subprocess Ap,
D cC B. O

Let us now consider the property of left intersection. For symmetric irrelevance
relations it is the property of intersection that makes a semigraphoid a graphoid.
Its importance for the equivalence of pairwise, local and global Markov properties
in undirected conditional independence graphs is well-known (cf. Lauritzen, 1996).
As shown later, it is of similar importance for the local independence graphs. In the

following proposition we formulate conditions for left intersection to hold.

Proposition 3.2.7 Left intersection for local independence
Consider the irrelevance relation defined through local independence as formulated

in Definition 3.2.4. Under the assumption that
FANFE=F""B YABCV, VteT (3.5)
the property of left intersection according to Definition 1.2.6 holds.

Proof:
Left intersection assumes that the FAYBYC—compensators Ax(t), k € B, are F2C-
as well as F/A"B-—measurable. With (3.5) we get that they are .7-}3 UM% _measurable

which yields the desired result. a
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Property (3.5) formalizes the intuitive condition that the considered subprocesses of
the system are different enough to ensure that common events are necessarily due
to common components. Note that under (3.5), property (1.3), too, holds for local

independence.

The remaining property, right decomposition, requires special consideration because
it makes a statement about the irrelevance of a process Y 4 after discarding part of
the possibly relevant information Y g\p. If the irrelevance of Y4 is due to knowing
the past of Yp\p then it will not necessarily be irrelevant anymore if the latter is
discarded. Right decomposition therefore only holds under specific restrictions on
the relation between the potentially irrelevant process and the relevant process to
be discarded. The first restriction exploits property (3.5) to show that under an

additional condition right decomposition also holds for local independence.

Proposition 3.2.8 First condition for right decomposition of local independence
Given (3.5) then right decomposition according to Definition 1.2.6 holds for local

independence if the following additional conditions are true:
(BNA\CUD)=0 and BAD|AUC. (3.6)

Proof:

Due to (1.1) we can assume that ANC = (. Let B* = B\ D. Note first that because
of Lemma 3.2.6 we have A 4 B|C = A - D|C U B*. By assumption and left
decomposition it holds that B* 4 D|A U C. Thus, we can apply (1.3) which yields
AU B* 4 D|C, where AN B* = () has been used. With left decomposition we get
the desired result. )

Another situation where right decomposition holds is given in the following propo-

sition and is restricted to counting processes.

Proposition 3.2.9 Second condition for right decomposition of local independence
Consider a marked point process with the assumptions of Theorem 3.1.9 and the
irrelevance relation defined through local independence as formulated in Definition
3.24. Let A,B,C,D C V with (BN A)\(C U D) = 0. Right decomposition, i.e.

A4B|C, DCB = AAD|C
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(cf. Definition 1.2.6), holds under the conditions that
B £A\(CUD)|(CuUD) (3.7)
and
AA{k} | CUB or BA{k}|(CUDUA) (3.8)
for all k € C\D.

Proof:

Let us first consider the simple situation where A = {a}, B = {b,d},C = {c},D =
{d},V =AUBUCUD. From the assumptions it follows for the F4intensities
that

o )\, (t) is Fr“d—measurable,

o )\y(t) is FP*measurable,

o )\ (t) is either Ff¢4- or FPd-measurable,
e and \y(t) is F*measurable.

We have to show that the F“—intensity A\g(t) is F¢—measurable. With the inno-
vation theorem and (3.1) it holds that

~

Aa(t)dt = / Fo (A A1),

where \y(t)dt = P(N(dt; d) = 1|/F-) = P(N(d¢t; d) = 1|F%) is independent of F}
by assumption. Thus we have to show that #,(dH) = P(H; € dH|F¢) = P(H, €
dH|Ff?). This can be done by verifying that neither the innovation gains due to the
occurrences of observable events as given by (3.4) nor the probability given that no
observable event occurs as given by (3.3) depend on the history of N(t;a), i.e. on
H}. Note that the integration over JH in both expressions is in fact an integration
over the space of the unobservable histories H® = {H € H|H*? = H4} since the
remaining histories are fixed to what has been observed and is therefore denoted by
H?<d in order to make the distinction clearer. For the same reason we only consider
probabilities for sets B € HP.
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Assume that an observable event occurs at ¢. If this event equals a we get according
to (3.4)

oae e T (dHY){H® € B}A(t)
’ﬂ't(B) - be ﬁt* (de))\a(t)

= / 7 (dH*)1{H® € B} =%, (B), B e H’,
IHDY

since A\, (t)dt = P(N(dt;a) = 1|H? U H*®) = P(N(dt;a) = 1|H*?) cancels out.
Thus, the probability for B remains unchanged when the event a occurs.

In addition, we have to show that the innovation gain due to one of the other
observable events is also independent of the information whether and when an event

a has previously occurred. Consider the case that ¢ occurs at time ¢ then

By [ 71~ (AHY)1{H® € B})\.(t)
m(B) = e 7o (AHP) A (1)

| 7= (B, Ac(t) is Fed—measurable,
P(H; € B|H), \(t) is Fr*measurable,

where the second part follows because the foregoing ratio is independent of He.

Finally, if d occurs at time ¢ we have that

a o fae e (AHY)1{H® € BYA4(1)
ﬂ't(B) - leb 7Art— (de))\d(t)

= P(H, e B| H"), (3.9)

since \g(t) is F¢—measurable.

For the calculation of #,(B) on intervals, where no observable events occur, as given
in (3.3), we note that \,(¢) as well as \4(t) do not depend on the history F. As
to the contribution of A,(¢) and A.(t), we have shown above that the occurrence of
a leaves 7;(B) unchanged. Either the same holds for ¢ or A.(t) does not depend on
the history F}'.

The foregoing argumentation extends easily to the case of arbitrary disjoint subsets
sets A, B,C of {1,...,K} and D C B, where B' = B\D takes the role of {b}.
Condition (3.8) ensures that C' can be partitioned into C' = C; U Cy such that A, (%)

is FACP—measurable for all ¢; € C; and A, (t) is FP P—measurable for all ¢, € Cs.
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In case that the sets A, B,C and D overlap let A* = A\(C U D), C* = C\D and
B* = B\D. The conditions of this proposition, (3.7) and (3.8), then imply that
B* £ A*|(C*UD) and Vk € C* : A* A{k}|(C*UB) or B* A {k}|(C*UA*UD,).
The property of right decomposition is equal to the implication A* -4 B|C*\B*
= A* -4 D|C*. Since the last transformation involves only disjoint sets the same

argumentation as above may again be applied. a

Note that the conditions (3.6) — (3.8) given for right decomposition of local inde-

pendence parallel those given in Proposition 1.2.14 for é—separation.

3.2.2 Local independence and multi—state processes

Local independence has been formulated for general processes allowing for a Doob—
Meyer decomposition. As mentioned above, we mainly aim at applications in event
history analysis. This is not as restrictive as it may sound since there is often a
sensible one-to—one relation between a marked point process and a multi-state pro-
cess. In order to analyze the local independence structure of a marked point process
it may in most situations be even helpful to base the statistical model on a multi—
state process which can itself again be represented as a marked point process and
which captures some aspects of the dependence structure through a suitable choice
of the state space. There is, however, no general method how to proceed since the
appropriate model heavily depends on the actual data situation, the substantial
background, and on the question of interest. We therefore just give a brief example
and address some aspects that may be important in most situations that we have

in mind, where the local independence structure might be of interest.

To illustrate the foregoing remarks consider the example of a marked point process
with three marks & = {e;, e, e3}. Assume that the events can occur in any order
but each only once and that the corresponding counting processes Ny, Ny, N3 have
absolutely continuous compensators. Let T}, T5 and T3 be the random times of
their occurrences. For the local independence structure it is of interest to find out
if, for instance, the intensity for e; at ¢ depends on whether and when the other
events have previously occurred. Event e; being locally independent of the other

events would implies that its intensity remains the same in the following different
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situations: (1) 77 < min(73,73), 2) To < Ty < T3 or T3 < T) < Ty, and (3)
max(Ty,T3) < T;. These situations could also be looked at as defining different
states of a three dimensional process Y with state space S = {0, 1} where the k-th
component indicates whether ey, k = 1, 2, 3, has occurred before or at time t. Each
transition can now be regarded as an event of its own resulting in another marked
point process {T;, Es|s = 1,...,S} with the same points in time T, but a different
mark space £ = {(y,y)ly,y' € Sand Ik € {1,2,3} : 6 = 0Ay, = 1Ay; = Y J #
k}. The set £ describes all possible transitions assuming that no different events
occur at the same time. The corresponding counting processes N(t; (y,y’)) can be
indexed by k if yx = 0 A y;, = 1 indicating that the transition is due to a change in
the k-th component (or that e, occurs). They are given as

Ne(t; (v, ) =Y H{Y(sT) =y, Y(s) = y'},

s<t
fory, =0,y =1,and y; = y;, j #k, k = 1,2,3. If for instance £ =1,y = (0,0, 1),
and y = (1,0, 1) we may equivalently define
Ni(t;((0,0,1),(1,0,1))) = 1{T3 < T, < t < T }.

The counting processes Ni(t) for the original marked point processes are given as

appropriate sums over the Ny(¢; (y,y")), e.g.

t€1 Z Nl 0 .7’ ) (1’]71)))

Jlefo,1)

Analogously, the original intensity processes can be expressed via those correspond-

ing to g, e.g.
1(t, ((0,0,0),(1,0,0))), t < min(T3,T3),
Al(t) _ 1(t,((0,1,0),(1,1,0))), T2 <t S T3)> (310)
A (t((0,0,1),(1,0,1))), Ts <t <T),
A (((0,1,1),(1,1,1))), max(Th,Ts) < t.

Further and most important for our purposes, the local independence structure of
N(t) = (Ny(t), No(t), N3(t)) carries over to N(t) = (Ny(t;€)|k = 1,2,3,e € &) in
the sense that if N, - N;|Ny\ () then Ny, - Nj\Nv\{j,k}. For instance if e; is
locally independent of e, i.e. {2} £5{1}|{3} we have by definition that A;(t) is F**—
measurable. This implies that A, (¢; ((0,0,0), (1,0,0)) = Ay (¢; ((0,1,0), (1,1,0)) and
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A (t:((0,0,1),(1,0,1)) = A (£ ((0,1,1),(1,1,1)) as can be seen from (3.10) since
the information whether ¢t < T, or ¢t > T is not relevant. Thus, each counting pro-
cess Ny of the original marked point process may be identified with a multivariate
counting process (Ni(t; €)|é € £) corresponding to the transitions of the associated

multi-state process Y.

The above example can be generalized and specialized in several ways. For instance,
if all the intensities possibly depend on whether other events have occurred but not
on the specific times of these events we have a Markov process which is treated in
more detail in the next section. It might also be possible that the marks £ of the orig-
inal process occur more often than once. The associated multi—state process could
then be given as the multivariate counting process itself, Y = N = (Ny,..., Ng),
with state space S = NI so that e.g. the state Y () = (3,2,0) would imply that
e; has occurred three times, e, two times, and e; never before t. All states are
then transient, where the only possible transitions are into states where one com-
ponent has increased by one. The different intensities are then not only those of
Ny, k=1,... K, but those describing all the changes of states of Y. A multi-state
process of this generality is difficult to analyze so that in practical situations restric-

tions are typically required.

In other situations it may seem appropriate to group together some of the events in
E. The original marked point process is then equivalently represented by a multi-
state process possibly with less than £ components and recurrent states. Consider
the example of e; =’becoming ill’ and e; =recover’. Both events are trivially locally
dependent of each other: one can only recover if one has been ill before, and one
can only become ill if one has previously recovered. The corresponding multi-state
process Y may then comprise a component Y; that indicates the health status with
the two recurrent states ’healthy’ and 'ill’. This type of multi—state processes, where
a component not necessarily indicates whether and how often an event has occurred
but instead the alternation between several events, is also treated in the next section

assuming that the whole process is Markovian.

Formally, the relation between a marked point process and an equivalent multi—state
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process consists in that both generate the same history as indicated in the following

definition.

Definition 3.2.10 Associated multi—state process

Consider a marked point process {(Ts, Eg)|s = 1,...,S} with E; € £ = {ey,...,ex}
(cf. Definition 3.1.1). Let N = (NVy,..., Nk) be the corresponding mark specific
counting processes. A multivariate stochastic process Y = (Y;,...,Y ) with finite
state space S and corresponding counting processes for the transitions qu, q,r €S8,
is called a multi-state process associated to the marked point process if o{N(s)|s <
t} ={Ny(s)|s<t;q,r €S,q#r} forallteT. //

As explained above, the associated multi—state process is not necessarily unique. A
more precise definition and example for the relation of marked point processes and

a multi-state process is given in the following subsection.

3.2.3 Local independence for Markov processes

Local independence was originally defined by Schweder (1970) for the special case
of Markov processes. Since this is a very broad class of processes often used for
modeling random structures in time, we now illustrate some results concerning local
independence by restricting ourselves to this class. In contrast to Definition 2.1.11,
we now give a general definition including the continuous time situation, but we

restrict ourselves to Markov processes of first order.

Definition 3.2.11 Finite Markov process

Let S be a finite set of states. A stochastic process Y = {Y(¢)|t € T} is called
a finite (first order) Markov process with state space S if for all n € N and ¢, >
thoty >ty o>--->ty€T:

P(Y(tn) = yn | Y(tn-1) = Yn-1, Y (tn—2) = Yn—2, ..., Y (to) = vo)
=P(Y(tn) = Yn | Y (tn-1) = Yn-1)

for all y,,...,y0 € S.

A Markov process is called stationary if
PY({t+s)=y'|Y(s)=y)=PY )=y |Y(0)=y) Vt,t+seT.

//
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A Markov process is characterized by its transition intensities which are defined as

follows.

Definition 3.2.12 Transition intensities

Let Y be a finite state Markov process. The transition intensities oy (t), t € T, of
Y are defined as

() =l P+ 1) =7 | V() =), q#7eS.

//

In the following we show how a Markov process can be reformulated as a multivariate

counting process.

Definition 3.2.13 Markov process as counting process

Let Y = {Y (¢)|t € T} be a finite state Markov process with state space S and with
transition intensities o, (t), ¢,r € S. The associated multivariate counting process
is given by N = (N,.|¢,7 € S, ¢ # r) with

N (t) = Z H{Y(s")=qand Y(s) =71}, q#r

s<t

With F, = o{Y (s)|s < t}, its Fy—compensator (if it exists) has components

Age(t) = /0 Z4(5)0rge(s) ds, (3.11)

where Z,(t) = 1{Y(¢”) = ¢}. The compensator exists if the involved transition
intensities o, (t) exist (Andersen et al., 1993, p. 94). //

From (3.11) it can be seen that the compensator is given as the expected number

of transitions from ¢ to r before or at time ¢ and the intensities are given by
Agr(t) = Zg(t)ag(t), qr €S, q#T. (3.12)

To develop the ideas of Schweder (1970) some smoothness conditions with regard
to the transition intensities are necessary. We assume that the transition intensities

Qg (t) exist, i.e.

an(t) <oo  Vg#r, (3.13)
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and are continuous and bounded functions of ¢ on any closed interval in 7.

The Markov process Y may be vector valued but a more general way of defining
that a process consists of a set of different components is via the compositioning of

the process.

Definition 3.2.14 Composable Markov process

Let V ={1,...,K}, K > 2, and assume that there are K spaces S,k € V, with
|Sk| > 2, and that there exists a one-to-one mapping f of S onto Xyey Sy so that
elements y € S can be identified with elements (yi,...,yx) € XgeySk. Then, a
Markov process Y is a composable process with components Y7,..., Yx given by
F(Y(t) = (Yi(t),...,Yk(t)) ifforall AC V, |A| > 2,

lim %P (ﬂ{Yk(t +h) # y [ {Ya(t) = yk}> =0 (3.14)

R10
keA keA

for all y, € Sk, k € V, and t € T. We then write Y ~ (Y3,...,Yx). //

The definition implies that for a composable process the probability that more than
one component changes in a short period of length h is of magnitude o(h). It is, thus,
justified to regard the processes as composed of different components because any
change of state can be represented as a change in only one of the components. Note
that the compositioning is not necessarily unique. If for example Y ~ (Y3,...,Y%)
then Y ~ (Y4,Yp) with A CV and B = V\A.

In the following, we restrict ourselves to composable finite Markov processes (CFMP).

Definition 3.2.15 Composable finite Markov process, CFMP
Let Y be a Markov process with finite state space S and with the property (3.13).
IfY ~ (Y1,...,Yk) then it is called a composable finite Markov process. //

From (3.13) it follows that the transition probabilities of a CEMP fulfill

. L, y=y
IimP(Y(t+h) =y | Y(t)=y) = YteT.
im P (Y(t+h) =y [ Y(t) =y) {ij#y, T

Further, the transition intensities of a CFMP have the following properties.
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Corollary 3.2.16 Transition intensities for CFMP
Let Y ~ (Y7,...,Yk) be a CEMP. In the following we write a(t; (y,y’')) instead of
yy (t) for notational convenience.

The intensity a(t; (y,y’)) for any y # y’ is given by

Y

t (v, u! fand y_j = '
a(t;(y,Y’))z{ g‘k(’(y’yk))’ Z{;ZA yi and y_x = y',

where y_, = yy\(x}. Thus, the intensity equals 0 if y and y' differ on more than

one component, and

ot (v,4)) = lim P (V(t + 1) = | Y(2) = ).

Proof:
The result is an immediate consequence of the definition of a CFMP. O
The dependence structure of the components (Yi,...,Yx) is thus determined by

the quantities oy (t; (y,v;)),y € S,y € Sk, k € V. The intuitive notion of local
independence and the definition given by Schweder (1970) concern the possibility
that these transition intensities do not depend on all components of their first argu-
ments y. We now show the equivalence of this definition to the local independence

of stochastic processes as given in Definition 3.2.1.

Proposition 3.2.17 Local independece in a CFMP
Let Y ~ (Y3,...,Yk) be a CFMP. Then, Y] is locally independent of Yy, k # j, if
and only if a;(¢; (y, ;) is constant in the k-th component y; of the first argument

Vy €Sy andy; €S, y; # Yy

Proof:
The associated multivariate counting process for a single component Y;, j =1,..., K,
is given by the set of counting processes each counting a change of state where

the destination state differs from the origin in the j-th component, i.e. N;(t) =
(N (& (yg, i) Wi v € Sir s # ;) with

N (5, 95) = D H{Yi(s7) =3, Y5(s) = v}

s<t
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Let F; be the filtration generated by the whole process Y. Then, the F,-intensities
of Nj are given by \;(t) = (A(t; (yj,y}))|yj,y§- € S;j,y; # y;) with
At W)= D Zy( (v,¥)),  i=1,...,K. (3.15)
Y—;€S—;
From this and recalling (3.12) as well as Zy, (t) = 1{Y (¢~) = y}, it is obvious that the

following statements are equivalent: (1) a;(t; (y,;)) is constant in yx Vy € S
and all ¥} € S;, v} # y;, and (2) X;(t) is F; * measurable for all t € T. O

Note that the condition (3.5) needed for left intersection always holds for CEMPs

by definition since the components are not allowed to jump at the same time.

Example: Consider as an example a CFMP with four components Y = (Y7, Y3, Y3,
Y,), where Y] describes the employment status of women with states y; = 0 = 'not
employed’, y; = 1 =’employed’, Y5 the fertility with states yo = 'number of children’,
Y; the martial status with states y3 = 0 = 'unwed’, y3 = 1 = 'married’, y3 = 2 =
"divorced’, and Y} indicating whether the person still lives with her parents or not
with states y4, = 0 = 'not at home’ and y, = 1 = ’at home’. In this situation one
might hypothesize the following local independencies: Given the information about
whether the woman is employed and married, knowing that she lives at home or not
adds no new information w.r.t. the intensity of getting a child, i.e. Y /Y5 Y 3.
Further, knowing the number of children, the employment status as well as the
information about where the women lives adds no information w.r.t. the intensity
for getting married or divorced, i.e. Y1 4 Y3|Y 54 and Y, % Y3|Y (5 5. Since the
considered life history events are not determined by one another we may assume
that condition (3.5) holds and get by the property of left intersection for local
independence that Y 43 + Y3|Y5. This also follows directly from the implications
for the transitions intensities. With the first local independence it holds that

a2(t; ((ylamay& 0)7$ + 1)) = Oég(t; ((ylaxay& 1)> T+ 1))1

for yy = 0,1,2, y3 = 0,1, and for all x € Ny. From the second pair of local

independencies we have

053(t; ((0,1‘,0, 0), 1)) = a3(t; ((173:’ 0, 0), 1)) =
az(t; ((0,2,0,1),1)) = as(t; ((1,2,0,1),1))
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for all x € Ny, and analogous equalities hold for transitions between the states
'married’ and divorced’. Thus we can write az(¢; ((y1,,0,94),1)) = asz(t; ((z,0),1))
etc. With regard to the corresponding formulation via the intensity processes for all
possible transitions (ys, y5) in component Y3, which are (0,1), (1,2), and (2,1), we
have that

As(t; (y3,93)) Zaa (@, 93), 3))1{Y2(t7) = 2, Y3(t7) = ys}

which is obviously measurable w.r.t. F>*} as claimed in the above proposition. //

An interesting result for local independence for CFMPs concerns the relation be-
tween local and conditional independence. The following lemma has already been
shown by Schweder (1970).

Lemma 3.2.18 Conditional independence for partition of CFMP
Let Y ~ (Y1,...,Yx) bea CFMP and A,BCV ={1,...,K} with AN B ={ and
AUB =V. If Y, is locally independent of Yg, i.e. B -+ A, then the following

conditional independencies hold

Ya(t+h)1LYp(t)| Ya(t) YAh>0; t,t+heT. (3.16)
Further, Y 4(¢) is a Markov process with transition intensities oy (¢; (¥4, y;)), k € A.
Proof:

This follows from Theorems 1 and 2 of Schweder (1970). a

Figure 3.1: Conditional independence graph given the local independence B 4 A.

Yu(t) Y 4(t + h)

Yp(t) Yg(t+h)

The above lemma implies that the independence structure of Y4 and Y may be

depicted in a graphical chain model as given in Figure 3.1. In this graph, the only
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conditional independence is the one given in (3.16). No other conditional indepen-
dencies hold in general if Y 5 locally depends on Y 4. In particular, it does not hold
that Yg(t + h) 1L Y4(t + h)|Y(¢) in the considered situation due to marginalizing
wrt. Y(s),t<s<t+h.

Generalizing the above lemma to the case where (A, B) is no partition of V' yields

the next proposition.

Proposition 3.2.19 Conditional independence for subsets of CFMP
Let Y ~ (Y1,...,Yx) be a CFMP and A,B C V with ANB =0 and AUB # V.
Define C = V\(A U B). Assume that B /£ A|C.

(1) If C /A | B then property (3.16) still holds.

(2) If B 4C | A then we have the following conditional independence:

Yat+h)LY5() | Yasclt) Vh>0t,t+heT.

Proof:

The first part follows immediately from the implication (B 4 A|C) A (C 4 A|B)
= (BUC -+ A) (left intersection), the above Lemma 3.2.18, and the property of
decomposition for conditional independence.

In order to show the second part, note that B - A|C and B - C|A implies
B /AU C by right intersection for local independence. Therefore, we get with the
Lemma 3.2.18

YAUC’(t + h)J_LYB(t) | YAUC’(t) Vh> 0,t,t+ h € T

Applying again decomposition for conditional independence yields the desired re-
sult. a

It remains the situation where Y 4 locally depends on Y¢ and Y locally depends on
Y p. Then, no conditional independence statement similar to (3.16) is possible be-
cause marginalizing w.r.t. possible intermediate transitions in Y¢(s), t < s <t+ h,
may induce a dependence between Y 4(¢t + &) and Y g(¢) which is not ’absorbed’ by

Y 4(t). For the situation where a continuous time CEMP can only be observed in
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discrete time, say at t1, s, ...,%,, Lemma 3.2.18 and the foregoing proposition imply
that the conditional independence structure of Y (¢;),..., Y(t,) cannot be captured
by a graphical chain model. At least, the characteristic independencies could not
be read off a conditional independence graph since there would typically be several
dependencies on past components as well as relations among the components at a
given discrete point in time due to marginalizing over the time in between similar

to the instantaneous causality defined in the previous chapter.

Further results on the properties of composable Markov processes are referred to the

next chapter after introducing local independence graphs.
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Chapter 4
Local independence graphs

Let us now turn to the graphical representation of dependencies among events. It
is the aim of such a graphical representation to capture as much information about
the dependence structure as possible so that important properties of the underlying
statistical model can directly be read off the graph. As we have seen in the previ-
ous chapters, event history data is conveniently modeled through the mark specific
point processes and the distribution is characterized by the compensators of these
processes. In addition, local independence is defined through the compensators. It
is thus self-evident to base the graphical representation on the local independencies
so that, compared to conditional independence graphs, the compensators now take

the role of the conditional probabilities.

In conditional independence graphs the representation is based on the Markov prop-
erties of the underlying statistical model. But when considering local independence
structures we have to deal with an asymmetric concept and possibly with cycles
so that new properties analogous to the Markov properties for conditional indepen-
dence graphs are required. These are introduced in Section 4.1 below and called
dynamic Markov properties. Again in analogy to conditional independence graphs,
we explore in Section 4.2 the factorization property of the likelihood for marked
point processes with a given local independence graph. It is shown that some in-
teresting results relating local and conditional independencies can be obtained from
this factorization. In Section 4.3, the topic of collapsibility is addressed, i.e. con-

ditions for a subprocess to have the structure of the corresponding subgraph. In

87
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Section 4.4, we briefly indicate a simplification of the graphical representation using
stopped processes for situations like e.g. survival analysis where we typically have
a final absorbing state. Finally, we sketch in Section 4.5 how local independence
graphs may be used for causal reasoning, emphasizing that they are a-priori no

causal models.

4.1 Dynamic Markov properties

An obvious way of representing the local independence structure of a multivariate
process by a graph is to use an arrow as symbol for local dependence yielding a local
independence graph. This parallels the definition of the pairwise Markov property
for conditional independence graphs. The local independence graph thus consists
of vertices representing the components of the multivariate process and of directed
edges, where (j,k) € F and (k, j) € E is allowed and represented as bidirected edge.
The following pairwise dynamic Markov property is at the same time the defining

property for local independence graphs.

Definition 4.1.1 Local independence graph

Let Yy = (Y3,...,Yx) be a multivariate process. Let further G = (V, F) be a
directed graph, V = (1,..., K). Then, G is called the local independence graph of
Yy ifforall jk eV

Uk)EE & YAV | Y- (4.1)

Property (4.1) is called the pairwise dynamic Markov property. Alternatively we

also write {5} A {k}V\{j, k}. //

The above definition entails the question if more properties than the one of pairwise
local independence can be read off the graph. In analogy to the classical graphs one
could be interested in ’local’ and ’global’ dynamic Markov properties. Let us first

formulate the former one.

Definition 4.1.2 Local dynamic Markov property
Let G = (V, E) be a directed graph. For a multivariate process Yy the property

VkeV: V\c(k) Ak} ]| pak), (4.2)
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where cl(k) = pa(k) U{k} (cf. Definition 1.1.6), is called the local dynamic Markov
property w.r.t. G. //

The above property (4.2) could for instance be violated if two components in pa(k)
are a.s. identical. Let for instance Y; = Y3 a.s. Then, it holds for any Y3 that
Y1 +Y3|Ys as well as Y, 4 Y3]Y) but not necessarily (Yi, Y2) /Y3, This, however,
is prevented for marked point processes by the orthogonality Assumption 3.2.3 be-
cause for counting processes which are a.s. identical the martingales resulting from

the Doob—Meyer decomposition are not orthogonal (Andersen et al., 1993, pp. 73).

As shown below, the local dynamic Markov property (4.2) follows from the pairwise
(4.1) under the assumption of property (3.5). This implication is a special case of a
more general dynamic Markov property, namely the global dynamic Markov property.
The global property is related to the notion of separation in graphs or equivalently
in the multivariate random systems depicted by the graph. In a local independence
graph, separation would entail the following property: If A A B|V\(AU B), i.e. if
there is a local independence w.r.t. the whole available information, a separating set
C C V\(AU B) is given if A 5 B|C, i.e. the local independence is preserved even
when ignoring the information in the subprocess Yy\(aupuc). This implies that the
information in FPYC is sufficient to assess the local independence Y, - Yp|Ye¢.
Clearly, this property is essential for the possibility to reduce complexity in a mul-
tivariate setting. The concept of d—separation meets these requirements which can
heuristically be explained as follows. Assuming that A - B|C corresponds to the
past .7-';1
the past FZ
Fh

'descendants’ of Yg(t + h), i.e. the future, are to be discarded. Consequently, all

of Y 4 being irrelevant for the infinitesimal prediction of Ypg(t + h) given
of Y. Thus, we have to consider the relation between Y (¢t + h) and

as well as ftq which can approximately be represented by a DAG. Thus, all

directed edges starting in B are deleted when checking for 6—separation. Further, for
any instance s < ¢ in the past the independence structure among Y (s) and Y (s+h)
may also be represented as a DAG with no edge (j, k) between Y;(s) and Y, (s + h)
for {j} A{k}|V\{J, k}. Thus, by conditioning on the past we have to moralize the
graph according to the moralization of a DAG.

The global dynamic Markov property therefore reads as follows.
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Definition 4.1.3 Global dynamic Markov property
Let Yy be a multivariate stochastic process and G = (V, F) a directed graph. For
disjoint subsets A, B,C C V the property

C é-separates A from BinG = A-AB|C. (4.3)

is called the global dynamic Markov property w.r.t. G. //

We have seen that local independence and d—separation essentially hold the same
properties of asymmetric graphoids. Thus, all prerequisites for the main result in

this section have been gathered.

Theorem 4.1.4 Fquivalence of dynamic Markov properties

Let {(7s, Es)|s = 1,...,S} be a marked point process with &€ = {ex|k = 1,..., K}
and with local independence graph G = (V, E), V = {1,..., K}. Under the assump-
tions of Theorem 3.1.9 and assuming (3.5), the pairwise, local and global dynamic

Markov properties are equivalent.

Proof:

The structure of the proof corresponds to the one given by Lauritzen (1996, p. 34)
for the equivalence of the Markov properties in undirected conditional independence
graphs. Due to the asymmetry of local independence the present proof is slightly
more complicated.

It is easily checked that (4.3) = (4.2) = (4.1): First, pa(k) always d—separates
V\(pa(k) U{k}) from {k} in G. Second, (4.2) = (4.1) holds by left weak union and
let decomposition.

Now, assume that (4.1) holds and that C' d—separates A from B in the local inde-
pendence graph. We have to show that A - B|C, i.e. the FAYBYC—compensators
Ax(t), k € B, are FBC~measurable. The proof is via backward induction on the
number |C| of vertices in the separating set. If |C'| = |V| — 2 then both, A and B
consist of only one element and (4.3) trivially holds. If |C| < |V| — 2 then either A
or B consist of more than one element.

Let us first consider the case that A, B, C' is a partition of V' and none of them is
empty. If |[A] > 1 let &« € A. Then, by left weak union and left decomposition (or

converse contraction) of d—separation we have that C' U (A\{«}) d—separates {a}



4.1. DYNAMIC MARKOV PROPERTIES 91

from B, i.e.

{a}1r; B [ CU (A\{e})
and C'U {a} d-separates A\{a} from B in G, i.e.

A\{a}1Rrs B | (C U {a}).
Therefore, we have by the induction hypothesis that

{a} #B| CU(A\{a}) and A\{a} £ B | (CU{a}).

From this it follows with the modified version of left intersection as given in (1.3)
(which can be applied because of the assumption that (3.5) holds) that A /4 B|C as
desired.

If |B| > 1let {8} € B. With Lemma 1.2.12 we have that C' U (B\{3}) 0—separates
A from {3}, i.e.

AR {5} | CU (B\{8})
and C'U {B} d—separates A from B\{f5}, i.e.

ARy B\{8} | (CU{B}).

Therefore, we have again by the induction hypothesis that

A£{B} [ CU(B\{B}) and A £B\{f} | (CU{B}). (4.4)

From the first part of (4.4) it follows trivially by definition that A /4 {5}|(C U B).
Applying right contraction to this and the second part of (4.4) yields A 4 B|(C U
{B}) which implies again by definition A 5 B|C. Note that this argumentation
could not be applied to the first part of the proof because A 4 B|(C U {a}) does
not imply A 4 B|C.

Let us now consider the case that A, B,C' C V are disjoint but no partition of V.
First, we assume that they are a partition of An(AU BUC), i.e. that AUBUC is
an ancestral set. Let v € V\(AU BUC), i.e. 7y is no ancestor of AU BUC. Thus,
every allowed trail (cf. Proposition 1.2.5) from 7 to B is blocked by AU C since any
such trail includes an edge (k, b) for some b € B where no edges meet head—to—head
in k and k € AU C. Therefore, we get

{v}mrs B | (AUC).
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Application of left contraction, weak union, and decomposition for d-separation
yields
A1Rs B [ (CUA{}).

It follows with the induction hypothesis that
A+HB|(CU{y}) aswell as {y} AB| (AUC).

With left intersection as given by (1.3) in Corollary 1.2.8 and left decomposition for
local independence we get the desired result.
Finally, let A, B, C be disjoint subsets of V and AUBUC not necessarily an ancestral

set. Choose v € an(AU BUC) and define G¥ = Gﬁn(AUBUC). Since Allg B|C in

(C~1’B )™ we know from the properties of ordinary graph separation that
(1) either {y}1Lg B | (AUC) in (GB)™
(2) or Allg{~}|(BUC) in (GB)™.
In the first case {7} IRs B|(A U C) and it follows from left contraction that
(Au{v})1rs B | C.

Application of left weak union and left decomposition yields A 1Rs B|(CU{~}). With

the induction hypothesis we therefore get

A$B[(CU{Y)) and {7} £B | (AUC).

Left intersection according to (1.3) and left decomposition for local independence
yields A A B|C.

The second case is the most complicated and the proof makes now use of right
decomposition for local independence under the conditions given in Proposition
3.2.9. First, we have from (2) that Al ¢{7}|/BUC in (Ganausuc))™ since the
additional edges starting in B can only yield additional paths between A and v
which are again intersected by B. Therefore, it holds

Atrs {7} | (BUC).

With A1rs B|C, application of right contraction for é—separation yields A1Rs (B U
{7})|C. Now, we can apply Lemma 1.2.12 to get AIRs B|(C U {~}) from where it
follows with the induction hypothesis that

A$B[(CU{)) and A 4{7} | (BUC),
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With right intersection for local independence we get A /4 (B U {7})|C. In addi-
tion, {7y} /> A[(B UC) by the same arguments as given above for A /{v}|(BUC).
In order to apply Proposition 3.2.9 we still have to show that for all £ € C either
AR {k}|(CUBU{v}) or {7y} 1rs {k}|(CUBUA) which by the induction hypothesis
implies the corresponding local independencies. To see this, assume that there exists
a vertice k € C for which neither holds. With the trail condition we then have that
in G An(aupuc) there exists an allowed trail from A and v, respectively, to k such that
every vertex where edges do not meet head-to-head are not in (C U B U {y})\{k}
and (CUBUA)\{k}, respectively, and every vertex where edges meet head-to-head
or some of their descendants are in (C'U B U{v})\{k} respective (C U BU A)\{k}.
This would yield a path between A and  which is not blocked by C'U B (note that
k is a head-to-head node on this trail) in Gayaupuc)- This in turn contradicts

the separation of A and v by BUC in Gﬁn( ) because the edges starting in B

AUBUC
cannot contribute to this trail. Consequently we can apply right decomposition and

get the desired result. O

Note that the equivalence of the pairwise and local dynamic Markov properties
immediately follows from left intersection assuming (3.5), left weak union and left
decomposition. Thus, the above proof mainly aims at situations where A, B, C is
no partition of V or pa(B) ¢ C.

The foregoing theorem also applies to multi-state processes where the marks corre-
spond to the transitions. In this case the mark space possibly contains more elements
than the number of vertices since the evolution of one component of the multi—state
process may require several different transitions. This is for instance the case when

considering a CFMP as in the following example.

Example: Let us again consider the example of a CFMP Y = (Y;,...,Y,) where
Y) describes the employment status of women, Y5 the fertility, Y3 the martial sta-
tus, and Y, indicates whether the person still lives with her parents or not. The
postulated pairwise local independencies Y /Y5 Y133 and Yi /4 Y3 Y94 as well
as Yy 4 Y3|Y (19 result in the local independence graph shown in Figure 4.1. By
the local dynamic Markov property we have that Y 43 /4 Y3|Y3 since pa(3) = {2}.
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This can also be verified by the global dynamic Markov property.

Figure 4.1: Local independence graph for the CFMP Y ~ (V3,...,Y,) with ¥} =

’employment status’, Yy = ’fertility’, Y3 = ’marital status’, Y, = ’leave home’.

employment Y, @ ® Y, leave home

fertility Y, @ ® Y5 marital status

The moral graph (G®")™ is given in the following Figure 4.2. In addition, we get
by the latter that Y} -5 Y3|Ys and Y, -4 Ys|Y;, each of these statements involving

only three components of the original process. //

Figure 4.2: Moral graph (G{31)™ for the above local independence graph.

employment Y, @ —— — @ Y, leave home

fertility Y, @ ———— @ Y3  marital status

The proposed local independence graphs are easily generalized to include time con-
stant covariates X = (Xi,...,Xg). In this case we distinguish between the ver-
tices Vg representing these variables in the graph and the vertices Vp representing
the counting processes. The local independence graph G is then given as dynamic
graph (cf. Definition 1.1.5) such that the subgraph Gy, is the conditional indepen-

dence graph corresponding to the multivariate distribution of X. This may be an
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undirected graph, a DAG, or a chain graph, as appropriate. The global (dynamic)
Markov property for this graph then reads as follows: Consider disjoint A, B,C' C V
with A, B C Vg. Then, the graph separation

AllgB|Cin (GAn(AUBuC))m
should imply the conditional independence
XAl Xp | Xeavy, HE?,

where HC"V? is the whole observed history of the processes contained in C. If
ANVp # 0 or BNVp # (), then d—separation has to be applied in order to induce
the local independencies. This proceeding is justified since the history generated
by the whole system is now given by F, = F'® v F/?, where F/* = ¢{X}, X
being realized at time ¢ = 0. Thus, Y}, being locally independent of X; means that
the F; compensator Ay, is .ﬂVR\{j bv F!P-measurable. We restrain from going into

further details, here.

4.2 Factorization of the likelihood

For classical conditional independence graphs, the property which is most important
for simplifications of estimating and testing procedures is the factorization of the
density according to the graph as formalized by (2.2). In this section, we there-
fore explore whether a similar result can be obtained for local independence graphs,

where we restrict ourselves again to marked point processes.

Before deriving the likelihood given a specific local independence graph, we recall the
likelihood for the general case. Based on the mark specific compensators A(t) and
intensity process Ag(t) the corresponding crude quantities are given by summation

over all possible events, i.e.

At) =D Ax(t) and  A(t) =) A(t).

It is easily checked that these are the compensator and intensity processes of the

cumulative counting process
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In case that A is not absolutely continuous the continuous part is denoted by A¢
and the jumps by AA, i.e. AA(t) = A(t) — A(t7) and A(t) = Y., AA(s) + A°(2).
The jumps ANg(t) of the counting processes are defined analogo_usly. Recall that
the history process is defined as H; = {(T}, Es)|s = 1,...,5,Ts; < t}. And with the
subprocesses H* = {(T,, E,)|s=1,...,8, T, <t,and 3k € A: E, = ¢}, ACV,
we have that F* = o{H/}. With these notations the likelihood process is given as

follows.

Remark 4.2.1 Likelihood for marked point processes (cf. Arjas, 1989)
Let {(Ts, E5)|s =1,...,S} be a marked point process with mark space £ = {eq, ...,
ex } and associated counting processes Ni(t), k =1,..., K, and history process H;.

Then, the likelihood process L(t|Hy) is given as follows

L(t|H,) = [] AdTs E,) - J](1 — AA(s)' 72N - exp(—A°(1)).

Ts<t s<t

In the absolutely continuous case this simplifies to

L(t|H,) = [ MT E,) - exp (— /Ot/\(s) ds> .

Tp <t

/]

As noted by Arjas (1989), the above likelihood for marked point processes has
already a product form over time, i.e. it is constructed as the product of the likelihood
for a present occurrence or non—occurrence of an event given the past history. This
is obviously very similar to the block recursive factorization for chain graph models
(cf. part (1) of Corollary 2.1.7). In order to show how this can further be factorized
according to a local independence graph let us first consider the simple situation
of right censored survival data where the factorization that we are interested in is

already well-known.

Definition 4.2.2 Right censored survival data

Let e; be the event of failure or death and e; the event of censoring, i.e. the mark
space is given as £ = {e1,e2}. Both events are non-recurrent so that the marked
point process is uniquely determined by the random times 77 and 75 of occurrences

of both events, respectively. If censoring occurs before failure, i.e. T, < Tj, then
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the failure time 77 is not observable. The observable data for a single observational
unit therefore consists of the time when it is last observed denoted by 7™ and an
indicator § with 6 = 1 if the individual failed at 7* and § = 0 if it was censored. //

Let Ax(t), kK = 1,2, be the mark specific F;—compensators, where F; is the filtration
generated by {T7,T>} and assume that they are absolutely continuous. In case of
right censored survival data the history process has a very simple structure. If ¢t <7
then H; = () and otherwise H, = {(T*, Er+)}, where Ep« = ¢, if 6 = 1 and Ep« = ey
if 6 = 0. According to Remark 4.2.1 the likelihood L(t|H;) for a single observation

and for t > T™ is thus given as
L(t|H,) = Ay (dT*)° Ao (dT*)17° - exp(—A(2)). (4.5)

If t < T the first two terms in the above formula have to be removed. Using the
definition of the crude compensator as sum over all mark specific compensators and
writing Ak (t) = Agx(t|Hs-) to emphasize the dependence on the history, the above
likelihood (4.5) can be reformulated as

L(t|H;) = Ly (t|Hy) La(t | Hy) (4.6)
with

Li(t|H) = A(dT* | Hp-)? - exp(—=Ay(t | Hp-)),
Ly(t|H;) = Ao(dT* | Hp-)'™° - exp(—Ao(t | Hy-)).

Thus, we have that the likelihood is a product over two factors Ly (t|H:), k = 1,2,
each depending only on the e, specific compensator Ax(t). But note that the latter is
still a F;—compensator, i.e. it may depend on whether the other event has previously
occurred or not. Let F} be the subfiltration generated by T3, only, and assume that
Ai(t) is F}-measurable for all ¢ € T so that As(dt|H,-) = Ay(dt|H,-). Then, we
get that

Li(t|H,) = Ly (t|H}), (4.7)

where

, t<T*VvVé=0
- {

(T*,e1), otherwise,
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i.e. the first factor of the likelihood (4.6) only depends on the information about the
possible prior occurrence of e;. This assumption is known as independent censoring
(cf. Andersen et al., 1993, p. 139) and is obviously equivalent to e; being locally
independent of e;. Heuristically, one could say that the censored individuals should
not be more or less likely to fail than the others, i.e. the prior occurrence of the cen-
soring event should not change the intensity for a subsequent failure. Since it is not
possible to observe failure after censoring it is helpful to make sure that the censoring
mechanism is independent because otherwise inference about A;(t) becomes quite
difficult (e.g. Parner and Keiding, 1998). In addition, (4.7) is the usual likelihood
expression for censored survival data when interested in inference about A;(t) omit-
ting Lo(t|H;). If the latter depends on the parameter of interest, expression (4.7)
is called a partial likelihood (Cox, 1975). Note that the information contributed to
the (partial) likelihood (4.7) by a censored observation is exp(—A(t)), so that the

foregoing argumentation does not imply that censored observations are discarded.

The above motivation shows that given a local independence graph G = (V, E) for
two events with V = {1,2} and E = {(1,2)} (cf. Figure 4.3) we can find a mark
specific factorization of the likelihood such that

1 1
L(t|Hy) = Ly (t|HY D) Lo(t|HE ),

where cl(1) = {1} and cl(2) = {1, 2}.

Figure 4.3: Local independence graph for independent censoring.

€L @——©@ €2
failure censoring

This is generalized to local independence graphs for marked point processes in the

following theorem.

Theorem 4.2.3 Factorization for local independence graphs
Consider a marked point process {(Ts, Es)|s = 1,...,S} with mark space & =
{e1,...,ex} and corresponding local independence graph G = (V, E) with V =
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{1,...,K}. Assume that condition (3.5) holds. Then, the likelihood factorizes as

follows:

L(t|Hy) = [] L1 HP) (4.8)

kev

where

Ly (] HA®)Y = H Ap(dT ) - H(1 — AAg(s)) AN L exp(—AC (1))

s(k)<t SSt
and {Ty) | s(k) € {1,...,S}, Egx) = ex} are the occurrence times of event ey.
Proof:
First, we consider the absolutely continuous case. The argumentation is similar to

the above example of right censored survival times. The likelihood of a general

marked point process (cf. Remark 4.2.1) can be transformed as follows:

v = 1) oo (- [ A0)n)

Ts<t
K t K

= H H )\k(Ts)l{Eszek} - exp (_/ Z)\k(s) dS)
k=1Ts<t 0 k=1

k=1 \T,)<t

where Ty is defined as above. Now, by definition of a local independence graph
and the equivalence of the pairwise and local dynamic Markov properties under
condition (3.5) we have that A\g(s) is ECl(k)fmeasurable. It follows that

nit) =TT Mt - oo (= [ Ms)ds)

Ty <t

= Li(t|H'®), (4.9)

i.e. the (partial) likelihood Lj based on the whole past remains the same if the

available information is restricted to how often those events that are parents of e,

in the graph and e, itself have occurred in the past, symbolized by H, cltk),
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If the compensator is not absolutely continuous we additionally have to show that

[ = AA()" 2¥O =TT TJ(1 — AAk(s)" N0,

s<t k=1 s<t

To see this, recall that AA,(t) = E(ANk(t)|F-) = P(ANk(t) = 1|F;-) so that a
discontinuity AAg(t) # 0 implies that there is a positive probability for event ey
to occur at time ¢. Since we make the assumption that no two events occur at the
same time we have that for any ¢ € 7 where AA(t) # 0 there exists an e; € £ such
that AA(t) = AAg(2). O

An interesting consequence of the above theorem regarding the relation of local and
conditional independence has been noted by Schweder (1970, Theorems 3 and 4)
for CFMPs and is formulated for the general case of marked point processes in the

following proposition.

Corollary 4.2.4 Conditional independence of histories
In the situation of the above Theorem 4.2.3 we have for disjoint A, B,C' C V, where
C separates A and B, i.e. Allg B|C, in (G Ancaupuc))™ that

FrULFPIFP VteT.

Proof:
From (4.8) it follows that the marginal likelihood for the marked point process
discarding events not in An(AUBUC), i.e. {(Ts, Es)|s = 1,..., 5" Es € EAncaunuc) )

is given by just integrating out the contributions of e ¢ & An(ausuc) Yielding

L) = T Lu(elHE™).
keAn(AUBUC)

Further, the likelihood may be written as product over factors that only depend on
cl(k) = {k}U pa(k), k € An(AUBUC). Let C = {cl(k)|k € An(AUBUC)} be the

set containing all such sets. Then, we have

L(#|H™0P00) = T Le(t1Hy)-
ceC

The sets C are the cliques of the graph (G An( AUBUC))m. Thus, the likelihood of

HtA MAUBUO) gactorizes in the way required by the factorization theorem (2.2). From



4.2. FACTORIZATION OF THE LIKELIHOOD 101

this follows the claimed conditional independence. O

Heuristically, the conditional independence .7:{4LL FB|FF,t € T, means that at any
time ¢ the histories of the processes Y 4 and Y g are conditionally independent given
the whole history of Y up to time ¢. Note that mutual local independence of Y 4
and Y g is a necessary but not sufficient prerequisite. In order to get a better insight
into the above proposition, let us consider the two paradigmatic situations given in
Figure 4.4.

Figure 4.4: Examples for Corollary 4.2.4.

NN

In the situation of Figure 4.4 (a) we have that F/ 1L F2|FF since the moral graph
is given by just replacing the directed edges by undirected ones. This conditional
independence is plausible since any effect of A on B is conveyed by C' whereas B
has no effect on A at all so that there is no backward causation. In contrast, Fig-
ure 4.4 (b) shows a situation where FA N FB|FF. This is again plausible since
C is a common ’consequence’ of A as well as B so that conditioning on the past
of Y¢ might yield a dependence between the past of Y, and Ypg although they
are marginally independent. Thus, the interpretation of local independence graphs
regarding conditional independence of the involved histories is similar as for DAGs

despite the cycles in the graph (cf. Proposition 2.1.4).

Note that in the above corollary we implicitly assumed that the processes are unre-
lated at time ¢ = 0. This might not be the case if there are time constant covariates
realized at ¢ = 0 simultaneously affecting different counting processes. These should

then be included in in the condition, i.e. F has to be enlarged by a suitable F.

The heuristic interpretation of local independence already mentioned just after its
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definition, namely that A - B|C means that the presence of Np is independent of

the past of N 4 given its own past and the one of N, can now be shown to be true.

Remark 4.2.5 Local independence as conditional independence
In particular, it follows from the factorization (4.8) of the likelihood that A 4 B|C
implies

Ny (t) 1L FNAP) | FAE)

as already conjectured in Chapter 3. This, again, holds by the general factorization
property (2.2). //

Further implications of the factorization of the likelihood are discussed in Chapter

5 in the context of estimation and statistical tests for local independence graphs.

4.3 Collapsibility

Collapsibility of graphical models means that the independence structure of a subset
of the variables is properly portrayed by the corresponding subgraph, i.e. discarding
the other variables does not induce any additional dependencies (cf. Frydenberg,
1990a). Obviously, this property is central to any reduction of complexity and
heavily based on the separation Theorem 4.1.4. Therefore, we explore in this section
how the previous findings can be used to formulate conditions for an analogous
concept regarding local independence graphs. Let us first define collapsibility for

local independence graphs.

Definition 4.3.1 Collapsibility

Let G = (V, E) be the local independence graph of a multivariate process Yy =
(Y1,...,Yg). For A C V, we say that Yy is (weakly) collapsible onto A (or over
B = V\A) if the subgraph G, is the local independence graph of the subprocess
Ya = {Yi|k € A}. Further, if it holds that the F;—compensator A(¢) of Y 4 is
FA-measurable we say that Yy is strongly collapsible onto A. //

In the following, we consider conditions for collapsibility of general marked point
processes. Conditions for strong collapsibility of course depend on the chosen model

and are therefore only treated for very special situations, below.
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4.3.1 Weak collapsibility

According to the definition of a local independence graph, collapsibility onto A C
V' implies for any j,k € A with (j,k) ¢ E that {j} - {k}|A\{j, £}, i.e. that
marginalizing w.r.t B = V'\ 4 induces no additional association among the vertices
in A. This holds by the global dynamic Markov property if A\{j, k} d—separates {j}
from {k} in the whole local independence graph G. In order to formulate graphical

conditions to verify this separation we need some more terminology.

Definition 4.3.2 Complete subgraph / connected component
Let G = (V, E) be a directed (not necessarily acyclic) graph where (k, 5), (j, k) € E
is allowed. For A C V the subgraph G4 (or simply A) is called

(1) complete if (j,k) € E for all j,k € A, j # k, i.e. there are bidirected edges

between any two vertices in A.

(2) a connected component if there exists a trail between any two vertices j, k € A
but no trail between any j € A and k € V\ A. //

Note that with the above definition the connected components of a (sub)graph
always constitute a partition of this (sub)graph. We can now prove the following

result.

Theorem 4.3.3 Weak collapsibility for local independence graphs

Let G = (V, E) be the local independence graph of a multivariate counting process
Ny = (Ny,. .., Nk) with all assumptions of Theorem 4.1.4 fulfilled. For A C V and
B =V\A, let By,..., By be the connected components of B and B} = B;N an(A).
The process N is collapsible onto A if the following conditions hold: For every Bj,
l=1,...,L,

(1) ch(Bj)N A is complete and
(2) for every k € cha (B)) and every j € A with j ¢ pa(k):

ChGAn(A) (j) ﬂ (ChGAn(A)(BlI) U Bll) = @



104 4.3. COLLAPSIBILITY

Proof:

Without loss of generality we can suppose that L = 1 and that B C an(A). The
latter is justified since k ¢ an(A) does not affect the local independence structure
of A, anyway.

Assume that the above conditions hold and let j, k € A with (j, k) ¢ E. We have to
show that A\{j, k} 0—separates {j} from {k}. Since ch(B) is complete it follows that
either (1) k ¢ ch(B) or (2) j ¢ ch(B). In case of (1) we have B £{k}|A\{j,k}. In
addition, {j} A{k}|V\{J, k} is equivalent to {j} /~{k} |(A\{J, k})UB yielding with
left intersection according to (1.3) and left decomposition that {5} A{k}A\{j, k}-
If, in contrast, k € ch(B) then it must hold that j ¢ ch(B). Further, the second
condition of the above theorem ensures that any allowed trail from j to k& is blocked
by A\{j,k}. This can be seen as follows. In addition to j ¢ ch(B) we have that
ch(j) N B = . Thus, there is no edge in either direction between B and {j} in G.
Finally, {j} and B have no common children, so that marrying parents does not
induce an edge between {j} and B in (G’An( A))m. Therefore, no path between k£ and

j in (G’AH(A))’” contains vertices in B. O

Unfortunately, the conditions given in the above theorem are not easy to verify even

in small local independence graphs. To illustrate this, let us consider some examples.

Examples: Let G = (V, E) with V = {a,,a9,a3,b} and A = {ay, a9, a3}, B = {b}.
Figure 4.5 shows three local independence graphs that are not collapsible onto A
(note that for all graphs we have An(A4) = V).

Figure 4.5: Examples for local independence graphs which are not collapsible onto
A= {a'la az, CL3}.
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In situation (a), ch(B) is not complete. Marginalizing w.r.t. B would therefore pos-
sibly induce additional associations among A. In situation (b), we have that a; ¢
pa(asg, az), where ch(B) = {as, as}, but ch(a;) N B # (). This implies that marginal-
ization of B possibly yields an influence of a; on as and a3. Finally, in situation
(¢), ch(a;)N ch(B) # @ so that due to the marrying parents effect an association
between a; and a3 could result from marginalizing w.r.t. B.

The following Figure 4.6 shows two local independence graphs where collapsibility
onto A = {ay, az,az} holds. In situation (a), it is easily checked that for the whole
graph a1 £ras|as and a3 £+ a1|ay without involving b so that the process is collapsible
onto A.

Figure 4.6: Examples for local independence graphs which are collapsible onto
A= {al, ao, CL3}.

(a) (b)

a e

a; @

as a2 @

® 43

Figure 4.6 (b) shows a situation where B = {b} is no element of an(A). Thus,
marginalization does not affect the local independence structure of the remaining
components. Let now in situation (b) A = {ai,a2} and B = {b,a3}. Then, we
have again that b ¢ an(A) so that marginalizing w.r.t. b has no effect on the other
processes even though it is a common child of a; and a3. Further, ay -+ a; so that

az can also be discarded. //

The above theorem gives conditions for weak collapsibility. It would, however, be
desirable to have a graphical characterization which is equivalent to collapsibility.
This is not possible without assuming a more specific model class and would require
to define collapsibility for model classes. For instance, if M(G) denotes the class of

all composable Markov processes on G then collapsibility of M(G) onto A would
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imply that the class M(G), obtained by marginalizing M(G) w.r.t. V\A is the
same as the class M(G4) of all composable Markov processes on G 4. However, a

more detailed treatment of this topic is beyond the scope of this thesis.

4.3.2 Strong collapsibility

The condition for strong collapsibility given in the following theorem is straight-
forward. It generalizes Theorem 2 of Schweder (1970) to the situation of general
marked point processes which are not necessarily associated to composable Markov

processes.

Theorem 4.3.4 Strong collapsibility

Let G = (V, E) be the local independence graph of a multivariate counting process
Ny = (MNy,. .., Nk) with all assumptions of Theorem 4.1.4 fulfilled. Consider a sub-
set A C V with pa(A) =0, i.e. A is an ancestral set. The local independence graph
of Ny is then given as the subgraph G4 = (A, E4) of G and the F;—compensator

A4(t) is FA-measurable.

Proof:
If pa(A) = 0, the F;—compensators A (¢) are due to the definition of local indepen-
dence and with property (3.5) F;*-measurable. O

The above theorem provides an easily checked graphical condition for strong col-
lapsibility since an ancestral set can readily be identified by verifying that there are

no edges from outside pointing at this set.

A consequence is that for a CFMP Y ~ (Y7,..., Yk) with local independence graph
G we have: If pa(A) = () then the subprocess Y, is again a Markov process for
A C V. Thus, with the notation mentioned above M(G)a C M(G,4) for any
ancestral set A C V. As demonstrated by Schweder (1970) the converse is not
necessarily true. Assume for instance that Y ~ (V7,Y3) and & = {0, 1} where the
state y; = 1 is absorbing. Then, we have that Y] is also a Markov process even if it
is not locally independent of Y. To see this, let ¢; <ty < ... <t,. Since Y(¢;) =0
implies Y(¢;) = 0 for all i = 0,1, ..., j, we have that

PYi(t) =y | Yi(tia) =0,...,Yi(t) = 0) = P(Vi(t:) = y | Yi(ti 1) = 0)
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for y = 0,1. In addition,

PYi(ti) =y | Yi(tia) =L, Yi(ti2) = ¥Yi2,..., Ya(t1) =) =
PYi(t)=y|Yi(tiz)=1) = y, y=0,L

Consequently, Y; is in any case a Markov process. This mainly seems to be due to
the absorbing state which makes it easy to determine the past or future knowing
a present value Y(¢f) = 0 or Yi(t) = 1, respectively, so that conditioning on the
past becomes redundant. Survival analysis being one of the main applications for
event history analysis, we have to keep the foregoing example in mind since failure
or death always constitutes such a transition into an absorbing state. The following

section addresses this issue in more detail.

4.4 Local independence graphs for stopped pro-

cesses

When the mark space of the considered marked point process contains an event that
constitutes a transition into an absorbing state such as death or failure then the re-
maining components typically depend on this specific one. Consider for instance the
situation where various events concerning the health status are measured such as
onset of different side effects of a medicamentation or of another intervention and
the time of death. Then, it is obvious that no other events will take place after
death implying that the intensities of the former become zero when death occurs.
Since the corresponding local independence graph shows these local dependencies
by arrows the graph might become quite complex. Besides, the information that
death affects the intensities for all remaining events is not very interesting. A way
to cope with this situation is to consider stopped processes. Applied to our example
this means that the marked point process is restricted to the time before death in-
cluding the time when it occurs. Thus, only those local dependencies remain valid
for the stopped process which operate before this absorbing event. Note, that this
is not the same as conditioning on the person being alive up to a certain time since

the time of death remains unknown and random.
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In order to treat the properties of local independence graphs for stopped processes

more formally we introduce some notation.

Definition 4.4.1 Stopping time / stopped process

Let F; be a filtration on (€2, F, P). A nonnegative random variable T on (2, F, P)is
called F;—stopping time if {T <t} € F,for allt € T. Let further Y be a Fi—adapted
process and T a F;—stopping time. Then, the process YT = {Y(t AT)|t € T} is
called the process stopped at T.

In case that F; is generated by a CFMP Y ~ (Y71,...,Yx) we define the time when
component Y} is in state yy for the first time as T(yx) = inf{¢t|N(¢; (-, yx)) = 1},
where N(&; (-, yr)) = 22y N (& (¥, vk))-

Similarly, if F; is generated by a marked point process {(7s, Es)}, € = {e1,...,ex},
the random variables T'(k) = inf{¢|Ny(¢) = 1} are the times of the first occurrence
of e, k=1,..., K. //

Obviously, T (yx) and T'(k) are Ff— as well as F;— stopping times.
For our purposes it is important to note that the compensators and intensity pro-
cesses of stopped processes are simply given as the stopped compensators and in-

tensity processes of the original process.

Remark 4.4.2 Compensator and intensity of stopped process

If a process Y has compensator A then the stopped process Y7 has the compensator
AT. Thus, in the absolutely continuous case the intensity process of Y7 is given as
A(t)1{t < T} (Andersen et al., 1993, p. 81). //

For a stopped CFMP Y7 ®) it is obvious that each component locally depends on Y}
since the intensity process requires the information on the occurrence of y;. Thus,
it makes no sense to retain the original definition of local independence for stopped
processes. Instead, we propose to speak of local independence when the required
information on the previous occurrence of y; just factors out through an indicator

function.

Definition 4.4.3 Local independence for stopped process
Let Y = (Y3,. .., Yk) be a multivariate stochastic process and T a F/—stopping time.
For disjoint A, B,C C V such that k£ ¢ AU C we say that the local independence
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A - B|C holds for the stopped process Y7 if there exists a FP““~measurable

predictable process A g such that the compensator of Y7 is given as product A% (t) =
Ap(t)1{t <T}. //

Heuristically, the above definition applies to situations, where the original compen-
sator Ap(t) can be specified as a function of HPYC as long as ¢ < T. Then, the
process Ag(t) can just be chosen as this function. Note that local independence for
stopped processes holds the same asymmetric graphoid properties as the original
local independence as far as k ¢ AU C, i.e. as far as the component w.r.t. which
the stopping time is defined is neither an element of the separating set nor of the
set, which is claimed to be irrelevant. When interpreting these stopped processes
we have to take into account that all involved intensities are conditional on ¢t < T
Thus, A -4 B|C for a stopped process means that A is irrelevant for B given C' as
long as t <T'. The local independence graph for stopped processes is readily given
by deleting the directed edges starting in £ as described for the special case of a
CFMP in the next proposition.

Proposition 4.4.4 Local independence graph for stopped CFMP

Let Y ~ (Yi,...,Yk) be a CFMP with local independence graph G = (V, E).
Assume that for a state y; of Y, with P(Y;(0) = y;) = 0 it holds that the transition
intensities regarding changes in component Y;(¢) are constant for different values

of Yy(t7) as long as Yy(t7) # y;. Formally, this means that for all j € ch(k),
Yelgie = Yegnk € Selgyw and for all y; € S;, yi # y;:

o (t; (Yeiiy ¥3)) = @it (Felgy, ¥5) YUk Uk € Sk; Uk # Uk Yks Uk 7 Yp- (4.10)
Then, the stopped process Y7 @) has the modified local independence graph GTWi) =

(V, ETWR)) with ETW) = {(4, 7) € E|i # k}.

Proof:

In the following cl(-) and ch(-) refer to the original local independence graph G. Due
to the equalities (4.10) we may choose &;(t; (Ye(j)\x» ¥5)) @s the value a;(t; (v, ¥5))
which is constant in the k-th component as long as yx # v;, j € ch(k). Then, the

intensities for the stopped process are given as

i85 (Ve ¥5)) = 05 (6 (Y Y)Y ety (1) = vay }H{E < T(wp)},  J ¢ ch(k),
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and for j € ch(k):

it (Yeagye ¥5)) = @56 (Yergpe Y)Y egne () = Yeagwet HE < T(i) }-

Thus, the latter intensities can be written as required by the above definition with
- R _ L 1G)\k
Aj(t; (ycl(j)\k,y}) = a;(t; (ycl(j)\kay;’)l{Ycl(j)\k(t ) = ycl(j)\k} which is 7'-tc OV
measurable, j € ch(k). The former intensities for j ¢ pa(k) do not depend on
Y, anyway. This yields the desired result. a

Example: Let us consider the situation of Y ~ (Y3,...,Y;) with § = {0, 1},
k=1,...,4, where each component indicates whether an event e, has occurred, i.e.

Y is itself a multivariate counting process.

Figure 4.7: Local independence graph (a) for the whole CFMP Y ~ (Yi,...,Y))
and (b) for the stopped process Y74,

e 3

For one component, say Yy, we assume that the state y4 = 1 is such that (y1, yo, y3, 1),
Y1, Y2, y3 € {0,1}, are absorbing states. It might for instance indicate death of the
patient whereas Y7, Y5, Y3 indicate the occurrence of different side effects or diseases.
We therefore have that all three side effects locally depend on death. Assume further
that Y3 4 Y1[Y o4, Y1 4 Y2|Y (54, and Y193 4 Y3]Ys. The local independence
graph of Y is given in Figure 4.7 (a). The corresponding graph for the stopped
process (Figure 4.7 (b)) shows that for instance Yy 2y # Y3 as long as the person
is alive, i.e. the side effect no. 3 remains unaffected by the occurrences of the other
side effects or diseases. Analogously, the graph for the original process shows that
Y12y #+Y3|Ys. The graph for the stopped process thus reveals no new independen-

cies but makes explicit that we always condition on the person being alive.
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Further, we have for example by Corollary 4.2.4 that F} 1L F}|F? for t < T(4).
Note that this is not the same as F} 1L ff\ﬂ{2’4} since conditioning on a specific
history F;' causes F} and F}? to be dependent as can be seen from the likelihood.
For instance, if both diseases Y; and Y3 increase the intensity for death and we
know that death has not occurred up to a certain time ¢ then the information that
disease no. 1 has occurred before £ makes it less probable that disease no. 3 has also
occurred before ¢ implying that the histories F! and F; are dependent. This is also
the reason why we choose, in contrast to Schweder (1970), to include in the graph

the component w.r.t. which the stopping time is defined, here Y;. //

The concept of local independence graphs for stopped processes is of course also
applicable to more general situations than Markov processes as long as the intensity
processes can be written as claimed by Definition 4.4.3. This might eventually be
difficult if the dependence on the past includes a duration dependence but we desist

from going into details, here.

Although local independence graphs for stopped processes reveal no really new in-
dependencies they have the advantage of a clearer graphical representation without
loosing information. In addition, they meet the intuition that death or failure only
affect the remaining processes by preventing further transitions but without any
substantial meaning. Therefore, it might be reasonable to replace the original graph

by a graph for the stopped processes whenever there are such terminal events.

4.5 Causal reasoning in local independence graphs

Local independence graphs, as introduced so far, are a priori no causal models since
they only describe certain forms of dependencies on the past. It is well known that
‘correlation is not causation’ and this holds of course for processes, too. Nevertheless,
the foregoing definitions and results may be used to formalize and clarify causal
reasoning based on marked point processes. In this section, we propose an approach
to causality focusing on the distinction between conditioning by intervention and
conditioning by observation. The aim is to find conditions for the identifyability

of the effect of an intervention from observational data. A ’complete’ treatment of
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the subject, however, is not possible due to the different facets of causality. Thus,
the following has to be regarded as tentative and is restricted to an outline of the
basic ideas. It is based on the concepts developed by Pearl (1993, 1995) who studied
causal reasoning in connection with conditional independence graphs, where some
of the results have previously been found by Robins (1986) for the special case of
longitudinal studies. A concise and unifying overview is given by Lauritzen (2000)
and for a more detailed treatment we refer to Pearl (2000). Other approaches to
causal reasoning for the special situation of marked point process have been proposed
by Eerola (1994), Arjas and Eerola (1992), Parner (1999), and Parner and Arjas
(1999) and are briefly addressed in the last subsection.

4.5.1 Causal graphs

In order to distinguish between ’causation and correlation’ we consider two different
ways of conditioning on the history of a (sub)process: The ordinary conditioning by
observation and the conditioning by action or intervention. The latter means that
the conditioning value results from an intervention coming from ’outside’ of the ob-
servable system (Pearl, 1993; Pearl, 2000, pp. 22; Pearl and Robins, 1995; Lauritzen,
2000). As pointed out by Dawid (2000), all assumptions concerning the intervention
should be made explicit and enter the graphical representation as far as they affect
the conditional or local independence structure. Conditioning by observation of a
specific history H, is further on denoted by f(-|H;), where f is some probabilistic
function such as e.g. a probability distribution or an intensity process. Conditioning
by intervention is symbolized by f(-|H, “*||HA), AC V ={1,..., K}, where H{ is
the subhistory which is set to a specific value. One could, for instance, think of N4
being a counting process indicating when certain drugs are taken. Setting H: to a
specific value then means that instead of leaving the medication to the choice of the

physician or the patient, a fixed treatment is prescribed.

The preceding outline is of course no precise description of what is meant by an
intervention and we restrain from going into details, here, since an appropriate
discussion heavily depends on the actual data situation. In the following, all that is
required for a local independence graph to reflect the causal structure of a system

of processes, is the condition formulated in next definition.
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Definition 4.5.1 Causal local independence graph

Consider a marked point process on (2, F, P) with local independence graph G =
(V,E). The graph G = (V,E) is called causal local independence graph for the
distribution P with respect to a subset A C V, if the likelihood L(t|H, \AHﬁtA)
induced by setting the pre-t history of the subprocess N4 to I:It“‘ is given by

[Tieva Le(t/HS™) on HA = AP,

_ teT. (4.11)
0, otherwise,

VAA || £
L(t|H," ||H£4)={

//

The modification of the likelihood according to (4.11) corresponds to deleting the
contribution of HA to the original likelihood and setting it to IA{tA where it is relevant
for the remaining components, i.e. for all mark specific factors Ly, k£ € V\ A with
pa(k) N A # (). This principle is known as intervention formula and appears for
instance in Pear] (1993) and Spirtes et al. (1993). From (4.11) it can be seen that
the local independence graph for the remaining 'free’ components V\A is simply
given as the subgraph Gy 4 without the 'marrying parents effect’. Thus, the causal
assumption is that the conditional specifications remain the same for all processes
which are not used for intervention. This implies that the compensators Ay for
k € V\A also stay the same regardless of whether ﬁ;“ has been observed or fixed at
its value.

Further, it follows with Corollary 4.2.4 that given the intervention in A we still have
for all disjoint subsets B,C, D C V\A

FEUFE|FP vteT,

whenever D separates B and C in the moralized subgraph (G ansucupy4)™- When
pa(A) = 0, the same conditional independence statements as given above hold
for B,C,D C V\A when observing I:ItA instead of intervening. This can be seen
by noting that moralizing the original local independence graph to (G'An(sucup))™
and considering then the subgraph (G AH(BUCUD))XD(BUCUD)\ 4 yields the same as
(Gan(sucuppa)™ if pa(A) = 0. An intervention may therefore also be interpreted
as changing the distribution of the whole processes by deleting the directed edges
pointing towards the set used for the intervention. In addition, it follows from the

foregoing statement that if pa(A) = (), the effect of an intervention in A is the same
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as when conditioning on A. This can also be seen by noting that another way of
expressing (4.11) is
L(t|Hy)
1(k )
erA Lk(t|Hf( )) HA=HA

V\A ke
L(t|H M| A = (4.12)

For pa(A) = 0, the denominator is identical to the marginal likelihood of H}.

Example: Consider the example of a marked point process with mark space £ =
{a,b,c,d} and local independence graph G = (V, E) with V = £ and E = {(a, ¢),
(a,d), (b,a), (c,a), (c,d)} as given in Figure 4.8 (a). Then, we get from (4.11) that
when setting H;' to a specific history ﬁf the likelihood of the remaining components
reads as

L(t|{H""||H}) = Ly(t| H}) Le(t| Hy, Hy) La(t| H}, H{®).
Fixing the specific history ﬁ;‘ might for example be done by preventing event a to

occur or by forcing it to occur at specific points in time.

Figure 4.8: Local independence graph in the example (a) without intervention in

a and (b) with intervention in a, and the corresponding moral graphs.
°
°
moral graph for ( moral graph for (

N N

a

N

® C

d

b c

d



4.5. CAUSAL REASONING IN LOCAL INDEPENDENCE GRAPHS 115

In this example, pa(a) # 0, implying on the one hand that for instance F} 1l F|F2
does not hold in general since there is a path from b to d via ¢ in the moral graph
G™. But on the other hand, given an intervention in a this path is prevented be-
cause knowing that H} has be set to I:It“ induces no dependence between H? and
H{ so that the claimed conditional independence does hold given the intervention
as shown in Figure 4.8 (b). //

The next lemma follows from the definition of a causal local independence graph as

can be seen from the foregoing argumentation.

Lemma 4.5.2 Intervention in ancestral set

In the situation of Definition 4.5.1 consider an intervention in A C V with pa(A) = 0,
i.e. fix the history of the subprocess N4 at H4. Then, the compensator and the
probability distribution regarding the remaining components are given as if fItA had

been observed. This is symbolized as follows:

MCIIBR) = At)lga s » K EVAA,

BIFTAY > A V\A

m(BIAY) = m(B),, . Ben™,
where 7,(B) = P(B|F,) is the conditional probability of B given a possibly reduced
history F, C F;. //

The foregoing lemma is crucial for causal inference from observational data, where
the effect of an intervention has to be estimable from conditional observations, only.

This is addressed in the following subsection.

4.5.2 Intervention graphs and identifiability

In general, the main question regarding causal inference is how to calculate a causal
effect from observational data and to formulate conditions that ensure the correct-
ness of these calculations. It is of course not obvious that a quantity which is defined
as the result of an intervention should be computable from observational data, where
no intervention has actually been performed. Nevertheless, recent developments in
the field of causal reasoning show that this is possible and can be formalized using

conditional independence models and suitably augmented directed acyclic graphs,
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so—called intervention graphs (Pearl, 1993; Spirtes et al., 1993; Dawid, 2000). These
findings suggest the following approach to causal reasoning for local independence
graphs: Assume that the local independence graph for a multivariate stochastic
process is given and the interest lies in the effect of an intervention in a specific
subset of the components. A graphical representation is then given by augmenting
the graph such that the intervention process is symbolized by an additional vertex

F" and the distribution is appropriately modified to include the intervention.

Definition 4.5.3 Intervention graph

Let G = (V, E) be the local independence graph for a marked point process. The
intervention graph for an intervention in ¢ € V is given as G' = (VU{F},E U
{(F,a)}), where F' is a random variable realized at time 0 and taking either the
value idle, symbolized by ¢, or some value H® € JH*® in the set of histories of the
component a. The distributional assumption regarding the effect of an intervention

is modified as follows:

Ag(dt | HEY, F =,

Ao(dt | HE Py ={ 1, F=H%and (t,a) € Hp,
0, F = H®and (t,a) ¢ H?,

so that an intervention forces an event to occur at a specific time, recalling the
heuristic relation A, (d¢ | HY@, F) = P(N,(dt)| HY®@, F). //

In the above definition F' is constructed such that it has no parents in the graph.
It follows with Lemma 4.5.2 that all compensators and probabilities regarding the
original components in V'\{a} remain the same regardless of whether F is considered
as observed or as fixed at a specific value.

In particular, we have that a subset C' C V of covariate processes may be regarded as
identifying the effect of an intervention on the component y if it fulfills the following

assumption.

Corollary 4.5.4 Intervention equals observation

Consider a local independence graph G = (V, E) of a marked point process with
the assumptions of Theorem 4.1.4. Let G' be the intervention graph w.r.t. an in-
tervention in a € V. For C C V\{a,y} such that C U {a} d-separates F' from y in
G’', we have that the evolution of the component y given an intervention H®inais

ﬁCU{a,y}

correctly described by its —compensator restricted to He.
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Proof:
This follows immeditately from Lemma 4.5.2, Theorem 4.1.4 and the definition of lo-
cal independence: Intervening in F' has the same effect as observing F' and, due to the

CU{a,y,F} U{a,y}

separation, the F, —compensator is the same as the ]_-tc —compensator. O

It follows from the above corollary that the effect of an intervention H® on any

CU{a,y}

function of the F, —compensator ]\y(t) can be calculated as if H* had been

observed. However, some important functions such as prediction w.r.t. N, (t + h)
are no function of the ﬂcu{a’y}—compensator alone, as addressed in the following

subsection.

Example: In the graph depicted in Figure 4.9 (a), we have that {a, c} é—separate F
from y, whereas this does not hold for @ alone. If ¢ is not included in the separating
set, it takes the role of an unobserved confounder (cf. next subsection). In situation
(b), a alone d—separates F' from y so that ¢ can be discarded. Here, ¢ is a pure

mediating process or intermediate on the pathway from a to y. //

Figure 4.9: Intervention graphs for an intervention in the history H;* of component

N, of a marked point process.

4.5.3 Open questions

The foregoing results might be taken as basis for deducing further conditions re-
garding the identifyability of causal effects on specific functions of some outcome
variable. For instance, one might be interested in the instantaneous causal effect of

setting the history of N, to I;Tf, on N,. This could be defined as the compensator
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Ay (t|HY.| |H& ) of N,(t) given the own past and the intervention but discarding fur-
ther covariate processes. In contrast to Corollary 4.5.4, confounding processes, like
N, in Figure 4.9 (a), would have to be corrected for because /N\y(t|Hf_HI:If,) is no
function of the ECU{a’y}fcompensator alone. To see this, recall that the compen-
sator based on a reduced history is given as the expectation w.r.t. the distribution
of the discarded covariate processes (cf. Theorem 3.1.9). It can be supposed that
the correction is only possible if ¢ is —separated from F' by a suitable subset of the

considered processes ensuring that the causal effect on ¢ can be identified.

A more interesting question deals with the identifyability of the predictive causal
effect. Let Y be a random variable in a space (W, V) such that Y is also defined
on (2, F, P). The prediction process {ju}+>o is the conditional probability given the
pre—t history of the marked point process (Arjas and Eerola, 1993; Eerola, 1994, p.
34), i.e.

m(B)=P(Y €B|F), BeV,

where F; is the history generated by N as before. Usually, we are interested in
some B € Firn, b > 0, since for B € F, the prediction process is either 0 or 1
depending on whether B has occurred or not. It can be shown that there exist regular
versions of transition probabilities p(-|-) such that we can use the representation
ut(B) = p;(B|H;), where H; is the history process (Norros, 1985). The predictive
causal effect of the subprocess {N4(s)|0 < s < t}, A C V, on Y could then be
defined as the probability of Y € B given the intervention F' = f]{‘, denoted by
1 (B||H7). Note that Corollary 4.5.4 does not apply as mentioned above. In the
situation of confounding processes N¢, the so called G-formula developed by Robins
(1986, 1989, 1998) might be adapted to the present framework yielding

piBIAY = [ (B HE A (aHC | ), (113)

implying that the confounding process has to be observed in order to identify the
predictive causal effect. Different conditions on the dependence structure of the
involved processes can be found in the literature to ensure that the above equality
holds. Robins (1986, 1989, 1998) considers mainly the situation of discrete time
and formulates the assumption of no unmeasured confounders by considering the

counterfactual outcome y A that would have been observed, had the treatment been
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administered according to I:ItA Pearl and Robins (1995) show how this condition
can be reformulated so that it may be read off a suitable conditional independence
graph. A precise definition of no unmeasured confounders which also applies to the
continuous time situations is given by Parner and Arjas (1999) (see also Parner, 1999,
p. 60) but without recurrence to the above G-formula or the concept of intervention.
With the present notation, it can be seen that (4.13) holds if

pi (B | HE||HY) = py (B | HY , H')

and
m(dHC||H?) = m(dHC | H]).

In terms of conditional and local independence, we get that the first condition is
ensured by Y Il F|(HY, H*), where F denotes the intervention variable. The second
condition holds if N¢ is locally independent of F' given N4. However, the implica-
tions of the former condition for the local independence structure are not clear so
that there is no obvious way to formulate a suitable graphical condition which could
be read off the local independence graph. It would in particular be desirable to
have similar criteria as the so—called back-door and front-door criteria (Pearl, 1995;
Pearl, 2000, pp. 78) which can be formulated in a way that they can be verified on

the original graph instead of the intervention graph.

Much of the findings regarding causal inference have been motivated by situations
of counfounding and mediating variables in epidemiological studies. In the special
situation of longitudinal studies, both types of variables may occur so that neither
conditioning on the covariates nor ignoring the covariates yield the correct result.
Instead, the G—formula should apply. This is illustrated by the following concluding

example.

Example: The example is adapted from Robins (1989; see also Lauritzen, 2000).
Consider a study made in a population of AIDS patients. The study involves three
processes: (1) The treatment process, where the initial treatment with AZT is ran-
domized whereas subsequent treatment depends on the progression of the disease;
(2) the counting process indicating whether a patient develops pneumonia which

can be regarded as time dependent covariate; and (3) the survival process indicating
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whether a patient survived up to a specific time. With regard to the dependence
structure we may assume that the development of pneumonia depends on the treat-
ment process and vice versa since a patient who has developed pneumonia will
subsequently receive a treatment with antibiotics whereas this is again randomized
for the remaining patients. Both processes are supposed to affect survival. Note
that in this situation it makes sense to consider only the stopped process since only
the local dependence structure for patients that are alive is of interest. The main
causal question in this study is whether the treatment with AZT and / or antibi-
otics has an effect on the survival. This can also be formulated as counterfactual
question: Would the patients who received placebo have survived longer if they
had received AZT? The intervention F' could therefore be regarded as setting the
treatment history to 'the patient receives all treatments in any case’ or ’the patient
receives no treatment in any case’. The intervention graph is given as in Figure
4.9, where a stands for the treatment process, y for the survival process and ¢ for
the development of pneumonia. To formalize the effect of treatment on survival, we
could for instance consider the probability that survival lasts at least until 7* given

a specific treatment history I:If up tot < 77, i.e.
w(Bl[H;) = P(Ny(T") = O[[Hf),

i.e. B ={N,(r*) = 0}. The G-formula (4.13) then states that pu*(B||H?) is given
as the expectation of p*(B|HE, H?) w.r.t. the conditional distribution of HF given
I:If. In other words, we have to integrate over all possible histories regarding the
development of pneumonia, i.e. no pneumonia during the study and development
of pneumonia at ¢ € (0, t], weighted with the corresponding conditional probability
given the treatment history. The conditions for this to be true read in this situation
as follows: First, we have to make sure that N, (7*)1L F|Ff, . This would for in-
stance be violated if there is an unobserved process affecting the treatment as well as
the survival process (cf. Figure 4.10 (a)). Such a process could be some information
on the progression of the health status of the patient which is used to determine the
treatment but which is not contained in the process indicating pneumonia. Note
that the condition also implies that the intervention only fixes the pre—t history and
not Hf,,, h > 0, since this would affect the prediction of Ny(7*) and would prevent

the estimability from observed data. The definition of an intervention graph should
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thus slightly be modified, but we desist from going into details, here.

Figure 4.10: Intervention graphs with an unobserved process u which inhibits the

identifyability of the causal effect.

(a) (b)
a e oY a e e Y
/ /!
°® °®
F F
U @ e C U @ e C

Further, it has to be ensured that the covariate process indicating pneumonia is
locally independent of the intervention F' given the treatment process (and that the
patient is still alive, of course). This could be violated if some undocumented infor-
mation on the health status of the patient related to his susceptibility to pneumonia
is used to determine the treatment process (cf. Figure 4.10 (b)). Note that both

conditions are indeed fulfilled if the treatment is randomized as described above. //
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Chapter 5

Statistical inference for local

independence graphs

In this final chapter, we consider inference based on local independence graphs for
event history data. In the first section we discuss the implication of the factorization
of the likelihood shown in the foregoing chapter. This aims at simplifications for
statistical inference procedures similar to those known for conditional independence
graphs.

In the subsequent sections we consider estimation under local independence restric-
tions and tests for local independence exploiting the factorization results. The latter
may be taken as basis for selection procedures. It is shown that it is not necessary to
invent new methods but that inference can rely on the well-known non— and semi-
parametric as well as likelihood based estimation and testing procedures. Thus,
in Sections 5.2 and 5.3 we mainly restate the corresponding standard results from
counting process theory applied to the framework of local independence graphs.
However, since local independence graphs apply to a very general model class we
restrict our considerations to the special situation of multiplicative intensity models
which include composable Markov processes. Further, we subdivide the considered
models into those where the individuals constitute homogeneous groups such that
inference can be based on aggregated counting processes, and those where for in-
stance the time of the occurrence of previous events has to be taken into account as

can be achieved by suitable regression models.

123
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5.1 Preliminaries

Throughout this chapter we consider a marked point process {(T5, Fs)|s =1,...,S}
with mark space £ = {ey,...,ex} as described in Definition 3.1.1. The local inde-
pendence graph G = (V, E) with V = {1,..., K} represents the local independence
structure of the associated multivariate counting process N = (IVq,..., Ng), where
Ni(t) = N(t; ex) is the mark specific counting process, k € V. Further, we consider
filtrations {F;'};>o for subsets A C V with F/! = o{N,(s)|a € A,0 < s < t}.

As shown in Section 4.2 the likelihood factorizes as

L(t|Hy) = [T La(t1H®) (5.1)

keVv

where

Lot H? ) = TT Ae(@T) - TT2 — AAu(s) 72N - exp(—AL(¢)
Tyr) <t s<t

and {Tyy|s(k) € {1,...,5}, Es) = ex} are the occurrence times of event ey.
Whether the above factors of the likelihood should or may be treated separately
depends on the actual model specification and parametrization. As pointed out by
Arjas (1989) this is a question of the information on the parameters of interest con-
tained in an innovation. Applied to the present situation this means that given a
parametrization A(¢@), @ = (6y,...,0g)", any observed marked point (¢, e) should
be a non-innovation for A;(t|0), j # k, i.e. Ax(t|@) should be independent of those
parts of @ which A; depends on. This implies that € can be partitioned into K
subvectors Oy, k = 1,..., K, such that we may write Ag(t|@) = Ak(¢|0x). The
underlying principle has been termed partial model specification since it has been
developed for situations where it is not possible to specify the intensity process for
every type of event or marked point. In the context of local independence graphs it
is, however, necessary to specify if not the whole system then at least those subpro-
cesses for which the local independence structure is not known a priori by subject
matter knowledge. Further, for specific models it may still be appropriate to treat
the factors of (5.1) separately even if the parameters are not distinct. This has then
to be justified using the results for partial likelihoods (Cox, 1975; Gill, 1984).
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Example: To illustrate the factorization of the likelihood let us consider an ex-

ample similar to the one introduced in Section 3.2.2 with £ = {ej, e5,e3} and local
independence graph G = (V, E) where V = {1,2,3} and £ = {(1,2),(2,3),(3,2)}
as depicted in Figure 5.1.

Figure 5.1: Assumed local independence graph in the example.

€1 €2 €3
) e [

Assume that the events can occur in any order but each only once with absolutely
continuous compensators. Let 77, T5, and T3 be the random times of their occur-
rences. Expressing the intensity processes via appropriate hazard rates a(t) we get
that

/

0, t> Ty

ag)0(t), t < min(Ty, Ty, T3)
Ao(t) = < aon(t|Th), Ty <t < min(Ty, T3)

ag3(t|Ts), T3 <t <min(T1,7T3)

O52|13(t|7ﬂ17 T3)7 maX(Tla T3) <t< T27

0, t>1T;s
/\3(t) = < (l/3|()(t), t S min(TQ, T3)
as;2(t|T2), To <t <Tj,

\
where «;). is the hazard for the occurrence of e; regardless of past events, whereas

o denotes the hazard for the occurrence of e, given that no other event has pre-
viously occurred. Further, oy (¢[T1) is the hazard for e, after the occurrence of e;
at an earlier point 77 in time but before e3 and the other hazard rates are defined
analogously. The (partial) likelihoods are given as follows. For event e; we have
that L,(¢t|H;) = Ly(t|H}) since cl(1) = {1}, i.e. regardless of whether one of the

other events occurred previously it holds that

T At
Ly (t|H}) = o). (T1)M® exp (—/ a).(s) ds) .
0
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In contrast, Lo(t|H;) depends on the past of the whole system since cl(2) = {1, 2,3}
and we have for instance if T} < T3 < T, (and t > T3) that

Ly(t|Hy) = ana(T2)™® -
T T3 ToNt
exp (—/ )o(s) ds—/ a1 (s|Th) ds—/ ags(sTh, Ts) ds).
0

T1 TS

Finally, with cl(3) = {2,3} we get that L3(¢t|H;) = L3(t|Ht{2’3}) is independent of
the past as far as the occurrence of e; is concerned. If for instance 77 < Ty < T}

(and t > Ty) we have

03 T TNt
Ly(t|H*™) = o (T5)¥® exp (—/ agjo(s) ds —/ a3)2(s|T2) dS) :
0

T
As addressed in Section 3.2.2, we can alternatively consider the multi—state process
Y (t) with state space S = {0, 1}® indicating whether an event has occurred before ¢
or not. With the above notation the intensity for instance of Ny (¢; ((1,0,0), (1,1,0)))
is given as
Xa(t; ((1,0,0), (1,1,0))) = ag (¢{T1)1{T1 < t < min(Ty,T3)}.

The likelihood based on the multi-state formulation with N, (t; (y,y’)) is of course
the same. Note that no conditional independence statement for the involved filtra-
tions can be established, i.e. Corollary 4.2.4 does not apply, here, since conditioning

on F? induces a dependence between F! and F?. In contrast, it would apply if for
instance E = {(2,1), (2,3),(3,2)}. //

The foregoing example is picked up again in the following sections in order to illus-
trate the different models and methods. Most of the time we assume that all three
event times 77,75, and T3 are observable, i.e. that there is no censoring. However,
the presented methods in general remain valid under independent censoring and left
truncation (Andersen et al., 1993, pp. 135).

When considering the estimating and testing problem for local independence graphs
it is most natural to specify the statistical model in terms of regression models due
to the possible dependence on the internal history of the marked point process (and

possibly on additional fixed covariates). Consider for instance the above example and
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assume that n independent individuals have been observed where N* = (N{, N, N%),
1 = 1,...,n, are the individual counting processes, each with the local indepen-
dence graph as given in Figure 5.1. Then, regression models have to be specified
w.r.t. agi(t[t1), aos(t|ts), aops(tlts, ts), and as2(t[t2) such that for instance if T} <
min(73, T§) we have Ny(t) = a1 (¢[T7)1{T} < t < min(T%,T%)} etc. Thus, the indi-
viduals cannot be regarded as forming a homogeneous group. In contrast, assuming
that the hazard rates do not depend on the time of the occurrences of previous

events, i.e. g (t[t1) = ag1(t) etc., we have for instance
As() = aon () L{T} < t < min(73,73)} if T} < min(73,T3),

which is a special case of the multiplicative intensity model (Aalen, 1978) since the
first factor is deterministic and does not depend on the individual. This allows
to aggregate the individual counting process simplifying the statistical model and
inference. We therefore treat the latter case and the situation where regression

models are required separately in the following sections.

5.2 Models for aggregated counting processes

In this subsection, we consider the situation of n independent individual multivariate
counting processes N* = (N?,...,N%), ¢ = 1,...,n, assuming that the individual

intensities satisfy
Mo (t10) = ap(t|0)Zi(t), k=1,....K;i=1,...,n, (5.2)

where oy (t|@) is deterministic, independent of i, and possibly depending on a fi-
nite dimensional unknown parameter vector 6, and Z}(t) is a predictable process
independent of 8. The model (5.2) is a special case of the multiplicative intensity
model where « is allowed to depend on 7. In most situations «y, is a hazard rate,
relative hazard, or type k transition intensity, and Z¢(t) is an indicator for the i-th
individual to be at risk for event ej. Since ay(t|@) is deterministic the dependence
on the history is fully determined by Z(¢). Examples for models with multiplicative
intensity are for instance finite state Markov processes with constant or piecewise
constant transition intensities or with transition intensities whose dependence on the

time parameter ¢ is governed by 6. The multiplicative intensity model is retained
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under independent censoring and left truncation so that the following results also

hold for such censored data. Note that oy (t|0) as well as Zj (t) may be vector valued.

Example (continued): In the foregoing example we have a multiplicative intensity
model if the different hazard rates do not depend on the time of a previous event.

Then, the intensity process A2(t|@), for instance, is given as

1{t < min(T}, T3, T3)}
YT} <t <min(T%, T}
WTi <t <min(T},T4)}
1{max(T},T%) < t < Ti}

A2(t]0) = (c2)0(t]0), 211 (2]0), ai3(¢]6), czp13(t(6))

Obviously it is easier to consider transition specific intensity processes Agjo, Ag1 etc.
corresponding to the different states of the multivariate counting process. As, for
instance,

Aoj = o (810)1{T} < t < min(T3, T4)}

the multiplicative intensity model then still holds. //

Under the assumption (5.2) we have that the likelihood based on N* = (N§, ..., Nk),
i=1,...,n,is proportional to the one based on N = (N, ..., Ng) with N, = Y. N}
which has multiplicative intensities vy (|0)Z(t), where Zy(t) = Y, Z(t) is in most
situations given as the number of individuals in the risk set (Andersen et al., 1993,

p. 177). Further, we have that the following implication obviously holds.

Lemma 5.2.1 Individual local independence graph

Let G = (V, E) be a directed graph. Under the model assumption (5.2) we have
that G is the local independence graph of the individual counting process N* =
(Ni,...,Ni) if and only if it is the local independence graph of the aggregated
counting process N = (Ny,..., Ng) with Ny = 3" | Nj. //

Based on the presented framework of a multiplicative intensity model for aggregated
counting processes we now consider maximum likelihood estimation and nonpara-
metric inference under the specific restrictions given by local independence graphs.
Since the latter are typically not known a priori we also describe for both frame-
works statistical tests of pairwise local independence which might build the basis

for selection procedures.
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5.2.1 Maximum likelihood estimation

Assume that @ = (61,...,0g)" € © is a Q—dimensional parameter in an open subset
of the @—dimensional Euclidean space ©. Under regularity conditions (cf. Andersen
et al., 1993, p. 420) the ML estimator 0 resulting from maximizing the likelihood
(4.8) has similar properties as in the case of i.i.d. random variables, i.e. there ex-
ists with probability tending to one a consistent solution of the estimating equation
which is asymptotically normally distributed around the true parameter. This even

holds when using a partial likelihood as described above.

Due to the factorization (4.8) and assuming (5.2) the vector U(7|@) of score statistics

has components

0 1
Uy(7]0) = Z Z %log (ak(Ts(k)|0)Zk(Ts(k)|Htc(k)))
q

k=1 [Tyx)<t

- [ tantt0) ziei ) dt] ,

g=1,...,Q, where 7 is the upper bound of the observed time interval 7 = [0, 7).
For the special case of distinct parameters for each mark specific intensity we there-

fore get the following result.

Corollary 5.2.2 ML estimator

Consider a marked point process with € = {ey, ..., ex } and the corresponding count-
ing process N = (Ny, ..., Ni) which is based on aggregated independent individual
counting processes N* = (N{,..., N%),i=1,...,n. Assume that the multiplicative
intensity model (5.2) holds and that every N*, i = 1,...,n, has the local indepen-
dence graph G. Further, assume that @ can be partitioned into 8 = (OIT, ey BIT()T
such that the intensity A (¢|@) only depends on 0y = (0k1,...,0ks, )", i.e. we may
write o (t|@) = ay(¢|6;). Then, the ML estimator @ is given as solution of the

equations

0 T 0
> oo 108 (an(Taw 60 2T ) = [ ool (an(t00) (0 ™)
1 er OO o OOk

j=1,...,Jk, k=1,..., K. Under the regularity conditions given in Andersen et
al. (1993, p. 420) the above equation has a solution @ with probability tending to
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one and @ 5 6° as n — oo, where 6° is the true parameter value. Further, the
components ék, k =1,...,K, are asymptotically independent with the following

asymptotic distributions:
V(0 — 63) 5 N (0, %),

The inverse asymptotic covariance matrix E,;l may be estimated consistently by

7, (7]6) /n where the information matrix Z;(7|0) has the entries

1k 0 cl(k)
110) Zi (¢ HE ) at — 1 0.)7 o
| 5 %8% (cr(t160) 2 (e1H ™)) X oo (e (o1 168) 24 (T | H )

fori,j=1,...,J,, k=1,..., K. //

The above result differs from the general result only in that it makes explicit on
which part of the internal history the components of the ML estimator and its

asymptotic distribution depend.

Based on the asymptotic distribution of the (partial) ML estimator which can be
used to derive a Wald or a score test, we can also formulate a likelihood ratio test.
Let 6° be the ML estimator under the null hypothesis with P dimensions and 0 the

estimator under a larger model with ) dimensions, @) > P, then

2(C7(0) — CT(OO)) ~ Xg)—Pa
where C;(0) is the loglikelihood. This obviously becomes much simpler when the
null hypothesis only restricts the parameter vector @ governing the intensity for an
event eg. This would for instance be the case if a local independence of ¢ from some
ej, j # k, is tested. In the next section, we consider this special testing problem in

more detail for composable Markov processes.

5.2.2 LR tests for composable Markov Processes

We now apply the above results to the special case of composable finite state Markov
processes (CFMP) as defined in Section 3.2.3. However, here we only treat the
situation of constant transition intensities. Consider n individual CFMPs Y* ~

(YY,...,Y}) with local independence graph G = (V, E) and constant transition



5.2. MODELS FOR AGGREGATED COUNTING PROCESSES 131

intensities ax(Yeigey Yi)s Yy € Selk)r Yk € Sks Uk # Yy K = 1,..., K. Thus, the
parameter vector 6 of this model is given as these constant transition intensities and
the partition into @y by all ax(-,-). The intensity process for an individual transition

specific counting process N'(t; (Yel(ky Yk)) 1s given as

N (& (Yl Vi) = % (Yelgry» yzlc)l{Y&(k) (t7) =vyaw!

and thus constitutes a multiplicative intensity model as demanded by (5.2). The
aggregated counting processes N(t; (Yelr), Ui)) = Doier N'(t; (Yelgr)s ¥r)) therefore
have the intensity processes a(Yei(ry Yi) Z (8 Yeir)), Where

n

Z(tyam) = Y U ¥ i) = Yaw}

=1

is the size of the risk set.

ML estimator
According to the above score equations the ML estimator of the transition intensities

is now given as
Ni(735 (Yelry» Yi))
Jo Z(t;yawy) dt’

where the nominator is the size of the risk set at time ¢ integrated over the observed

e (Yelgrys Vi) =

time interval, i.e. it can be regarded as the ’exposure time’ or 'total time on test’.

LR test on local independence

When aiming at inference about the local independence structure the basic test is
the one on pairwise local independence. This might for instance be used within a
selection procedure so that we now assume that nothing is known about the local
independence structure, i.e. we start with a complete graph where cl(k) =V for all
k € V. The corresponding testing problem is then given as Hy : {j} A{k}|V\{j, k}
vs. Hy : {j} — {k}/V\{j,k}. In the present situation, the null hypothesis is
equivalent to requiring that for all y,y € & where y and y only differ in the j-th
component and for all y;. # yj it holds that

ar(y, ) = ax(¥, yp)-
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Thus, the components of the estimators 6 and 6° are given as

Ni(75 (v, 91) 000 oy — Ne(T3 (Y Uk))
= B and &(y,u) = = :
Jo Z(t;y)dt ey 4) Jo Z(t;y—;)dt

where y_; = yy\yj;. If there are no further model restrictions on the transitions

(Y, Uk

such as absorbing or transient states or other local independencies then the number
of parameters under Hy is |S;| - |S_;| - (|Sk| — 1) less than in the full model. Thus,
the test statistic given as 2(C¥(8;) — C*(8,°)) is x2~distributed with this number

of degrees of freedom where

CEO) =D | D log (a(y, ve)Z(Tuty )i y)) — ly, vh) /OT Z(t;y)dt

YES 7Yk | Loyl

Again, Ty ) denotes the observed times of a transition from y to Y, and 0y =
(o (y,4) |y €S, v, € Sk with yj, # yy), i.e. the parameters are the constant transi-

tion intensities themselves.

In a similar manner we may construct LR tests for testing a graph G° = (V, E?)
versus a graph G!' = (V,E'), E° C E'. In this case, the LR test is based on
comparing the loglikelihoods for those k € V where j # k exists with (j,k) € E!
and (4,k) ¢ E°. The number of degrees of freedom again depend on possible other

model restrictions and on the state spaces Sy, k € V.

5.2.3 Nonparametric inference

For the case that no parametric assumption is made in the multiplicative intensity
model (5.2) we now turn to nonparametric methods. Although one is in general
interested in the transition intensities or hazards oy, k € V', we restrict ourselves to

the estimation of the cumulative hazards
t
Ak (1) :/ ag(s)ds, k=1,...,K;teT,
0

which are assumed to be finite. A very general nonparametric estimator for A(¢)
is given by the Nelson—Aalen estimator (Aalen, 1978) and corresponding estimators

of oy, may for instance be derived by kernel function smoothing (cf. Andersen et al.,
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1993, pp. 229). The Nelson—Aalen estimator Ay is given as

A

) = [ 2o aNGs) = Y AT ™ (5.3)

0 Ty <t

i.e. as an increasing right continuous step-function with increments 1/Z;(Tyx)) at
the jump times Ty4) of Ni. Note that this estimator is already mark specific so
that the factorization of the likelihood has no particular effect. Further, it requires
that the model is specified such that Z,(t) is one-dimensional. It can be shown that
under appropriate regularity conditions the Nelson-Aalen estimator is uniformly
consistent on compact intervals (Andersen et al., 1993, p. 190). With regard to the
asymptotic distribution we have for the vector A = (fll, ce AK)T that

V(A —A)BU=(U,...,Ux)T,

where the processes Uy, . .., Uy are independent Gaussian martingales with U, (0) =

0 and Cov(Uy(s), Uk(t)) = o2(s At). The covariance may be estimated as

{7 (Tyy) > 0
T, <t k\Ls(k)
Another proposition for the estimation of the variance which is especially suited for
aggregated counting processes and able to cope with ties (cf. Andersen et al., 1993,
p. 181) is given as
#2t) = Y AN (Ts) (Z6(Togry) = ANk(Togr)))
Zi(Ts(ry)?

Ty <t

Applying the above results to a composable finite state Markov process with a
given local independence structure we immediately get the following corollary by

exploiting the knowledge that a(%; (y,y;,)) does not depend on yy-\ -

Corollary 5.2.3 Nelson—Aalen estimator for CEFMP

Consider a sample Y?, i = 1,...,n, of independent composable finite Markov
processes with local independence graph G and transition intensities oy (; (¥, ¥;)),
y € S, y. # Yk The Nelson-Aalen estimator of the transition specific cumulative

intensities is given as

Ao = DL Z(Tuyage); Ymw)

T <
s(e1(k) ,y;c) <t
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where Z(t; yap) = Doy I{Yél(k) (t7) = Yy} and Tyy 0, are the times of any
transition from a state y with ¥y = yeyx) to the state y° where only the k-th
component has changed to y;. //

This corollary confirms that instead of estimating the |S| - Y"1, (|Sk| — 1) dimen-
sional vector (/Alk(t; Y,y Yy €S, yp € Sk, Y, # Y, K =1,..., K) the procedure
may be reduced to the Y5 | |Seiy| (|Sk| = 1) dimensional vector (Ag(t; (Yl Yi))|

Example (continued): Consider again the previous example. As stated above,
this can be reformulated as multi-state process with separate counting process
Ni(t; (y,,)) for each possible transition, with e.g. the transition from (1,0,0) to
(1,1,0) indicating that e, occurs after e; but before e3. The corresponding cumula-

tive hazard may be estimated as

X 1
Agpy () = Zon (Toan)
W= D, Zmoy

Ts(211)<t

where T21) denotes the times of transitions from (1,0,0) to (1,1,0) and

n

Zon(t) =Y U{T{ < t < min(T3, T3)}

i=1
is the number of individuals for whom event e; has already occurred before ¢ but
neither e; nor e3. In addition, we know by the local independence structure depicted
in Figure 5.1 that the estimation of A;(t), for instance, can discard the observed

order in which the three events occur. This yields

A 1
0= 3, Fgy

Ty1)<t

where Ty(1y denote the times of occurrences of e; regardless of past events and

n

Zy(t) =) 1{t <T{}.

=1

In other words, it is not necessary to separately estimate Ajo(t), Aq2(t), A13(2),

and Al‘gg (t) //
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Confidence bands for Ag(t) may be derived by exploiting the above asymptotic dis-
tribution. Since this does not directly contribute to inference about the local inde-

pendence structure we restrict in the following our attention to the testing problem.

Nonparametric test on local independence

Consider again a CFMP, but the transition intensities are now allowed to depend
on time. The hypothesis of pairwise local independence {j} 4 {k}|V\{j, k} may
then be written as follows: For all y,y € & where y and y only differ in the j-th
component and for all y;, # yj it holds that

ar(t; (v, u1) = cw(t; (¥, 1)) VEeT, (5.4)

i.e. we hypothesize the equality of a number |S;| of hazard rates for each y_; € S_;
and each y, # yx. In order to make clear that the hypothesized equality is not
between different values of k but between different y; € S; we index the following
quantities instead with y; and consider y_; and y; as fixed. An appropriate test
is then based on comparing the Nelson-Aalen estimators flyj (t; (y,y)) for each
transition with those for the hypothesized common values [ oy (s; (y—;, y))) ds which
are given in a slightly modified way by

i U Zy,(Tuy ;1)5y) > 0}
Ay (t (v, 91) = i J Yk
! Z )<t Z(TS(y—j,y;ﬁ Y—j)

Ts(y_j,y;c

bl

where Z(t;y_;) = {Y_;(t7) = y_;} = >, Zy;(£;y). Under the null hypothesis
the above estimator and flyj (¢; (y,v;)) are equal except for random variation, their
difference forming a local square integrable martingale. It is thus reasonable to base

the test statistic on their difference. Generalizing this idea yields the test statistic

t
Dy, (t; (¥, y5) = /0 Wy, (& (5 vi)) d[Ay; (55 (v, 9i) — Ay, (53 (v, 9))],
where W, are nonnegative locally bounded predictable weight processes. Under the

very general assumption that Wy, (t; (v, ;) = W (t)Zy,(t;y), which covers most of

the practical applications, we have that the test statistic equals

Z

(Ts(y_ y’)7 y)
W (Tuyap) - W Ty ) ZiT e oy -
> (Tsty i) > Loy f’yk))Z(Ts<y_j,y;);Y—j)

TS(y,yfc)St TS(y_j,yfc)St
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Unbiased estimates &,, 5. (¢) of the variances and covariances of Dy, (¢; (y,y;)), y; €
S;, are given by (Andersen et al., 1982)

Zy; Tsty_;0)Y) (5 Z5; Tsty_;00)3Y) )

W (Tyy o)) g —

T Z, . -3-u) Z(TS(Y—j,yk);y*j) Y Z(Ts(y—j,yﬁc);yfj)
s(Y—jsyp) =

where §,, ;. is the Kronecker symbol. The |S;| x |S;| matrix with the above elements

is denoted by 3(t; (y_;,%4))- Let D(t; (y_j,94)) = (Dy, (t; (v, u1))|y; € S;) ' Then,

it can be shown (Andersen et al., 1982) that the test statistic

D(t; (v 5 uk) " 26 (v, 9)” D& (v vk)

is asymptotically x*-distributed with |S;| — 1 degrees of freedom, where 3 is the
generalized inverse. Testing all the equalities in the hypothesis (5.4) corresponds to
a stratified test where the strata are given by the combinations of y_; € S_; and
Yy, € Sk with y;, # yg. The above results can be generalized to this situation in the
following way. Let L be the number of strata, i.e. L = [{(y—;,v;)|y—; € S—; and
Y, € Sk with y, # yx}| and index the above quantities by | = 1,..., L replacing
(¥—j,Y)- Then, we have under the hypothesis of local independence that

L T /L - /L
(Z Dl(t)> (Z ) (t)) (Z Dl@)) (5.5)

1=1 =1 =1
is again asymptotically x?—distributed with |S;| —1 degrees of freedom which result
from the rank of the covariance matrix. The maximal rank of ¥ is |S;| — 1 so that

in the two—sample case, i.e. if |S;| = 2, the test may equivalently be based on only
one of Dy (t; (y—j,;)), ¥; € Sj. The modified test statistic

I I —-1/2
(Z Dy,-;z(t)) (Z 6§j;l(t)) (5.6)

1=1
is asymptotically standard normally distributed under the null hypothesis. The
above tests are readily generalized to hypotheses of the kind Hy : A 4 {k}|V\A

which can be reformulated as equality of |S4| hazards for each yy\4 and y;, # ys-

Example (continued): Testing in our example whether {1} /4 {2}|{3} is equiva-

lent to testing

H() . 012‘1(15) = oz2|0(t) and a2|13(t) = a2|3(t).
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The first part of the hypothesis is concerned with the situation where ey occurs
before e; and implies that the intensity for ey is then unaffected by the order in
which e; and e; occur. The second part consists of the same statement but for the
situation where e3 occurred before e;. In the following, we only consider the first
part of the hypothesis. Assuming that the three failure times 77, T%, and T; are
observable for all individuals we reduce the sample to those individuals where e,
occurred before e3, the sample size being now denoted by n?3. Choosing W (t) =
Zy.(t) = >r, 1{t < T} < T4} the total number of individuals where event e, has
not occurred before ¢ regardless of whether e; has occurred before we get
Dyy(t) = > Zop(Twam) — Y Zop(Tup)
Ty <t Tsa))<t

and

Dyjo(t) = Z Zy (Ts2)0)) — Z Z910(Ty(21),

Ta(aio) <t Taz)<t
where T2y denotes the points in time where event e, occurs for any of the indi-
viduals again regardless of whether e; has occurred before. Note that Z2|.(T5(2|1))
is a transformation of the range of Ty w.r.t. all points in time where an event
es occurs without any other event before or with e; having occurred before, i.e.
R(Ts2p)) = n* — Zy.(Ts2n)) + 1 (assuming that there are no censored observa-
tions). The resulting test may therefore be regarded as a generalization of the
Wilcoxon or Kruskal-Wallis test to right censored data. The estimated variances

and covariances in this situation are given by

Goo(t) = Z (Z2(Tu(21)) Z2io(To(z) — Zai0(Te21))?) »
Ty21H<t

. _ 2

out) = Y (Z(Tue) Zon(Te) — Zon(Tua)?)
Ts(2))<t

oo(t) = Z —Z910(Ty(21y) Z211 (Ti(2).))-
T2 <t

Since we are considering a two—sample situation the test may equivalently be based
only on the asymptotic standard normal distribution of Dy)o(t)/+/G00(t).
Another test results when choosing W (t) = 1{Z.(¢) > 0}. This yields

Zop(Tis2)))

Daa(t) = Noplt) = 3 Z 0wy

Ty21H<t
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and

Zoo(Ts(21))
Dap(t) = Noo(t) — > 52208,
Ty(2) <t 221 (Togat)

where the last terms may be regarded as the number of events {77 < T» < T3} and
{T, < T} < T3} expected under the null hypothesis, respectively. The corresponding
test is known as log—rank test for survival data analysis. The estimated variances

and covariances in this case read as

. Zs0(Ts(2)) Zoio(Ty(a)-
bolt) = S el Zased)
Ty <t | ( 2| ( (
(T
Zy)(T.

s(
. Zon(Ts
Ull(t) — Z 2|1 ((

2
Loz <t

)
) Zop (Tya.
S (- ey

2
)

. Za(Ts219) Zon Tz )
N - B .
Gor(t) Z Z5.(Ts(2))?

Taa1y<t

The analogous quantities for the second part of the hypothesis can be calculated in
a similar manner by considering the subsample of individuals where T3 < T5. In-
serting all these quantities for ¢ = 7 in the test statistic (5.5) or (5.6) and comparing
this with the corresponding quantiles we get an asymptotic level a test for the above
hypothesis. //

Product—limit estimator for composable Markov processes
In the special case of Markov processes one might additionally be interested in

estimating the transition probabilities
Pyy(s,t) =P(Y() =y'|Y(s) =y), s<ty,y €S

The product-limit estimator (Aalen and Johannsen, 1978) is based on the above
Nelson—Aalen estimator since the matrix P(s,t) of all transition probabilities can
be expressed as function of A(¢; (y,y')), y,y’ € S, defined above. The matrix version

of the product-limit estimator is given as
P(s,t) = [[ (1+AAT), (5.7)
s<Tr<t

where T, are the observed transition times and I is the |S| x |S| identity matrix.

Thus, the product—limit estimator is a finite product of matrices. If one or more
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transitions are observed at time u, then the contribution to (5.7) is a matrix with
entry (y,y’) equal to AN (u;(y,y'))/Z(u;y) for y # y' and entry (y,y) equal to
1 — AN(w;y)/Z(u;y) with N(u;y) = > .., N(u; (y,y')). Note that under the
model assumption there is only one transition at a time with probability one so that

in general N(u;y)/Z(w;y) = Z(u;y) ™"

and only one of the (y,y’) entries differs
from zero.

In case that Y is assumed to be a CFMP with local independence graph G = (V, E)
the non—-diagonal elements of the matrix of the estimated transition probabilities

reduce to /
AN (45 (Yel)» Yi))

Z (u; ycl(k))

p(s,t; (y,y')) =

for y,y' with y; # y;.

5.3 Regression models

So far we considered models where the intensity process might depend on the ques-
tion whether another event has previously occurred but not on the time of this
occurrence. When the latter kind of dependence is to be included one has to turn to
regression models, where the intensities are specified conditional on a suitably cho-
sen covariate process. In the following, we still consider the absolutely continuous
case, but where the mark specific individual intensity processes for n independent

individuals are given as
M (10) = ol (110, X (1) Z1(t), k=1,....K;i=1,... m;teT, (5.8)

where X? is the covariate process of the i-th individual. This process should be F,—
predictable and locally bounded. For our purposes, the covariates X*(¢) are assumed
to be functions of the individual strict pre~¢ history H}_, whereas Zj(t) usually in-
dicates whether the individual is at risk for event e, at time . However, X' may in
general include further possibly fixed covariates but we will not take this explicitly
into account. The only difference between the above model (5.8) and the previous
multiplicative intensity model (5.2) is that oy depends through the covariates on 4

and thus prevents the aggregation of the mark specific counting processes.
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A special class of models for o (¢, X*(t)) is now focussed on. This is the class of

multiplicative hazards or relative risk regression models, where
0l (116, X(1) = () (BTXL(D), k=1,....Kii=1,..,n,  (5.9)

for a nonnegative real function r(-) so that @ = (v",8")". In the above model
formula, of (t|7) are the baseline hazard functions which are often left unspecified,
and X¢(t) are those covariates which affect the type k intensity. These have to
be computable from X‘(¢) and F,-. The model is called relative risk regression
model because the regression parameter vector 8 specifies how the ratio between
the hazards of different individuals depends on the covariates. In particular, if
r(-) = exp(-) we have that the ratio of the hazards of two individuals with covariates
X*(t) and X7(t) is simply given as

exp (BT (Xi(t) - X (1))

Note that in the above notation we have that the vector of regression parameters 3
is the same for all type k£ intensities. This can be obtained by a suitable augmen-
tation of the mark specific parameters and covariate vectors and it allows for the

possibility that there are parameters common to all transitions.

Example (continued): Consider again the marked point process with three non—
recurrent events £ = {e1, ey, e3} but without any local independence assumptions. In
the following any covariate process is based on the history process Hf = {(Ts, E)|s =
1,...,8; Ts < t, Es; € £}. Let us consider different plausible models and discuss
their implications.

One of the most simple models is to assume that the baseline hazards for an event
are the same regardless of what has happened in the past and to let the covariates
just indicate which events have previously occurred, i.e. Xi(t) = (1{T? < t}, 1{Ti <
t}, 1{Ti < t})7. Assuming that the occurrence of an event affects the intensities for
the other two events in the same way we may specify 8 = (81, 82, 83)" so that X}
essentially equals X* but contains a zero in the k-th components. The intensities

are then given as

A () = op@O)r(B Ty <t} + BT <thH1{t <Tp}, k=1,23; j,l#k,
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implying that the occurrence of an event e; changes the hazard for e; by a factor
exp(f;). In this model, local dependencies are solely governed by the regression
parameters. Since these are the same for all intensities it is not possible to model
different local independence structures for the different events. It makes there-
fore more sense to consider 8 = (Bif2, Buj3, B, Boiz: B, B32) T and Xt = (1{T} <
th, 1{T¢ < t},0,0,0,0)", X, = (0,0, 1{T¢ < t}, 1{T% < t},0,0)" etc. This results

in the following intensity processes:
X (t) = o () (B, H{T) <t} + Bl {T} < tH)1{t < Tf}, k=1,2,3. (5.10)

Now, each local independence is equivalent to a vanishing regression parameter, for
instance i, = 0 implies {2} /4 {1}|{3}. Note that the above model does not allow
for interactions. This would require additional regression parameters and covariates
Brji and 1{max (T}, T;) < t}, respectively.

Still, the foregoing models include no dependence on the time of previous events.
This could for instance be achieved by choosing covariates with components based
on TP1{T} < t} or on the durations (t — T{)1{T} < t}, k = 1,..., K, resulting in

intensities of the form
Z|jl(t) = Ozg(th)r(ﬁmﬂ? + 5k|17}i)1{max(7}?,Tli) <t <T}
or
Z\jl(t) = ag(t\'y)r(ﬁw(t — T;) + Bru(t — 77))1{111&)((7?,77) <t< T}

Here, the regression parameters 8 = (Bi/2,...,/3332) " measure the influence of the
occurrence times of or the duration since previous events, again assuming no inter-
actions.

Since in the foregoing models the baseline hazard is still the same for an event e
regardless of the past, local independence restrictions only affect the regression pa-
rameters. A last generalization therefore consists in allowing for transition specific
baseline hazards, i.e. 0‘2|0’ a2| i 042”, and a2| ji- The transition specific intensities )\fc‘ i

e.g. for the duration model are then given as
ko(t) = ao(tly)r(0)1{t < min(TY}, T3, T5)},
i) = o) (Bt — 1)) H{T; < t < min(T}, T7)},

Z|jl(t) = aguz(t")’)r(ﬁku(t —T}) + Beu(t — T7))1{max(T}, T}) <t < Tp}.
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Again, one could for instance include multiplicative interactions by a suitable aug-

mentation of the covariate vector and additional interaction parameters Sy ;.  //

In the next section, we present maximum likelihood estimation and semiparametric

estimation for the special case of multiplicative hazards models.

5.3.1 Maximum likelihood estimation

Assume that in the multiplicative intensity model (5.8) 8 = (0;,...,00)" is a Q-
dimensional parameter with similar assumptions as in Section 5.2.1. The main
example is again the relative risk regression model above with @ = (7, 87)T where
a variety of well-known models is already covered when choosing r(-) as the expo-
nential function. This includes by a suitable specification of o (¢|+) for instance the
simple exponential regression, the Weibull regression, and the Gompertz-Makeham

regression.

The likelihood is similar to the non-regression situation but with an additional
product over the individuals, i.e. L(¢|@) = [ [, Lk(t|@) with the factors equal to

t _ ,
H H o (6, X'( S(k ) - exp (—/ Zafc(sw, X7(s))Zi(s) ds) . (5.11)
i= lT;( = 0 j=1

where Tj(k) are the points in time where an event e, occurs for the i-th individual.
Let C(7]0) and U(7|@) be the loglikelihood and the score vector at the maximal
observation time 7. In the multiplicative hazard model (5.9) with v = (v1,...,7&8) ",

B=(B,---,B8p)", the score functions are for instance given by
! T~ci 9 4
-3y PO 2 rostofirin) - [+ (67X0) el e
k=1 i=1 0 r

r=1,..., R, and

n

K

0 T 9]

—C(7]0) = 9 (BTXL(T —/ Qtly)mor (BTXL()) dt

o5, 19 =23 le 55, 08 (rBTXi(Ti)) = | ol zer (B7Xk(0)
s(k)f

p=1,..., P. Under similar regularity conditions the maximum (partial) likelihood

estimator defined as solution of U(7]|@) = 0 has the same properties as given in



5.3. REGRESSION MODELS 143

Section 5.2.1. This also holds for the corresponding likelihood ratio test.

With regard to inference about local independence structures a simplification is
again mainly given if the parameter vector may be partitioned into mark specific
subvectors 01, ..., 0k, allowing for a separate maximization of the factors Ly (7|0y).
Assumptions about local independence in regression models of the above kind (5.8)
and especially (5.9) usually affect the regression parameters which specify the depen-
dence on earlier events. The baseline hazard is only affected by a local independence
restriction if it is allowed to be different depending on past events. A general formu-
lation for multi-state processes associated to general marked point processes would
be notationally quite complicated so that we restrict ourselves in the following to

the same example as before.

Example (continued): For the marked point process with the three non—recurrent
events, we now assume a simple exponential regression model, where the baseline
hazards are transition specific constants and r(-) is the exponential function. In
addition, we also assume transition specific regression parameters as described above
without interactions. In case that nothing is known about the local independence

structure the intensity processes are given as

io(®) = o 1{t < min(T},T3,T5)},
i) = exp(BryTy) HT; < t < min(T, T7)},
Aktt) = Yapi eXP(ﬁk\jTj + ﬂkuTl) 1{max( j,Tl) <t <TH.

Here, the parameter vector @ may obviously be partitioned into mark specific sub-
vectors Ok = (Vk(o, Velj» Velt> Vit Brlj» Beir) T and the likelihood can be maximized by
separately maximizing its mark specific factors (5.11). To derive the score functions
let Axj. = Agjo + Akjj + Agp + Agpjz and partition the sample into those individuals Iy
where {T} < min(T3,T%)}, I, where {T% < T} < T3}, and Iyj3, 123 analogously.
Still assuming that no censoring takes place, this yields for the foregoing model and

for £ =1 the following score functions w.r.t. ~:

0 0
C , = 1 /\Z
310 (7], B) Z B 0g(71)0) — /0 8’)/1‘0 Z

1€l1)o ’Yl‘
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Lol N i i o
= — — min(77,7T,,T3),
Y0 ?_1: (T1, T3, T3)

n

0 0 T 0 ;
C , = | - = A(t) dt
871|2 1(T|’)/ ,3) Z B Og(’hp) /0 (9’)/1‘2 Z 1 ( )

|Il 2| i i i
= BN exp(BupTE)(TF — T3)
71|2 i611|2
— > exp(BipTy)(T5 — T5)1{T; < T3}.

1€1y)23

Analogously to the latter we have #3”301 (1|7, B) and similarly

1123 : o o
Gl = ex T5 + B13T3)(T] — max(Ty, T3)).
D112 (7], B) Y13 Z p(B12T5 + BusTs) (T} (T3, T3))

1€l1)23

From the above formulae we can see that the baseline hazard corresponds to the
ratio between observed transitions and (weighted) exposure times. This reveals
that individuals for whom the corresponding transitions could not be observed also
contribute through their exposure time. To derive the scores resulting from differ-
entiation w.r.t. B we have to consider the subsample I, U I o3 of those individuals

for whom the event ey occurred before e;. Then, we get

Ti .
CirbB) = 3 (iwuf;)— /| aimeXpqu;mt)

0
9B B2 Bij2

+ Z (—2(51|2T§+513T3i)

- / g exp(BusTH TS < Ti} dt
T3 3ﬁ1|2

9 . .
— / o123 €xp (B2 Ty + BusT3) di

TivTi 8ﬂ1|2

Y. L= mpLexp(BpD) (T - T)

iEIl‘2U11|23 iEIl‘Q
— Y (mpTsexp(BuoT)(T5 — T5)U{T; < Ti}
ZEII‘QS

+1(23T5 exp (B2 Ty + BusT3) (T} — max(T3, T3))
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where sVt = max(s,t). A similar expression can be obtained for 6,3 o Ci(7|v, B).
The scores for k£ = 2,3 can also be computed analogously.

In the present class of regression models, assumptions concerning local independen-
cies affect both, the baseline hazard as well as the regression parameters. E.g. the
local independence {2} /{1}|{3} in the present exponential model is equivalent to
the parameter restrictions 712 = Y1j0, Y1/23 = 7153, and B2 = 0. The score function

w.r.t. v in such a restricted model is then simplified to

0 [0 U Ty
—C , = min (7%, T?),
8’Y 10 1( |7 IB) ’Yl‘O Z 1

0 113 U Iyjo3] N i ,
Z Ci(rly,B) = 2Bzl exp(Bys T3 (TH — Ti),
o1 (7], B) Y Z p(BusTs) (17 3)

iEIl|3UIl‘23

and differentiating w.r.t. B3 yields

o - . . o
Cirlv.B) = D (T3 — T3 exp(BrsT) (T — T3)) -

0B i€ 1413013 23

As noted earlier, another sensible model specification might be that all dependencies
on earlier events are governed only by the regression parameters. This implies that
we set a priori g0 = Yk|; = Yk = Vkljt = k- Lhen, the restrictions induced by local
independencies affect only the regression parameters. If this kind of model assump-
tion seems reasonable inference concerning local independence structures might as
well be based on the semiparametric procedures where of is left unspecified. Since
the implications of local independence structures are in both situations almost the
same as far as the estimation of the regression parameters is concerned we refer to

the next section where such semiparametric models are treated. //

Although in the above example we assumed that for all individuals all three failure
times T}, T%, Ti are observable, recall that the properties of the estimators remain

the same under independent right censoring and left truncation.

Finally, let us mention that likelihood ratio tests of local independence might be
constructed in a similar manner as in Section 5.2.1 but we refrain from going into

details, here.
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5.3.2 Semiparametric estimation for multiplicative hazards

In this section, we still consider the multiplicative hazards model (5.9) but with the
mark specific baseline hazards o () left unspecified. They are only required to be

nonnegative and to satisfy

¢
Ag(t):/ooz,%(s)ds<oo, k=1,...,K.

Note that the baseline hazards are now assumed to be the same for any event e
without further subdivision into transitions between different states corresponding to
past events. Thus, the dependence on previous events is only modeled via the regres-
sion parameters and the covariates but not through the baseline hazards anymore.
For local independence graphs, the covariates X’ contain at least the information on
the strict pre—t history Hti,, possibly transformed to the duration since the previous
events. The likelihood L(7|A°, B) now takes the following form:

TTIT TT (AT X)) eXP( Z/ (8" Xi( >>dA2<s>)'

i= lk:EVT() keVvV

The estimation of the regression parameters makes use of the fact that for a fixed

value of B the Nelson—-Aalen estimator for the unspecified baseline hazard is given

. t 1 Zk S 1
Ate) = | Z’?ir((ﬂ)T;i(} 21: Z (ﬂTX”(TQk)))'(M)
Inserting N AN(1)
dAL(t|8) =

S r(BTX(H)

in the above likelihood L(7|A% B) and leaving out the factors that do not depend
on B yields the partially maximized likelihood (Gill, 1984)

TXZ (Tj(k)))

1
1= kEVT’( <

which is the Cox partial likelihood (Cox, 1972, 1975) for the situation of censored

survival data and fixed covariates, as is well-known for r(-) = exp(-). Heuristically,



5.3. REGRESSION MODELS 147

one can say that the factors of the above likelihood (5.13) correspond to the condi-
tional probabilities for an event e, to occur to the i-th individual at the specific time
Tj(k) given that the event e, occurs to any individual at that time. It can be shown
under regularity conditions (cf. Andersen et al., 1993, pp. 496) that the estimator
resulting from maximizing the above (partial) likelihood (5.13) is asymptotically

normally distributed.

Again, if there exist distinct parameter vectors 3, ..., Bk such that 7“(,E'ITX§C (1) =
r(B; X(t)), k = 1,...,K, we can maximize the above likelihood by separately
maximizing the mark specific (partial) likelihoods Ly (7|8,). In case that r(-) =
exp() we get from (5.13) the corresponding (partial) loglikelihoods

G =3 3 [ﬁZX’ )~ log (zexp (BIXI(T) z,z<T;<k>>)

=1 Tsl( )_ j=1

The separate maximization together with the implications of local independence

restrictions is the objective of the following corollary.

Corollary 5.3.1 Semiparametric estimator for exponential regression

Consider n independent marked point processes {(T¢, E*)|E' € £,T! € T}, € =
{e1,...,ex}, and their corresponding individual counting processes N}, k € V =
{1,..., K}, with intensity processes that hold the multiplicative hazard model (5.9)
and 7(-) = exp(-). Let further the covariate process X' be a function of the indi-
vidual histories H;_. Assume that G = (V, E) is the local independence graph of
(Ni,...,N%),i=1,...,n,and that there exist distinct parameter vectors B, ..., Bx
such that exp(8' Xi()) = exp(8, X(t)), k € V. Then, it holds:

(1) The above model is equivalent to a multiplicative hazard model given by
AL(t) = a2 (t) exp (ﬁ,;cl(k)xgl(k)(t)) Zi), k=1,...,Kii=1,...,n,

where Xﬁ:l(k)( ) is a function of the reduced history H = o{(T%, EY)|E! €
{exlk € d(k)},0 < T} < t} and By, e contains only those components of 8y

which govern the dependence on this history.
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(2) The semiparametric estimators Bk|cl(k), k € V, of the regression parameters
given as solution of the score equations
S (i)
7_|:B Z Z ( Cl(k lc))_(o)iz() :O: k:]-a"'aKa
=1 T < Sk (Ts(k))
with
Z €Xp (lBk\cl(k cl(k) (t)> Z] (t)
and
St T xi |
ZXcl(k exp (ﬂk|c1(k)Xél(k) (t)) lec (t)a
have the following propertles: Under the regularity conditions given in An-
dersen et al. (1993, pp. 496) there exists a unique solution with probability
tending to one and Bk|c1(k) Ei B2|C1(k), where the latter is the true parameter.
In addition, we have the asymptotic distribution
A D
V(B — 62|c1(k)) = N(0, Zx(7)).
A consistent estimator of the inverse covariance matrix ¥ (7)~! is given by
Ik(7-|,ék‘d(k)) /n, i.e. by inserting the estimated regression parameters in the
information matrix
5(2 Tz ) S(l)( o)
7'|Bk\cl (k) Z Z ; ® )
=1 TT k (Ts(k))
where "
@) - - : :
S () = Z(chl(k)X]cl(k) (t) exp (lBk|cl(k)X]c1(k)(t)) Zj(t).
j=1
(3) For the semiparametric estimators of the baseline hazards

AByar) =3 3 ! ™

=1 7%, <t E] 1 €XP <:Bk\c1(lc cl(k )(Tsz(k)

resulting from inserting Bk‘d(k) in (5.12), it holds that

(Va(AL(|Byaw) — Rk =1,.... K)

converges weakly to a K—variate Gaussian process with mean zero. //
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The above results remain valid for more general risk functions r(-) under some ad-
ditional conditions for the existence of a solution to the score equations. Further,
all results have been stated under the assumption that there are no ties, i.e. no two
events at the same time. Although ties have probability zero they may in praxis
occur due to limited measurement precision. Then, the estimators can be adjusted

by allowing for several jumps at a time.

It is straightforward to construct tests of local independence from the above asymp-
totic distribution of B following the likelihood ratio principle. The hypothesis
Hy : {5} # {k}V\{Jj,k} is equivalent to B,; = 0, where By, is the vector of
parameters that govern the effect of the history H;_ on Ai(t). The degrees of free-

dom depend of course on the dimension of this parameter.

Example (continued): Considering again a marked point process with £ consist-
ing of three non-recurrent events and local independence structure given in Figure

5.1, we may specify the mark specific intensities as follows:
A(t) = ed(®)1{t <1},
/\é(t) = a}(t) exp(ﬂ2T|13 i1,3}(t))1{t < TQi}’
X(t) = al(t) exp(ByX5(1)1{t < T3},

where X, 4,(t) and X5(t) are functions of Ht{,l’?’};i and H',

respectively. As in
an earlier example (5.10), the covariate processes might for instance just indicate
whether the other events have occurred or not, their occurrence changing the baseline
hazard multiplicatively. Thus, Xil,?)}(t) = ({7} < t}, 1{T < t}) and Xi(t) =

1{T: < t} which together with Baj13 = (B21, Baj3) and P32 yields the score equations

|I ‘ “ ‘I§|1| eXp(ﬁ?\l) + |I§|13| eXp(ﬂ2|1 + ﬁ2\3)
2|1 i i i i )
| — | L] + |15 | exp(Ban) + | I35] exp(Bajs) + [Lypr5] exp(Ban + Bai3)
Ly - ‘I§|3| exp(fajs) + |I§|13| exp(Ba + Ba3)
2|3- i i i i )
| i1 ‘Iz|o| + |Iz\1| exp(ﬁg‘l) + ‘I2|3| eXP(52\3) + ‘Iz|13| exp(ﬁm + 52\3)
Ly, . \I§|2.| exp(Bs)2)
3/2-

— [I3) U I, | + 115, | exp(Bsp2)’
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where Iy = Iy + Iy13 and Iéll = {j|T? < Ti < min(T!,T¢);j =1,...,n} and the
other quantities are defined analogously. Thus, the estimators (31, B33, and 33, are
given by equating the number of observed transitions with the expected ones.

If we want to test the hypothesis Hy : {3} /{2}|{1} which is equivalent to B3 =0

then the estimator BQH of Bo1 under the null hypothesis is given as solution of

I.| = i ‘I§|1.‘ eXP(ﬂgu)
21| = ; - - )
| i=1 |I2\0 U 15\3‘ + ‘I§|1.| exp(ﬁml)

It follows that the ’likelihood ratio’ test statistic for the above hypothesis reads as
2" (Bon 1T} < T3} + B U{T3 < T3} — Bon (T} < T3} -
i=1

(113, exp(ar) + Il exp(Bas) + ol exp(os + Bos) — 1Ll — 1Tl exp(Bn)) )

This is approximately y?-distributed with one degree of freedom as implied by
Corollary 5.3.1. //

Note that in the preceding example we did not consider dependencies on the times of
previous events although this was used to motivate this section. However, the above
considerations may easily be generalized to this kind of dependencies requiring even

more notational effort so that we desist from doing so.



Discussion

Local independence is an intuitive association concept for events histories. It relates
the presence of a process to the past of another process against the background of
a specific dynamic system described by a multivariate stochastic process. In this
thesis, it has been shown that a straightforward and meaningful graphical repre-
sentation of local independence structures is possible, comprising more information
than only pairwise local independencies. The central result, in this respect, is given
by the equivalence of the dynamic Markov properties in Chapter 4. In particular,
the graphical d—separation provides a simple method to assess whether local inde-
pendence structures remain valid even though part of the information on past events
is ignored. In the following, we want to stress the main implications of this result

and address some open questions that might be subject to future research.

Let us illustrate the importance of the separation theorem for statistical modeling
and inference by some of its implications. Basically, d—separation facilitates the
identification of subsets of events, so—called collapsible subsets, which can be ana-
lyzed separately without distortion of the independence structure. This property of
the model clearly contributes to reduce the complexity of any statistical procedure.
The collapsibility property may also be used to decompose a graph into sensible
subgraphs in order to simplify the interpretation.

Further, it is well-known that in observational studies a problem arises when im-
portant and possibly confounding variables or processes remain unobserved. It is, of
course, impossible to eliminate this danger completely. Yet, it might be instructive
to explicate the conditions required for accurate inference from observational data
so as to justify at least their plausibility in a given data situation. It seems desirable

to follow—up this topic of causal inference from local independence graphs beyond
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the results of the present thesis.

Another aspect concerns possible simplifications of statistical inference procedures
implied by the separation theorem as described in Chapter 5. The power of a sta-
tistical test is usually increased when the model can be reduced to a submodel that
contains only the minimal information relevant for the considered hypotheses. The
same effect can be obtained for the precision of estimation procedures. A nonpara-
metric statistical test for local independence without the Markov assumption for the

underlying process has not been derived yet.

The topic of estimation and testing is closely related to model selection procedures
which is obviously of major importance for the practical use of local independence
graphs. Simple stepwise procedures, such as forward and backward selection, might
be immediately applicable to local independence graphs based on the statistical
tests presented in Chapter 5. Such standard procedures, however, usually do not
exploit the graphical structure and the collapsibility properties. These could en-
ter the analysis as follows. A statistical test of local independence, i.e. a test on
whether a specific directed edge should be included in the graph or not, is always
conditional on some history. Due to the different dynamic Markov properties the
conditioning set of histories may be chosen in different ways and the conditions for
collapsibility permit to reduce this set to a minimal relevant, not necessarily unique,
subset. Thus, an edge—deletion or —inclusion test can be performed in several ways.
On the one hand, this can be used to double—check the test decision. On the other
hand, it would be desirable to derive criteria and algorithms for an ’optimal’ choice
of the conditioning set, as for instance maximal power of the corresponding test as
mentioned above. Further, it is not satisfactory that the standard selection pro-
cedures issue only one final model although the data usually support more than
one model. A method yielding several plausible models could be more informative.
It therefore seems reasonable to explore alternative strategies, as for instance the
Edwards—Havranek procedure (Edwards and Havranek, 1985) or Bayesian model

selection, with regard to their applicability to local independence graphs.

Besides the separation theorem and its implications for statistical inference, a re-

markable property of local independence should be emphasized. It is an asymmetric
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irrelevance relation. Although several examples for asymmetric irrelevance relations
may be found in the literature on probabilistic modeling, no general framework has
been developed yet. The findings presented in Chapter 3 regarding the axioms of
asymmetric graphoids as well as the derivation of the asymmetric §—separation for
the representation of these relations (cf. Chapter 1) may constitute a first step in
this direction. An interesting aspect for future research in this context concerns the
completeness of J—separation. The question, whether we can obtain an exhaustive
characterization of local independence structures by the graphical representation
proposed in this thesis, remains open. Similarly, further investigations are needed
to find out whether specific classes of point processes may be regarded as "Markov—
perfect’ with respect to a local independence graph, i.e. they should comprise no

more than those independencies that can be read off the graph.

Additional generalizations seem possible with regard to the underlying processes.
Although the presentation of local independence graphs is mostly restricted to the
framework of marked point processes and therefore mainly applies to event history
data, recall that the original definition of local independence as given in Chapter 3
refers to general multivariate processes which allow for a Doob—Meyer decomposi-
tion and could cover the continuous as well as the discrete time situation. Moreover,
the heuristic interpretation of local independence as relation between the presence
of one process and the past of another one is obviously not restricted to marked
point processes. These two aspects suggest that a substantial generalization is pos-
sible. However, since local independence is formally defined as a property of the
compensator it is not possible to capture all forms of dependencies through this
concept in more general processes. In addition, the orthogonality of the martingales
does not ensure independence of the increments but only uncorrelation and it is
furthermore an unrealistic assumption for the discrete time situation. An applica-
tion of the main ideas presented in the preceding chapters to other frameworks than
marked point processes would therefore require considerably more investigation re-
garding the properties and interpretation of the resulting graphs. Nevertheless, it
has become clear that local independence graphs constitute a promising approach to
graphical modeling of event history data and an extension to more general dynamic

systems is by all means desirable.
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Appendix A

Conditional expectation and

conditional independence

In this chapter, we develop the general notions of conditional expectation and con-
ditional independence. We adopt a rather technical approach in order to clarify the
relation among these two concepts. In addition, this approach is chosen with view to
the theory of martingales presented in the next appendix. For a thorough treatment
of conditional expectation we refer to Bauer (1991), or Génssler and Stute (1977),
and for conditional independence to Dawid (1979; 1980). Overviews regarding these
topics may for instance be found in Shao (1999) and Lauritzen (1996), respectively.

A.1 Conditional expectation

The notion of conditional expectation is central to conditional independence as well
as to the martingale theory used in this thesis. We therefore give a brief overview
over the definition as well as some basic results. We restrict ourselves to real-
valued random variables, but the results can be generalized e.g. to set—valued random

variables such as the history processes considered in Chapter 3.

Definition A.1.1 Conditional expectation

Let X be a random variable on (2, F, P) and let G be a sub-o—algebra of F. The
conditional expectation of X given G is denoted by E(X|G) and given by any random
variable Y that satisfies
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(1) Y is G-measurable and

(2) [pYdP = [,XdP forall Beg. //

The conditional expectation E(X|G) can be viewed as the information on X con-
tained in G. If F(]X|) < oo then the conditional expectation exists. It is in general
not unique, but if Y and W are two G—measurable random variables that satisfy
the above conditions we have P({Y # W}) = 0, i.e. they are equivalent. Different
conditional expectations of X given G are called versions of E(X|G). In the follow-
ing, E£(X|G) is treated as if it was unique and all statements concerning conditional
expectations are only P—almost sure. Some important properties are given in the

next proposition.

Proposition A.1.2 Properties of F(X|G)
Let X be a random variable on (2, F, P) and G a sub-o-algebra of F. Assuming

that the following conditional expectations always exist, we have:
(1) G ={0,9} implies E(X|G) = E(X).
(2) E(E(X|G)) = E(X).
(3) If X is G—measurable, then F(X|G) = X.

(4) For sub—o-fields G; C Gy C F, we have E(E(X|G1)|G2) = E(E(X|G2)|G1) =
E(X|Gy).

(5) If Y is G-measurable, then E(XY|G) = YE(X|G).
(6) E(aX +0b0Y|G) = aE(X|G) +bE(Y|G) for any constant real values a and b.

(7) For any convex, real-valued function g we have E(g(X)|G) > ¢(E(X|G))
(Jensen inequality). //

Proof: Bauer (1991, pp. 121 ) a

Let us now focus on the case, where the conditioning o—algebra is generated by a
random variable. Let X be a random variable on (€2, F, P) and B the borel o—field
on R. The o—field generated by X is defined as o(X) = {X~!(B)|B € B}.
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Definition A.1.3 Conditional expectation for random variables

Let (2, F, P) be a probability space and X and Y two random variables on this
space. Then, the conditional expectation of X given Y, denoted by E(X|Y), is
defined to be the conditional expecation of X given o(Y), i.e. E(X|o(Y)). //

The conditional expectation can be calculated by exploiting the following results.

Lemma A.1.4 Factorization
Let (2, F, P) be a probability space and X and Y two random variables on this

space. Then, there exists a Borel function g on the space of Y such that
E(X]Y)(w) = g(Y(w)).
This is called the factorization property for conditional expectations.

Proof: Génssler and Stute (1977, p. 190). O

We may therefore define E(X|Y = y) = ¢g(y) which is no random variable anymore
but a real number. Further, we define Px as the probability distribution induced
by a random variable X, i.e. Px : B — [0,1] with Px(B) = P(X~'(B)), B €
B. Similarly, the joint distribution Pxy of X and Y is given as Pxy(B,C) =
P(X YB)nY 1(C)), B,C € B. Consider now the absolutely continuous case,
where this joint distribution has a joint density f : R2 — R*. Then, we have the

following corollary.

Corollary A.1.5 Calculation of conditional expectation

Under the foregoing assumptions and provided that

f0) = [ f@y)da >0,
the conditional expectation is given as

d
BX|Y =) = L2 @W AT b imost all y € R

f()

Proof: Bauer (1991, p. 130). !
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A similar result can be obtained for discrete probability distributions. Due to the
preceding corollary, it makes sense to define the conditional density of X given Y =y

as

faly) = 14

for f(y) > 0.

All the foregoing results can be applied to conditional probabilites by noting that
P(A|G) = E(1{A}|G), A € F. More precisely we have:

Definition A.1.6 Conditional probability

Let (€2, F, P) be a probability space and X and Y two random variables on this
space. The regular conditional probability of X given Y = y denoted by Pxjy—, is
defined as function from B x R — [0, 1] with

(1) A = Pxjy—y(Aly) is a probability measure on B for all y € R, and
(2) y — Pxjy=y(Aly) is a version of P(X~'(A)|Y =y) for all A € B.

Instead of Px|y—y(-|y) we also write Pxy(-|y). //

Conditions for the existence and uniqueness of regular conditional probabilities may
be found in Bauer (1991, pp. 396) or Génssler and Stute (1977, pp. 196). With
this notion of conditional probability it can be shown for a Borel function g with
E(lg(X,Y)|) < oo that

E(gX, V)Y =y) = /g(:v,y)dny(x\y)-
R
In particular, it follows for the case where a density exists that

Pxy(AlY =y) = /Af(fr‘y) dx

for all y € {fy > 0} with fy(y) = [ f(z,y) d=.
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A.2 Conditional independence
Before defining conditional independence we consider marginal independence.

Definition A.2.1 Independence
Let (€2, F, P) be a probability space. A family (A;);cr, 4; € F, is independent if for
any finite subset J C I

P (ﬂ Aj> =[[P@A). (A1)

/]

Independence of random variables is simply defined as independence of the corre-

sponding induced o-algebras.

Definition A.2.2 Independence of random variables

A family (X;);er of random variables on (2, F, P) is independent if the family of
o—fields (o(X;))ics is independent, i.e. if (A.1) holds for any finite subset J C I and
any (A;)jes with A; € o(Xj). //

In particular, we have the following implications of independence for conditional

expectations.

Corollary A.2.3 Independence for conditional expectations
Let X and Y be random variables on (2, F, P). If X and Y are independent, we
have E(X|o(Y)) = E(X). //

An even stronger result is given in the next proposition:

Proposition A.2.4 Independence
Let X and Y be random variables on (2, F, P). The following statements are

equivalent:
(1) X and Y are independent.
(2) Px|y=y = Px for Py—almost all y.

(3) Px,y = PxPy.
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(4) If the random variables have the (joint) cumulative distribution functions Fy y,
Fx, and Fy, then Fxy(z,y) = Fx(z)Fy(y) for all z,y.

Proof: Bauer (1991, pp. 65, 401), Shao (1999, pp. 34). a

The above result can be generalized to vector-valued random variables. In particular
we have that a vector X = (Xj,..., Xk) of random variables is independent iff the
joint probability Px, . x, is equal to the product of the marginal distributions
[1Px,. From this it follows for the absolutely continous case that independence is

equivalent to the factorization of the density

K

flas, - zx) =[] flaw),

k=1

where f(z1,...,2k) is the density of the joint distribution Px, . x, and f(xy) of

the marginal distribution Py, .

Now, we turn to conditional independence which is slightly more complicated. How-

ever, the following definition of conditional independence for events is well-known.

Definition A.2.5 Conditional independence
Let (2, F, P) be a probability space. For disjoint subsets A, B,C € F, with P(C) #
0 we say that A is conditionally independent of B given C' if

P(AN B|C) = P(A|C)P(B|C),

where P(A|C) = P(ANC)/P(C) and P(B|C) analogously. //

In order to generalize this idea to the conditional independence of random variables,

recall that a conditional probability is a specific conditional expectation.

Definition A.2.6 Conditional independence for random variables

Let X,Y, and Z be random variables on (€2, F, P). Then, we say that X and Y are
conditionally independent given Z if for any A € o(X) there exists a version of the
conditional probability P(A|Y, Z) which is o(Z)-measurable. //
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Conditional independence is denoted by X 1L Y|Z (Dawid, 1979, 1980). The above
definition implies that if X 1L Y|Z then the probability distribution of X given
knowledge on both values of Y and Z remains the same if YV is disgarded, i.e. Y
contributes no more information than already included in Z. We have the following

equivalent and more familiar characterizations of conditional independence.

Corollary A.2.7 Conditional independence and factorization
Let X,Y, and Z be random variables on (€, F, P).

(1) If X,Y, and Z are discrete, the conditional independence X 1L Y'|Z is equiva-

lent to
PX=z,Y=ylZ=2)=PX =2z2|Z=2)PY =y|Z =2
for all z,y, z with P(Z = z) > 0.

(2) When the three variables admit a joint density w.r.t. a o—finite product mea-
sure v, we have the following equivalent expressions.
X1Y|Z
- fXY|Z($ay|Z) = fX|Z($|Z)fY|Z(y|Z)
& fxyz(zly, 2) = fx)z(z]2)
& fxvz(r,y,2)f2(2) = fxz(2,2) frz(y]2).

Proof: Dawid (1979), Lauritzen (1996, p. 28). O

It is easily checked that conditional independence satisfies the graphoid axioms de-
fined in Chapter 1 (cf. Lauritzen, 1996).

Corollary A.2.8 Graphoid axioms
Let X,Y, and Z be random variables on (2, F, P) and let h denote an arbitrary
measurable function on the space of X. Conditional independence satisfies the

following properties:
(C1) Symmetrie: X1 Y|Z = Y1 X|Z,

(C2) Decomposition: X L Y|Z and U = h(X) = UL Y|Z,
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(C3) Weak union: X1 Y|Z and U = h(X) = XU Y|(Z,U),
(C4) Contraction: X1 Y|Z and X L W|(Y,Z) = X 1L (W,Y)|Z.

In addition, it is obvious that X 1L Y| X is always true, i.e. redundancy holds.
Further, if the joint density of the involved variables w.r.t. a poduct measure is

poisitve and continuous, we have

(C5) Intersection: X L Y |Z and X Il Z|Y then X 1l (Y, Z).

Proof: The proof of (C5) can be found in Lauritzen (1996, p. 29). O

The above definitions and results can be generalized to random vectors X = Xy =
(X1,...,XKk), V=A1,..., K}. Then, we write X4 1L Xp|X¢ or briefly A1L B|C to
denote that the subvector X 4 is conditionally independent of X g given X. For the
graphoid axioms we then mostly have that h(X) denotes a subvector of X so that
e.g. the property of decomposition may alternatively be formulated as: A1l B|C
and D C A then D1l B|C. The latter interpretation is used in Chapter 1.



Appendix B
Stochastic processes

In this appendix, we give a brief overview over the terminology used in the preceding
chapters and state some basic results, in particular the Doob-Meyer decomposition.
Note, that most of the counting process and martingale framework has been devel-
oped with view to the asymptotic behaviour of statistics based on counting processes
as well as for handling censored observations. Since these aspects are not central to

the theory of local independence graphs, we do not go into details.

B.1 Basic notions

The following definitions and results are mainly based on Fleming and Harrington
(1984), Andersen et al. (1993), and Brémaud (1981). We consider a continuous time
parameter 7 with 7 =1[0,7) or 7 =[0,7], 0 < 7 < o0.

Definition B.1.1 Stochastic process and some properties

A stochastic process 'Y is a family {Y ()|t € T} of random variables Y (¢) each defined
on a probability space (Q, F, P) with Y (¢) € S for all ¢ € T, where S denotes the
set, of states.

The process Y is called cadlag (continu a droite, limité d gauche) if its sample paths
{Y(t,w)|t € T} are right—continuous with left—-hand limits for almost all w € .
Further, Y is said to be

(1) integrable if supg<; o, E(|Y (t)]) < 0o,
(2) square integrable if supyc, .., E(Y (t)?) < oo,
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(3) bounded if there exists a finite constant ¢ such that P(supg<; o, [Y(t)| < ¢) = 1.

(3) finite variation process if P(f(;5 Y (ds)| < oo)=1forallteT. //

As seen in the previous chapters, counting processes provide an appropriate basis

for event history analysis.

Definition B.1.2 Counting process
A cadlag stochastic process N with state space S = {0,1,2,...}, zero at time
zero, paths which are piecewise constant and non—decreasing with jumps AN(t) =

N(t) — N(t7) =1 is called a counting process.

A multivariate process N = (Vy, ..., Ng), where the components Ny are counting
processes, k =1, ..., K, is called multivariate counting process if no two components
jump at the same time. //

The following definition of filtrations allows a rigorous formulation of the concept of

information accruing over time.

Definition B.1.3 Filtration / usual conditions / adapted process
Let (2, F, P) be a probability space. A family of o—algebras {F;|t € T} with F, C F
for all t € T is called a filtration if it is

(1) increasing, i.e. F; C F; for all s <t, s,t € T, and

(2) right—continuous, i.e.
Fo=[()FiforalseT.

t>s

Left— and right-hand limits of a filtration are defined as

Fe=c{JFnt=VFur and  Fu=[()Femn
h>0 h>0 h>0

For notational convenience we mostly write F; instead of {F;|t € T} to denote a
filtration.

A filtration {F|t € T} satisfies the usual conditions if it is complete, i.e. for all
ACBeF: P(B)=0= A€ F.

Finally, a stochastic process Y is said to be adapted to a filtration F; if Y(¢) is
Fi—measurable for all t € T. //
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A filtration generated by a process is called the history of that process.

Definition B.1.4 (Internal) history

Let Y be a stochastic process on (€2, F, P). The family of o—algebras F; = o{Y (s)|s <
t} is termed the internal history of Y. Any larger filtration G, i.e. G; O F; for all
teT,is a history of Y. //

Note that if YV is a counting process then its internal history is indeed right—
continuous (Andersen et al., 1993, p. 61). Further, any process is obviously adapted

to its internal history.

Most results in the counting process framework can be given for quite general pro-
cesses as long as they fulfill specific conditions at least "locally’. In order to specify

this notion of ’local’ we need the definition of a stopping time.

Definition B.1.5 Stopping time
Let F; be a filtration on (€2, F, P). A nonnegative random variable T on (2, F, P)
is called a F;—stopping time if {T <t} € F,forallt € T. //

The martingale property may now be defined either for the whole process or only

locally.

Definition B.1.6 (Local) martingale
A cadlag stochastic process M on (2, F, P) with a filtration F; is called a F;-

martingale if it is
(1) integrable,
(2) adapted to F;, and
(3) satisfies the martingale property E(M(t + s)|F;) = M(t) a.s. for all s,¢ > 0.

It is called a F;—submartingale if the last condition is replaced by the submartingale
property E(M(t + s)|F) > M(t) a.s. for all s, > 0.

The process M is called a local F;—(sub)martingale if there exists an increasing
sequence of F;-stopping times {T,,|n € N} with P(T},, > t) — 1 for n — oo for
all t € T, such that the stopped processes M, = {M(t AT,)|t € T} are F;-
(sub)martingales for all n = 1,2, ..., where (¢t A s) = min(t, s). //
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Two simple properties of a martingale provide insight into the way martingales are
used in the counting process framework for event history analysis. First, if M is a
Fi—martingale then

E(M(t)|Fe-) = M(t),

i.e. the martingale property carries over to the left-hand limits. Second, we have
that
E(M(dt)|F-) =0,

i.e. given the strict pre-t history the expected increment is zero. Both properties
are cited from Fleming and Harrington (1991, p. 24).

Note that any counting process is a local submartingale w.r.t. its internal filtration
(Andersen et al., 1993, p. 73). Local integrability and local boundedness are defined
similar to the local martingale property. Obviously, any martingale is a local mar-

tingale.

For a local submartingale Y it is often possible to find an increasing process A
such that the difference is a martingale. A condition for the existence of A is its

predictability as defined next.

Definition B.1.7 Predictable process

Let (Q,F, P) be a probability space with a filtration F; that satisfies the usual
conditions. The o—algebra on [0,00) X € generated by all sets [0] x A, A € Fy, and
(s,ul x A, 0 < s <u<oo,AE€F, is called the F,—predictable o—algebra.

A stochastic process Y on (2, F, P) is called F;—predictable if, as a mapping from
[0,00) x Q to R, it is measurable w.r.t. the F;—predictable o—algebra. //

Simpler characterizations of predictable processes are summarized in the following

remark (Fleming and Harrington, 1991, p. 32).

Remark B.1.8 Characterization of predictable processes

(1) If Y is a F;—predictable process then Y () is F;--measurable for all ¢ > 0.

(2) If F; is a filtration and Y a left—continuous real-valued process adapted to F;.
Then, Y is F;—predictable (cf. also Brémaud, 1981, p. 9). //

Note that with the first part of the above remark we have for a predictable process
Y (t) that E(Y (t)|F-) =Y (¢) as.
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B.2 The Doob—Meyer decomposition

Different formulations of the Doob—Meyer decomposition can be found in the litera-
ture. We mainly cite from Fleming and Harrington (1991), where most of the proofs
can be found. Heuristically the decomposition implies under very general conditions
that any process can be decomposed into a predictable part, which may be regarded

as the predictor in a regression model, and a kind of error term given as martingale.

Theorem B.2.1 Doob-Meyer decomposition

Let {Y(¢)|t € T} be a nonnegative right-continuous local F;—submartingale on
(Q,F, P), where F, is a filtration satisfying the usual conditions. Then, there exists
a unique increasing right—continuous predictable process A such that A(0) =0 a.s.,
P(A(t) < oo) =1forallt >0, and Y — A is a right—continuous local martingale.

The process A is called the compensator of Y.

Proof: Fleming and Harrington (1991, p. 58). O

Applied to counting processes, the Doob—Meyer decomposition reads as follows.

Theorem B.2.2 Doob—Meyer decomposition for counting processes

Let {N(t)|t € T} be an arbitrary counting process on (2, F, P). Then, there exists
a unique right—continuous predictable increasing process A such that A(0) = 0 a.s.
P(A(t) < o0) =1 forallt > 0, and M = N — A is a right—continuous local F;—
martingale, where F; is the internal history of N.

The processes A is locally bounded, which implies that M is a local square integrable
martingale. In addition, the jumps of the compensator are smaller than one, i.e.
AA(t) =A(t) —A(t7) <1l as. forallt > 0.

Proof: Fleming and Harrington (1991, p. 61). O

For the interpretation of the compensator it might be helpful to know that F(N(t)) =
E(A(t)), i.e. the expected compensator at t is the expected number of events up to
time ¢, and A(dt) = E(N(dt)|F;-), i.e. the increment of the compensator at ¢ is the
probability of a jump at time ¢ given the strict pre—¢ history (Fleming and Harring-
ton, 1991, p. 62).
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The next results are important for characterizing the relation between different

counting processes.

Theorem B.2.3 Predictable covariation process

Let M; and M, be two local square integrable F;—martingales on (Q, F, P). Then,
there exists a compensator of the process M; M, called the predictable covariation
process of My and My denoted by (M, Ms). //

Proof: Andersen et al. (1993, p. 68). O
For the special case of M; = My = M the process (M, M) = (M) is called the pre-

dictable variation process and is the compensator of M?. A heuristic interpretation
of (My, Ms) follows from

(M, My)(dt) = cov(M, (dt), My(dt)| Fi-), (B.1)

i.e. the increments of the covariance process correspond to the covariance of the
increments of M; and Mj given the strict pre—t history. The increments are uncor-
related if (M, My) = 0.

Definition B.2.4 Orthogonal martingales
Let M; and M, be two local square integrable Fi—martingales on (2, F, P). If
(M, Ms) = 0 then M; and M, are said to be orthogonal. //

Applying the previous remark (B.1) we have that orthogonal martingales M; and

M, are uncorrelated if M;(0) and M5(0) are uncorrelated.

If Ni(t) and No(t) are counting processes and My = Ny — Ag, k = 1,2, are the
martingales resulting from the Doob—Meyer decomposition then we have (Andersen
et al., 1993, p. 74)

(Mk> = Ak—/AAdek, ]{521,2
<M1,M2> = _/AAldAQ

The second equality implies that the martingales of any two different counting pro-

cesses are orthogonal provided that the compensators are both continuous.
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Further results as required e.g. for the proofs of the asymptotic distribution of the
statistical procedures presented in Chapter 5 are not cited here. These would involve
some deeper insight in the theory of stochastic integrals and martingale transforms
which is beyond the scope of this section. The correponding background may again
be found in the references cited above, i.e. Andersen et al. (1993), Fleming and

Harrington (1991), and in particular Brémaud (1981).
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Appendix C

Notations

In this part of the appendix, the symbols and notations which are repeatedly used

in the previous chapters are summarized and briefly explained.

General

Random variables are mostly denoted by X, whereas Y stands for stochastic pro-
cesses. They are defined on a probability space (2, F, P). In the multivariate case
bold types are used. In particular Xy = (Xi,..., Xg) or Yy = (Y3, ..., Yk) denote
the situation, where the components are represented as vertices k¥ € V' in a graph
with vertex set V. An upper index, e.g. X*, indicates the sample unit and a lower
index, e.g. X or X4, a component or subsets of the multivariate vector. Realiza-
tions of random variables are denoted by lower case letters, e.g. x or y. Further, we

employ the following symbols:

P(-) probability function

F(") cumulative distribution function
f) density
S(¥) survival function

E(+) expectation

Cov(-) covariance

F, G o—fields

o(X)  o-field generated by X
E(-|F) conditional expectation
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X1Y|Z X is conditionally independent of YV given Z

1{-} indicator function

Oz y Kronecker symbol, i.e. §; , = 1{z =y}
I identity matrix

Y-k Yvi\{k}

tAs min(t, s)

tVs max(t, s)

R real numbers

N(1,Y)  normal distribution with mean vector y and covariance matrix ¥

Graphs
G graph, G = (V, E)
Vv set of vertices, mostly V = {1,..., K}
VeCV set of vertices denoting the random variables
VpCV set of vertices denoting the processes

5, keV vertices

Vi,...,V; partition of V

E set of edges

(j,k) € E  directed edge from j to k

{j,k} € E undirected edge

E*(A) set of undirected edges on A C V', E“(A) = {{j,k}|j,k € A,j # k}
E(A) set of directed edges on A C V., E4(A) = {(j, k)|j,k € A,j # k}

Ga subgraph on A C G, G4 = (A, E4), E4 = EN (EY(A) U E*(A))
v(7) undirected path component containing j € V/

T (G) set of all undirected path components in G

£(5) cycle component containing j € V

E(G) set of all cycle components in G

T trail

DAG directed acyclic graph

pa(A) parents of A in G

ch(A) children of A in G

nb neighbors of A in G

boundary of A in G, bd(A) = pa(A)U nb(A)
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Vv
F
¢

closure of A in G, cl(A) = bd(A)U A

ancestors of A in G

descendants of A in G

non-descendants of A in G, nd(A) = V\( de(4) U A)
smallest ancestral set containing A

undirected version of G

moralized version of G

graph G modified by deleting all directed edges starting in B C V
graph separation

irrelevance relation

d—separation

meet operation

join operation

intervention vertex in an intervention graph

the value of F' when it is idle

Stochastic processes

T

time parameter, 7 = [0,7] or 7 =[0,7) with 0 < 7 < 00

{Y(t)|teT} stochastic process, briefly: YV

)
(")
(t7)
AY (t)
Y7T(t)
S

q,r €S

a(t)

Y
Y

limp, o Y (t + h)

limp 0 Y (¢ — h)

jump of Y, AY (t) =Y (t) — Y (¢t7)
stopped process, i.e. YT (t) =Y (T At)
state space

states

hazard rate or transition intensity

{FRlte T} filtration on (Q, F, P), briefly: F,

V Fi
Fi-

Y; AYi Yok

smallest o—field generated by the arguments
left limit of filtration, Fi- = \/,o o Fi—n

{M(t)teT} martingale, briefly: M

(M)

predictable variation process of a martingale

(M, My) predictable covariation process

Y} locally independent of Y} given the remaining components
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Time series

VAR(M) vector auto regressive model of M-th order

Q) spectral matrix

e covariance matrix of residuals in VAR models
Y; £#Yi[Yy] noncausality

Y; #Yi[Yv] instantaneous noncausality

Marked point processes (MPP)

5={61,...,6K}

mark space

{(Ts, Ey)|Ts € T,E; € £} marked point process

{(N@)IteT}
N = (Nl,...,NK)

Markov processes

qu(t) = N(t; (g,7))

Agr(t) = A(t; (g,7))
g (t) = at; (¢,7))
Y~ (Y1,...,Y)
CFMP

Ni(t; (v, Yx))

o (t; (¥, k)

counting process, briefly N

multivariate counting process

mark specific counting process

mark specific compensator

continuous part of A(t), i.e. A(t) =Y, ., AA(s) + A°(2)
mark specific intensity process, A(t) = _f A(s) ds
history process, Hy = {(Ts, E5)|Ts < t,Es € £}
set of all possible histories

o(HH)

P(H, € B|H,)

prediction process P(Y € B | F)

counting process for transitions from state ¢ to state r
compensator of N, (1)

transition intensity for transitions from state ¢ to state r
composable Markov process

composable finite state Markov process

counting process for transitions of CFMP from state y to y’,
where y’ differs from y only in the k-th component

transition intensity for a CFMP
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Likelihood
L(t|Hy) likelihood of a MPP based on the history H,
Ly (t|th(k)) mark specific likelihood
Ty times of occurrences of events e

L(t\H,Y\AHI;[{‘) likelihood based on observing H,* and fixing HA

(Non/semi—) parametric models

(7] multidimensional parameter, mostly @ = (64,...,60q)
© parameter space

0 estimator

6° true value of parameter

Z(7|f) information matrix

cumulative intensity for event ey, i.e. Ag(t) = [ ax(s)ds
Nelson—Aalen estimator

relative risk

B regression parameter

Z

predictable process independent of #, mostly the number at risk for e,
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