
© 2009 Royal Statistical Society 1369–7412/09/71755

J. R. Statist. Soc. B (2009)
71, Part 4, pp. 755–782

Hybrid Dirichlet mixture models for functional data

Sonia Petrone,

Bocconi University, Milan, Italy

Michele Guindani

University of New Mexico, Albuquerque, USA

and Alan E. Gelfand

Duke University, Durham, USA

[Received July 2007. Final revision January 2009]

Summary. In functional data analysis, curves or surfaces are observed, up to measurement
error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are
homogeneous, except perhaps for individual-specific regions that provide heterogeneous
behaviour (e.g. ‘damaged’ areas of irregular shape on an otherwise smooth surface). Motivated
by applications with functional data of this nature, we propose a Bayesian mixture model, with
the aim of dimension reduction, by representing the sample of n curves through a smaller set of
canonical curves. We propose a novel prior on the space of probability measures for a random
curve which extends the popular Dirichlet priors by allowing local clustering: non-homogeneous
portions of a curve can be allocated to different clusters and the n individual curves can be
represented as recombinations (hybrids) of a few canonical curves. More precisely, the prior
proposed envisions a conceptual hidden factor with k -levels that acts locally on each curve.
We discuss several models incorporating this prior and illustrate its performance with simulated
and real data sets. We examine theoretical properties of the proposed finite hybrid Dirichlet
mixtures, specifically, their behaviour as the number of the mixture components goes to 1 and
their connection with Dirichlet process mixtures.
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1. Introduction

Functional data analysis is receiving increased interest in the scientific community, documented
by a rapidly growing literature; Ramsay and Silverman (2005) and Ferraty and Vieu (2006)
offer recent comprehensive references. In such analysis, curves or surfaces are observed, up to
measurement error, for a sample of n individuals, i.e. yi.x/= θi.x/+ "i.x/, i= 1, 2, . . . , n, with
"i.x/∼IID N.0, σ2/, x∈D ⊂ Rp. Here, θ.·/ denotes the curve or surface and we focus on p= 1,
e.g. x is time, or p=2, e.g. x is a geographic co-ordinate. We assume that D spans a continuum
in Rp, though everything that we discuss works also when D is finite or countable, e.g. for a
lattice or a collection of areal units.

In this paper, we develop Bayesian non-parametric (NP) inference for estimatingθi =.θi.x/, x∈
D/ by borrowing strength from the other curves. Furthermore, we achieve dimension reduction
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by representing the n observed curves by means of a smaller set of canonical curves, which we
shall also refer to as ‘curve species’.

A popular approach for dimension reduction in functional data analysis is functional
principal components analysis (see for example Ramsay and Silverman (2005)). Clustering
techniques based on mixture models are also receiving growing interest for the analysis of high
dimensional data. In particular, the availability of efficient computational algorithms has led
to a substantial development of Bayesian parametric and NP dimension reduction techniques
through finite Dirichlet mixtures (i.e. finite mixture models with Dirichlet-distributed weights)
or infinite components Dirichlet process (DP) mixtures. Mixtures of Gaussian kernels are
widely used for modelling the distribution of multivariate data. In our context, the multivariate
data that we model are the values of a curve at an arbitrary finite set of co-ordinates, say
Yi = .Yi.x1/, . . . , Yi.xm//, i=1, . . . , n. The kernel centroids are intepretable as values of ‘canon-
ical curves’ at x1, . . . , xm. In general, the goal is to use a number of canonical curves which is
far fewer than n to describe the observed sample.

Bayesian hierarchical models and DP mixtures have been successfully exploited to represent
the individual curves by means of an orthonormal basis expansion and to cluster the expansion
coefficients (see Bigelow and Dunson (2009) and Ray and Mallick (2006)). In those approaches,
the kernel centroids are defined by ‘canonical vectors’ of expansion coefficients. In computer
modelling (e.g. Oakley and O’Hagan (2002)) and machine learning (Neal, 1997; Rasmussen
and Williams, 2006) Gaussian process realizations are often used as a basis to model random
functions. Finite mixtures and DP mixtures of Gaussian processes have been proposed also to
model a sample of curves directly as in Shi and Wang (2008) or Gelfand et al. (2005) for spatial
data. Here, the kernel centroids are modelled as independent and identically distributed (IID)
realizations of a stationary Gaussian process GP . In the simplest case, we may consider con-
stant canonical curves; though restrictive, such a choice facilitates species identifiability. More
generally, the shape of the canonical curves is regulated by the parameters in the mean and
correlation function of the Gaussian process.

Bayesian finite and DP mixture models for functional data analysis usually propose to fit
smooth curves, assuming global heterogeneity across individuals. However, in many applica-
tions, the individual curves may be quite smooth and similar except for some local heterogeneity.
For example, for D countable or finite in R, individual sequences θi (e.g. DNA sequences in
genetic studies) may show local mutations across individuals, at a few locations (genes). A two-
dimensional example which we pursue further later involves a sample of magnetic resonance
imaging brain images where grey matter level intensity is measured at a set of locations. Here, an
otherwise smooth (healthy) image may show a few diseased regions of irregular shape. A finite
Dirichlet mixture model represents the individual curves as globally selected from a population
of canonical curves, or species, on D. Therefore, the model identifies a new species even when
a curve is substantially different from the others only on a few portions of D. In other words,
the model tends either to fit an ‘average curve’ or, if the number of mixture components is large
(or infinite), to increase the number of canonical curves that are required for reconstructing the
sample, thus missing the desired dimensional reduction goal.

In this work, we offer a more parsimonious mixture model to account for global and local
heterogeneity, where the individual curves are represented as recombinations of the set of
canonical curves. To be more specific, we propose a mixture model where the prior on the
mixing distribution is an extension of the popular finite Dirichlet and DP priors. In fact, we
suggest a general class of priors for NP Bayesian inference that extend the global allocation
rules of the latter and allow for dependent local allocation. As an effect of the local allocation
scheme, the curves will be described as hybrid species, obtained by recombining portions
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of canonical curves; therefore we refer to the proposed class of priors as hybrid Dirichlet
priors.

Our construction has an interpretation in terms of hidden labels. For any θi, we can assign
a label γi.x/ to indicate the species that is chosen at x, i.e. we model a hidden label process
with k-levels, acting locally on each individual curve, so that local species allocation is naturally
induced. Moreover, the dependence structure in the labelling process controls the degree of
species recombination in the sample. For example, mixtures of widely used hidden Markov
models can be easily framed into our scheme. However, a Markov dependence might be
considered too restrictive for general functional data. Therefore, we propose to model functional
dependence in the label process through an auxiliary Gaussian copula. In addition to being more
suitable for functional data analysis, such a choice facilitates prior elicitation and proves to be
computationally attractive in an NP Bayes framework.

Local clustering has been addressed in the NP Bayes literature; however, most proposals are
limited to modelling partially exchangeable data (see for example Teh et al. (2006) and references
therein). In our context, although the observations can be separated into different groups
corresponding to each xj, the assumption of partial exchangeability is clearly too restrictive,
since it implies conditional independence along x. In the more general framework of dependent
DPs (MacEachern, 1999, 2001), most applications have made use of the so-called single-p
dependent DP (e.g. Gelfand et al. (2005)). However, these models reduce to a DP on the joint
distribution and therefore only allow global clustering. Recent proposals of multiple-p stick
breaking priors (see for example Griffin and Steel (2006), Dunson and Park (2008) and Dunson
et al. (2008)) allow for a more general dependence structure across the groups’ random marginal
distributions. However, the resulting functional dependence in the data, and consequently the
shape of the curve realizations, have not been fully explored. Closer to our approach, Duan
et al. (2007) defined a multivariate stick breaking construction for point-referenced spatial data.
However, although they also referred to a hidden label process for local surface selection, their
construction involves an infinite number of hidden variables at each location x, requiring a latent
Gaussian process for each of the countable number of stick breaks. Hence, the label process is
obscured as well as the chance for local and global clustering. Moreover, computations are
cumbersome. MacEachern (2007) offered a somewhat simpler version that has been recently
extended in Rodriguez et al. (2008).

Our proposal differs from those above in several aspects. Rather than specifying (stick
breaking) priors for the marginal distributions of the θ.xj/, we focus on the prior on the joint
distribution of the vector .θ.x1/, . . . , θ.xm//, and, ultimately, of the process θ = .θ.x/, x ∈ D/.
Such a shift of interest proves to be crucial for controlling the functional dependence. In fact,
we offer a unifying framework, based on species sampling models (Pitman, 1996), which includes
several recent proposals as a special case. In this framework, we obtain hybrid DP mixtures as
limits of finite mixtures as the number of components goes to ∞. This approach sheds light also
on the relationship between finite and DP mixtures in the context of hidden variables models,
extending results that were developed by Teh et al. (2006) for hidden Markov models. Although
still challenging, computations in our model are simpler than in previous proposals. We suggest
a fairly straightforward but effective Markov chain Monte Carlo (MCMC) algorithm, where
the monitoring of labelling by site and by individual for each curve is facilitated by the intro-
duction of a small amount of pure Gaussian error. Finally, we illustrate the performance of
our model with a simulated data example as well as with the forementioned brain imaging
data. The expected hybridization emerges, revealing the benefit of the modelling that we have
introduced.

The format of the paper is as follows. In Section 2 we introduce the basic mixture of Gaussian
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processes model, with a finite functional Dirichlet prior or a functional DP. Section 3 formalizes
the notion of hybridization. In particular, Section 3.3 provides a careful examination of the weak
limits of finite hybrid Dirichlet priors. Section 4 brings these processes to the functional data
application of interest, including a discussion of the suggested Gaussian copula labelling prior
and computational issues. Section 5 presents the results of both a simulated data analysis as
well as analysis of the motivating brain images data. We discuss some final remarks and possible
extensions in Section 6. Full details of our technical results as well as a detailed description of
the MCMC algorithm used in Section 5 are provided in an appendix which is available online
at http://mypage.unibocconi.it/soniapetrone.

The data and the program that was used to analyse them can be obtained from

http://www.blackwellpublishing.com/rss

2. Mixture models for functional data

Let Yi = .Yi.x/, x∈D/, i=1, 2, . . . , n, be random curves defined on a (regular) domain D⊆Rp.
We have the formal model

Yi =θi +εi, i=1, . . . , n,

where the εi are independent realizations of a Gaussian white noise process with variance σ2,
denoted as GP.0, σ2/. Equivalently, given the θi,

Yi|θi
ind∼ GP.θi, σ2/: .1/

All of the effort is in modelling the mean functions θi which are usually specified as independent
realizations of a Gaussian process. Instead, we allow borrowing of strength in the estimation
by introducing probabilistic dependence across the θis. We assume that they are sampled from
a common (unknown) probability measure G on RD, i.e. θ1, . . . , θn|G ∼IID G. Together with
distribution (1), this gives a mixture of Gaussian processes model, that we write heuristically as

Y1, . . . , Yn|G IID∼
∫

GP.·|θ, σ2/dG.θ/: .2/

For a random curve θ= .θ.x/, x∈D/ in RD, with probability measure G, we shall denote by
Gx1,:::,xm the finite dimensional distribution of .θ.x1/, . . . , θ.xm// at co-ordinates .x1, . . . , xm/

(we use the same symbol for a probability measure on Rm and the corresponding distribution
function (DF)). For convenience, the random curves are assumed to be observed at a common
finite set of co-ordinates, say .x1, . . . , xm/, so that the available data are Yi = .Yi.x1/, . . . , Yi.xm//,
i= 1, . . . , n, with Yi.xj/= θi.xj/+ "i.xj/. (The case where the Yis are observed at different sets
of co-ordinates can be handled by augmenting the dimension of the θis to a common joint set
of co-ordinates.) Let θi = .θi.x1/, . . . , θi.xm//. Then, the finite dimensional characterization of
model (2) is

Yi|θi
ind∼ Nm.θi, σ2Im/,

θi|Gx1,:::,xm

IID∼ Gx1,:::,xm ,
.3/

where Nm.·, ·/ denotes the m-variate Gaussian distribution and Im is the m-dimensional identity
matrix. Integrating the θis out, we have

Yi|Gx1,:::,xm

IID∼
∫

Nm.θ, σ2Im/ dGx1,:::,xm.θ/, .4/
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i.e. a location mixture of Gaussian densities. In a Bayesian NP approach, a prior probability
law is assigned to the random mixing probability measure G. This requires assigning a prior,
consistently, to its finite dimensional distributions Gx1,…,xm, for any choice of m and .x1, . . . , xm/.
Let the prior on G almost surely select discrete probability measures of the form

G =
k∑

j=1
pjδθÅ

j
, .5/

where k is a finite integer and δθ denotes a probability measure that is degenerate on θ, i.e.
G concentrates probability masses pj on curve atoms θÅ

j in RD. Moreover, let .p1, . . . , pk/ ∼
D.α1, . . . , αk/, a Dirichlet distribution with parameters .α1, . . . , αk/, and θÅ

1 , . . . , θÅ
k be IID

according to a non-atomic probability measure G0 on RD, independently of the pjs. Corres-
pondingly,

Gx1,…,xm =
k∑

j=1
pjδθÅ

j
, .6/

where the θÅ
j = .θÅ

j .x1/, . . . , θÅ
j .xm// are IID according to G0,x1,…,xm . Then, model (2) reduces

to a finite mixture of Gaussian processes, with finite dimensionals

Yi|Gx1,…,xm

IID∼
k∑

j=1
pjNm.θÅ

j , σ2Im/: .7/

In the Bayesian literature, finite mixture models such as model (7) are usually regarded as
indexed by the parameters {.p1, . . . , pk/, .θÅ

1 , . . . , θÅ
k /}. Here, instead, the model is param-

eterized in terms of the mixing distribution. As a prior on the space of DFs on Rm, the
probability measure that almost surely selects distributions of the form (6) is usually called
a (finite dimensional) Dirichlet prior (Ishwaran and Zarepour, 2002). We write Gx1,…,xm ∼
DPk{.α1, . . . , αk/, G0,x1,…,xm}. Usually, a ‘non-informative’ symmetric Dirichlet distribution
is used for the mixing weights, .p1, . . . , pk/ ∼ D.α=k, . . . , α=k/, 0 < α < ∞, and we say that
Gx1,…,xm has a symmetric Dirichlet prior, which is denoted by Gx1,…,xm ∼ DPk.α, G0,x1,…,xm/.
Extending to the functional case, we say that the random probability measure (RPM) on
RD defined by equation (5) has a functional DPk prior, G ∼ f DPk{.α1, . . . , αk/, G0}, or G ∼
f DPk.α, G0/ for the symmetric case. Clearly, the finite dimensional distributions of G are
DPk, with base measures G0,x1,…,xm driven by G0, for any choice of m and x1, . . . , xm.

When the number of components k is uncertain, rather than treating it as random, it has be-
come common practice to let k=∞ and to use DP mixtures. Suppose that G is as in equation (5),
but let now k =∞ and .p1, p2, . . ./ have a stick breaking prior with parameter α, i.e. p1 =V1,

pj =Vj

j−1∏
i=1

.1−Vi/, Vi
IID∼ beta.1, α/:

Then, G has a DP prior, with parameters α and G0 (Sethuraman, 1994). In fact, we say that G
has a functional DP prior, G ∼ f DP.α, G0/. It is easy to see that the finite dimensional distribu-
tions Gx1,…,xm are DPs, Gx1,…,xm ∼DP.α, G0,x1,…,xm/, and they are dependent since their base
measures are all driven by G0.

The parameterization of the model in terms of the mixing distribution is useful to clarify the
relationship between finite and DP mixtures. It can be shown that, if .Gk, k � 1/ is a sequence
of random DFs with Gk ∼ DPk.α, G0/, then Gk converges in distribution to G∼ DP.αG0/ as
k →∞ (Muliere and Secchi (1995) and Ishwaran and Zarepour (2002), theorem 3).

Both the DPk and the DP are special cases of the more general family of (proper) species
sampling priors (Pitman, 1996). To be more specific, a proper species sampling prior for an RPM
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G on a measurable space .Θ, σ.Θ// almost surely selects distributions of the form (5), where,
more generally, k �∞, pj � 0, Σk

j=1pj = 1 and the θÅ
j s are IID from a non-atomic probability

measure G0 on Θ, independently of the pjs. The DPk and the DP correspond to specific choices
of the distribution on the random weights. In this context, the atoms θÅ

j are referred to as ‘species’
and G describes a population comprised of k �∞ species, populated in proportions that are
determined by p1, . . . , pk.

In statistical applications to mixture modelling, species sampling priors are of particular
interest since ties can be obtained with positive probability in sampling from the mixing distri-
bution. Therefore, the number of species that are ‘discovered’ in the sample is usually less than
min.k, n/, thus revealing that the data Y1, . . . , Yn can in fact be described by means of a mixture
with a few components. This type of dimension reduction is often referred to as clustering in the
Bayesian NP literature. For example, if θ1 = . . .=θn1 �=θn1+1 = . . .=θn, then θ1, . . . , θn1 are said
to be in the same cluster, whereas θn1+1, . . . , θn belong to a second cluster, and only two mixture
components are needed to describe the distribution of the data Y1, . . . , Yn. However, clustering
the θis does not correspond, in general, to a classification procedure. In a location mixture of
Gaussians like model (7), the components play the role of kernels, usually with no physical
interpretation. So, clustering the θis amounts to describing the data through a smaller dimen-
sional set of ‘kernel centres’ (canonical curves in the functional version (2)). A classification
mixture model would require instead more flexible group-specific distributional assumptions,
e.g. a scale–location mixture of Gaussians, or an NP model for each component (Ishwaran and
James, 2003).

Species sampling priors are characterized by the predictive rules that allocate the θis into
different species (Pitman, 1996). In particular, for the symmetric DPk.α, G0/, we have θ1 ∼G0
and

θn+1|θ1, . . . , θn ∼ α.k −dn/=k

α+n
G0 +

dn∑
j=1

nj +α=k

α+n
δθÅ

.j/
, .8/

for k�n, where θÅ
.1/, . . . , θÅ

.dn/ are the distinct values among θ1, . . . , θn, in the order as they appear.
For k →∞, the predictive distribution (8) converges to

θn+1|θ1, . . . , θn ∼ α

α+n
G0 +

dn∑
j=1

nj

α+n
δθÅ

.j/
, .9/

i.e. the predictive rule characterizing the DP.α, G0/.

3. Hybrid Dirichlet priors

A limitation of DPk or DP mixtures for multivariate data is that they can only model global
clustering, or global mutations. As is evident from distributions (8) and (9), θn+1 is either one of
the previously observed species or a completely new species. In applications to multivariate or
functional data (as in Section 1), it may be desirable, instead, to allow also for local mutations or
local clustering. In Section 5, we show that DPk or DP mixtures often generate as many species
as the sample size. The model succeeds in fitting the data well but misses the aim of dimension
reduction to a smaller number of canonical curves. We enable the possibility of hybrid species,
where a curve may be characterized by different species at different co-ordinates.

3.1. Hybrid Dirichlet priors for random probability measures on Rm

Consider the finite dimensional distributions Gx1,…,xm which, in this subsection, we denote
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simply by G. We extend the idea of species sampling priors and imagine that G is the result of
a process of global and local mutations. To be more specific, we start from a base population
of k �∞ species θÅ

j = .θÅ
j,1, . . . , θÅ

j,m/, j = 1, . . . , k, IID according to a non-atomic distribution
G0 on Rm. By the effect of the local mutations, hybrid species .θÅ

j1,1, . . . , θÅ
jm,m/ emerge, where

the first component is from species j1, the second from species j2, . . . , and so on. We say that a
random DF G on Rm has a (proper) hybrid species sampling prior if, almost surely,

G=
k∑

j1=1
. . .

k∑
jm=1

p.j1, . . . , jm/δθÅ
j1,1,…,θÅ

jm, m
, .10/

where p.j1, . . . , jm/ represents the proportion of (hybrid) species .θÅ
j1,1, . . . , θÅ

jm,m/ in the popu-
lation, p.j1, . . . , jm/ � 0, Σk

j1=1. . . Σk
jm=1p.j1, . . . , jm/ = 1, and θÅ

j ∼IID G0, independently of
the p.j1, . . . , jm/s.

If p.j1, . . . , jm/ > 0 only when j1 = . . . = jm, we are back to the usual definition of species
sampling priors. Our extension can be interpreted as a model that allows for local effects of a
hidden factor with k levels. Indeed, the weights .p1, . . . , pk/ in equation (5) define a random
probability mass function, say p, on {1, . . . , k}. We can interpret p as the distribution inducing
labels drawn from {1, . . . , k}, i.e., if θ|G∼G, and G has a proper species sampling prior, then
θ = θÅ

j if the label γ = j. The label’s distribution is modelled as Pr.γ = j|p, θÅ
1 , . . . , θÅ

k / = pj,
j =1, . . . , k, with a prior on p. The latter could be a Dirichlet distribution in the case of a DPk

prior or a stick breaking prior for the DP (with k =∞).
More generally, the weights p.j1, . . . , jm/ in equation (10) define a random probability

mass function on {1, . . . , k}m, which we still denote by p. Now, p can be interpreted as the
distribution of a random vector of labels γ = .γ1, . . . , γm/, with γl ∈ {1, . . . , k}, l = 1, . . . , m. If
θ = .θ1, . . . , θm/|G ∼ G, G as in equation (10), then θ.xl/ = θÅ

j .xl/ if γl = j. Conditionally on p
and the θÅ

j s, γ ∼p, i.e. Pr.γ1 = j1, . . . , γm = jm|p, θÅ
1 , . . . , θÅ

k /=p.j1, . . . , jm/.
In this general framework, the DPk or the DP prior are extended by appropriately specifying

the labelling prior on p. Some recent proposals for NP priors can be regarded as special cases of
equation (10). For example, the generalized spatial DP by Duan et al. (2007) takes k =∞ and
defines a multivariate stick breaking labelling prior. The prior that we propose here is, instead,
a natural extension of the finite DPk prior.

3.1.1. Hybrid finite Dirichlet priors
Let G be as in equation (10), with k<∞. Note that the ith marginal of G is

Gi =
k∑

j=1
pi.j/δθÅ

j, i

where pi.·/ is the ith marginal of the probability measure p, and θÅ
1,i, . . . , θÅ

k,i ∼IID G0,i, where
G0,i is the ith marginal of G0. It is natural to require that an extension of the DPk for a random
DF on Rm still has DPk marginals, which is true if .pi.1/, . . . , pi.k//∼D.αi,1, . . . , αi,k/ for all
i=1, . . . , m. In particular, Gi has a symmetric DPk prior if αi,j =α=k for every j. It seems natural
also to assume that the random weights in equation (10) have a joint Dirichlet distribution,
centred on a probability measure q on {1, . . . , k}m:

Pr.γ1 = j1, . . . , γm = jm/=E{p.j1, . . . , jm/}=q.j1, . . . , jm/:

We use the notation p ∼D.αq/, with q denoting both the probability measure and the family
of weights {q.j1, . . . , jm/, ji =1, . . . , k; i=1, . . . , m} and α>0. Under these assumptions, we say
that G defined by equation (10) has a hybrid finite Dirichlet prior with parameters α, q and G0,
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G∼hDPk.αq, G0/. The marginals Gi have a symmetric DPk prior if q has uniform marginals,
i.e. qi.j/=1=k, j =1,. . ., k. The choice of the distribution q is discussed in Section 4.1.

3.1.2. Hybrid Dirichlet process
Let G be as in equation (10), but now let k =∞. Then, the weights p.j1, . . . , jm/ define an RPM
p on {1, 2, . . .}m. Let us assume that p has a DP prior with base probability measure q, i.e.
p∼DP.αq/, so that E{p.A/}=q.A/, for any A⊂{1, 2, . . .}m. Then, we say that G has a hybrid
DP prior with parameters α, q and G0, and write G ∼ hDP.αq, G0/. We show in Section 3.3
that the hybrid DP arises as the weak limit of an hDPk under appropriate conditions on the
labelling prior.

3.2. Functional hybrid Dirichlet priors
Now, we extend the discussion of hybrid species sampling priors to the functional case, i.e. we
consider an RPM G on RD, where D is a countable or continuous subset of Rp. Roughly speak-
ing, we say that G has a functional hybrid species sampling prior if its random finite dimensional
distributions Gx1,…,xm have a hybrid species sampling prior as defined by equation (10), with
consistent parameters. More precisely, Kolmogorov consistency must be ensured almost surely
for the family of random DFs {Gx1,…,xm , m�1, x1, . . . , xm}. A less developed discussion of these
aspects is provided in Duan et al. (2007). Let M.RD/ be the space of probability measures
on RD. The law of an RPM on RD is often defined by specifying how it selects an element in
M.RD/; that is how the functional DPk and DP were defined in Section 2.

Alternatively, one may specify how the prior selects a family GG of consistent finite dimen-
sional distributions, since they characterize an element in M.RD/. Let G0 be a non-atomic
probability measure on RD (e.g. a Gaussian process) and p an RPM on {1, 2, . . . , k}D, with
k �∞. As usual, let G0,x1,…,xm and px1,…,xm be the finite dimensional distributions of G0 and p
respectively. A functional hybrid species sampling prior for an RPM on RD selects a family GG
by first choosing a sample of curves θÅ

j = {θÅ
j .x/, x ∈ D}, j = 1, . . . , k, IID from G0 and, inde-

pendently, a realization p of the RPM p. Then, the family of finite dimensional distributions is
defined as

Gx1,…,xm =
k∑

j1=1
. . .

k∑
jm=1

px1,…,xm.j1, . . . , jm/ δθÅ
j1

.x1/,:::,θÅ
jm

.xm/, .11/

for all m�1, x1, . . . , xm ∈D. The difference from the previous definition (10) is that here the prior
selects a family GG = {Gx1,…,xm , m � 1, x1, . . . , xm ∈ D}. Kolmogorov consistency is required
by construction for both the families {px1,…,xm , m�1, x1, . . . , xm ∈D} and {G0,x1,…,xm , m�1,
x1, . . . , xm ∈ D} that are used in equation (11). It is easy to prove that this ensures that the
family GG is consistent, defining a probability measure G on RD. Extending the discussion
below equation (10), we may regard the probability measure p driving the weights px1,. . . ,xm

in equation (11) as the probability law of a stochastic process of labels γ = .γ.x/, x ∈ D/ with
each γ.x/∈{1, . . . , k}. If θ is a random curve in RD, with θ|G ∼G, then θ.x/=θÅ

j .x/ if γ.x/= j,
for x∈D, and γ|p, θÅ

1 , . . . , θÅ
k ∼p. Different specifications for the labelling prior p lead to different

classes of priors on G. Below, we give functional versions of the hybrid DPk and DP.

3.2.1. Functional hybrid Dirichlet priors
For k <∞, we can naturally extend the hDPk to the functional case assuming that the weights
px1,…,xm in equation (11) have a joint Dirichlet distribution. However, the parameters of the
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Dirichlet prior must be chosen consistently across varying choices of .x1, . . . , xm/. Hence, let
px1,…,xm ∼D.αqx1,…,xm/, where the family {qx1,…,xm , m�1, x1, . . . , xm ∈D} defines a probability
measure q on {1, . . . , k}D. From the properties of a DP, this is equivalent to p∼DP.αq/. Then
we say that the RPM G in equation (11) has a functional hybrid Dirichlet prior with parameters
α, q and G0, G ∼ fhDPk.αq, G0/.

The labelling prior is centred on the probability measure q, Pr.γ ∈A/=E{p.A/}=q.A/, for
A⊂{1, . . . , k}D, with finite dimensional distributions

Pr{γ.x1/= j1, . . . , γ.xm/= jm}=E{px1,…,xm.j1, . . . , jm/}=qx1,…,xm.j1, . . . , jm/:

In most cases, a continuity property is desirable for the label process; e.g. γ.x′/ →d γ.x/ if
x′ →x, which is true, for example, if qx,x′.i, i/ converges to qx.i/ for all i∈{1, . . . , k} and qx,x′.i, j/

converges to 0 for i �= j, as x′ →x.

3.2.2. Functional hybrid Dirichlet process
A functional hybrid DP is introduced similarly, for k=∞, q a probability measure on {1, 2, . . .}D

and p∼ fDP.αq/. We write G ∼ fhDP.αq, G0/. The finite dimensional distributions of G are as
in equation (11), where .θÅ

j .x1/, . . . , θÅ
j .xm//∼IID G0,x1,…,xm and px1,…,xm is the random finite

dimensional distribution of p on {1, 2, . . .}m. Note that px1,…,xm ∼ DP.αqx1,…,xm/; therefore,
Gx1,…,xm ∼hDP.αqx1,…,xm , G0,x1,…,xm/. In particular, Gx ∼ hDP.αqx, G0,x/.

3.3. Weak limits of hybrid Dirichlet priors
As discussed in Section 2, the DPk may be viewed as a finite approximation of the DP. In mixture
models, that property is most relevant for studying the sensitivity of finite mixtures and their
relationship with DP mixtures as k increases. It has been successfully exploited for MCMC
computations (Ishwaran and James, 2001) and Teh et al. (2006) have extended those results for
hidden Markov models. In this section, we give further results for more general hidden (label-
ling) measures, by examining the limit behaviour of a hybrid DPk prior. We confine our study to
the case of hybrid Dirichlet priors on random distributions on Rm, although extensions to the
functional case can be envisioned. For notational simplicity, here we drop the dependence on
.x1, . . . , xm/ but we make explicit the dependence on k, denoting a random DF on Rm simply by
Gk. Since hybrid Dirichlet priors do not have IID support points because of the recombination
of the θÅ

j s, it is not immediate to generalize the well-known results for the limit of a DPk to this
setting. We show that the limiting behaviour of the hybrid Dirichlet priors depends crucially on
the sequence of the labelling measures qk, k �1. The proofs are provided in section A.1 of the
appendix.

First, we obtain some results that are based on a representation of the hybrid DPk and DP
priors as mixtures of DPs (Antoniak, 1974), with transition measure given by a ‘hybrid’ version
of the empirical distribution of θÅ

1 , . . . , θÅ
k . Recall that an RPM G on a space Θ has a mixture of

DPs probability law, with transition measure ν, if G|H ∼DP.αH/ and H is a random measure
with distribution ν. We write G ∼ ∫

DP.H/dν.H/. If H is non-random, the mixture of DPs
reduces to G∼DP.H/.

Let Gk ∼hDPk.αkqk, G0/, where the labelling measure qk is not restricted to having uniform
marginals. Here, we regard qk as a probability measure on {1, 2, . . .}m, with support {1, . . . , k}m.
Let .θÅ

j = .θÅ
1,j, . . . , θÅ

m,j/, j =1, 2, . . ./ be a random sample from G0, and define the RPMs

Qk =Qk.θÅ
1 , θÅ

2 , . . ./=
∞∑

j1=1
. . .

∞∑
jm=1

qk.j1, . . . , jm/δθÅ
1,j1

,…,θÅ
m,jm

, .12/
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for k = 1, 2, . . .. Given a probability measure q on {1, 2, . . . ,}m, define a random measure Q
similarly, replacing qk with q. Finally, denote by μk and μ respectively the probability laws of
Qk and Q. Then, the hybrid Dirichlet priors admit the following representation.

Proposition 1. Let G be an RPM on Rm and Qk and Q be defined as above. Then,

(a) an hDP.αq, G0/ prior for G is a mixture of DPs
∫

DP.αQ/dμ.Q/ and
(b) an hDPk.αkqk, G0/ prior for G is a mixture of DPs

∫
DP.αkQk/dμk.Qk/.

This result is extendedtothe functionalhDPk prior insectionA.1of theappendix.Proposition1
suggests that the weak limit of hybrid DPk priors depends on the limiting behaviour of the
sequence .Qk, k �1/.

Proposition 2. Let .Gk, k �1/ be a sequence of RPMs on Rm with Gk ∼hDPk.αkqk, G0/. Let
Qk be defined by equation (12), k �1. Assume that αk →α, 0 <α<∞, for k →∞.

(a) If Qk converges in distribution to a non-random probability measure Q∞ on Rm, the
hDPk.αkqk, G0/ converges weakly to a DP.αQ∞/.

(b) If Qk converges in distribution to an RPM Q∞ on Rm, with probability law μ, then the
hDPk.αkqk, G0/ converges weakly to

∫
DP.αQ∞/ dμ.Q∞/.

The proof is based on proposition 1 and the fact that, under the assumptions, the integral∫
DP.αQk/dμk.Qk/ converges weakly to

∫
DP.αQ∞/ dμ.Q∞/. Of course, the behaviour of the

random measures Qk depends crucially on that of the sequence of labelling measures qk. The
case where qk.j1, . . . , jm/ = qj,k > 0 if j1 = . . . = jm = j, with j = 1, . . . , k, and it is 0 otherwise,
reduces the hDPk.αkqk, G0/ to a finite Dirichlet prior. In this case, Qk is a weighted empirical
distribution of the sample θÅ

1 , . . . , θÅ
k ∼IID G0. In particular, it is their empirical DF for a sym-

metric DPk prior, where qj,k =1=k. If αk →α, 0<α<∞ and max.q1,k, . . . , qk,k/→0 for k→∞,
then it can be shown that Qk converges in distribution to the (non-random) DF G0. Thus, by
proposition 2, Gk converges in distribution to a random DF G∼DP.αG0/; this is in accordance
with theorem 3 (part 2) by Ishwaran and Zarepour (2002).

Finding general conditions on the qk parameters such that Qk converges to a probability
measure is beyond the scope of this paper (see corollary 2.5 in Berti et al. (2006)). However, the
following theorems relate more explicitly the behaviour of hybrid Dirichlet priors to that of the
labelling measures qk.

We start with the simple case m = 1, i.e. Gk is a random DF on R. In this case, the hDPk

reduces to a DPk.

Theorem 1. Let .Gk, k � 1/ be a sequence of DFs on R, with Gk ∼ DPk.αkqk, G0/. Suppose
that αk →α, 0 <α<∞ for k →∞.

(a) If qk.j/ → 0 for all j = 1, 2, . . . for k → ∞, then Gk → G in distribution, where G ∼
DP.αG0/.

(b) If qk.j/ → q.j/ for any j = 1, 2, . . . , with q.1/, q.2/, . . . defining a probability measure q
on {1, 2, . . .}, then Gk →G in distribution, where G∼hDP.αq, G0/.

Although case (a) is known, a comparison between the two parts clarifies the role of the
sequence of qks. In part (a), the limit of qk.j/ is 0 for all js, so qk does not converge to a probability
measure. In fact, the proof of part (a) considers the vector of the ordered weights in equation (6),
which converges in distribution to a random sequence of weights pÅ = .pÅ

1 , pÅ
2 , . . ./ having

a Poisson–Dirichlet distribution (Kingman, 1975). Hence, Gk converges in distribution to
G =Σ∞

j=1pÅ
j δθÅ

j
, with the θÅ

j s IID from G0; such a G is a DP.αG0/. In part (b), the limit q of
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qk is a probability measure, and the proof uses the fact that pk ∼D.αqk/ converges in distri-
bution to an RPM p∼DP.αq/, so that the limit of Gk is a hybrid DP prior.

Now consider the general case m � 1. Let Gk ∼ hDPk.αkqk, G0/, k � 1, and Gk,i be its ith
marginal. Then, Gk,i ∼DPk.αkqk,i, G0,i/, where qk,i and G0,i are respectively the ith marginals
of qk and of G0. Thus, theorem 1 applies to the random marginals of Gk. To extend the result to
the joint DF Gk, we need to introduce further notation. Let Cd,n1,…,nd ,o denote a configuration
of the indices .j1, . . . , jm/ in {1, 2, . . .}m, characterized by d distinct values, repeated respectively
n1, . . . , nd times, in the order given by o; for example, if m=3, C1,3,.1,1,1/ =C1,3 denotes the set of
triples .i, i, i/ with i∈{1, 2, . . .}, C2,1,2,.1,2,1/ is the set of triples .i, j, i/ with i, j ∈{1, 2, . . .}, i �= j,
etc. Denote by C the class of all possible configurations. Given a configuration C, and the sample
.θÅ

j = .θÅ
1,j, . . . , θÅ

m,j/, j = 1, . . . , k/ from G0, let G0,C be the DF of the vector .θÅ
1,j1

, . . . , θm,jm/

whose co-ordinates are chosen from the θÅ
js according to the labels .j1, . . . , jm/ in C. For exam-

ple, if m = 3 and C = C1,3, G0,C = G0; if C = C2,1,2,.1,2,1/, G0,C = G0,2G0,1,3, where G0,2 and
G0,2,3 are the marginal distributions of θÅ

2,j and .θÅ
1,j, θÅ

3,j/ respectively. Then for the joint DF
Gk on Rm we have the following limiting result.

Theorem 2. Let .Gk, k � 1/ be a sequence of random DFs on Rm, Gk ∼ hDPk.αkqk, G0/.
Suppose that αk →α, 0 <α<∞, for k →∞.

(a) If qk.j1, . . . , jm/→ 0 for all .j1, . . . , jm/∈{1, 2, . . .}m, then Gk →G in distribution, with
G∼DP.αGq/, where the base measure Gq is given by Gq =ΣC∈C q.C/G0,C, with q.C/=
limk→∞{qk.C/}, C ∈C.

(b) If qk.j1, . . . , jm/→q.j1, . . . , jm/ for all .j1, . . . , jm/, where the q.j1, . . . , jm/s define a prob-
ability measure q on {1, 2, . . .}m, then Gk →G in distribution, where G∼hDP.αq, G0/.

In practice, the expression of the base measure Gq in part (a) is simplified, since many of the
weights q.C/ are usually negligible. Note the difference between samples from the limit G in
parts (a) and (b). If θi = .θi.x1/, . . . , θi.xm//|G ∼IID G and G ∼ DP.αGq/, only global ties can
be modelled, although Gq may model species that present inhomogeneous traits, or irregular
areas of random shape. Instead, if G ∼ hDP.αq, G0/ (case (b)), it is possible to model global
and local clusters alike, i.e. the individual vectors may share just some of their co-ordinates.

Condition (b) of theorem 2 is not satisfied if qk has uniform marginals qk,i, i.e. at each co-ordi-
nate the weights are symmetric Dirichlet. In fact, in that case, qk,i.j/ = 1=k → qi.j/ = 0 for all
j =1, 2, . . . , so qi cannot be the marginal of a probability measure q on {1, 2, . . .}m. Therefore, if
a symmetric Dirichlet distribution is used, as is common in applications of mixture models, we
should be aware that the properties of the model for large k may be quite different from those
for small k. In fact, as we illustrate in Section 5, hDPk mixture models usually succeed in giving
a good reconstruction of the data for small values of k, by allowing local and global clustering;
however, the previous results should be kept in mind when studying sensitivity to the choice of k.

4. Applications to mixture modelling

In this section, we apply hybrid Dirichlet priors to mixture models, as in Section 2. Again, we
consider a sample of curves Yi = .Yi.x/, x∈D/, observed at a finite set of locations .x1, . . . , xm/.
The model for these data is described by expression (3), except here Gx1,…,xm ∼hDPk.αqx1,…,xm ,
G0,x1,…,xm/. Integrating out the θis, from equation (10) we obtain

Yi|G IID∼
k∑

j1=1
. . .

k∑
jm=1

px1,…,xm.j1, . . . , jm/Nm{.θÅ
j1,1, . . . , θÅ

jm,m/, σ2Im}, .13/
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that is a location mixture of Gaussian distributions with local random effects.
The role of the labelling component of the hDPk prior may be further specified. As discussed

in the previous sections, finite Dirichlet and DP mixtures imply a global random partition of the
mean vectors θis; only a scalar γi ∈{1, . . . , k} labels the species allocation. Under equation (6),
Pr.θi = θi′ = θÅ

j |p/=Pr.γi =γi′ = j|p/=p2
j . Instead, hybrid Dirichlet priors provide dependent

local random partitions. Thus, we imagine a vector of labels γi = .γi.x1/, . . . , γi.xm//. For
each co-ordinate x, Yi.x/ and Yi′.x/ are described by the same mean vectors θi.x/ = θi′.x/ if
γi.x/=γi′.x/. Moreover, the partition that is induced at co-ordinate x1 is related to that obtained
at x2 through the functional dependence that is expressed by the weights p; in particular,
Pr{γi.x1/ = γi′.x1/ = j1, γi.x2/ = γi′.x2/ = j2|p} = p2

x1,x2
.j1, j2/. Thus, the model can be refor-

mulated in terms of the hidden label process,

Yi|θi, γi, θÅ
1 , . . . , θÅ

k

ind∼ Nm{θÅ.γi/, σ2Im}, .14/

where θÅ.γ/= .θj1,1, . . . , θjm,m/ if γ = .j1, . . . , jm/,

γi|px1,…,xm , θÅ
1 , . . . , θÅ

k

IID∼ px1,…,xm ,

px1,…,xm |ξ ∼D{αqx1,…,xm.·|ξ/},

θÅ
j

IID∼ G0,x1,…,xm ,

and px1,…,xm and the θÅ
j s are independent. Above, the labelling prior is centred on a parametric

model qx1,…,xm.·|ξ/, such that

Pr{γi = .j1, . . . , jm/|ξ}=E{px1,…,xm.j1, . . . , jm/|ξ}=qx1,…,xm.j1, . . . , jm|ξ/,

with ξ being a vector of hyperparameters. For α→∞, the Dirichlet labelling prior degenerates
on the parametric model qx1,…,xm.·|ξ/.

Consistency of the model for varying grids x is obtained by regarding the γis as the values
at x1, . . . , xm of a hidden process of labels γ, as in Section 3.2. Thus, hybrid Dirichlet mixtures
offer a general framework for capturing the effect of a hidden labelling process in inference for
functional data.

4.1. A copula model for the label process
If k < ∞, a common choice in mixture models is to assume a symmetric Dirichlet distribu-
tion on the mixing weights. The case of a symmetric DPk prior corresponds to the choice of q,
where qx1,…,xm is degenerate on the ‘diagonal’ of the hypercube {1, . . . , k}m, i.e., for any choice of
.x1, . . . , xm/, qx1,…,xm.j1, . . . , jm/ equals 1=k if j1 = . . .=jm and 0 otherwise. Hence, px1,…,xm.j1,
. . . , jm/=0 almost surely unless j1 = . . . = jm, so the label vector γi has almost surely identical
co-ordinates, γi.x1/= . . . =γi.xm/. In this section we provide a more general model for q with
flexible dependence structure and uniform marginals.

The idea is to assign qx1,…,xm by means of an auxiliary absolutely continuous DF, say
H0,x1,…,xm . To be more specific, we take a DF H0,x1,…,xm on .0, 1/m with uniform marginals, i.e.
H0,x1,…,xm is an m-variate copula with suitable dependence structure. Let us partition .0, 1/m in
hypercubes Cj1,…,jm with sides ..ji −1/=k, ji=k], the first closed also on the left, and let

qx1,…,xm.j1, . . . , jm/=H0,x1,…,xm.Cj1,…,jm/ ji =1, . . . , k, i=1, . . . , m: .15/

Then, qx1,…,xm has uniform marginals on {1, . . . , k} and a dependence structure induced by
H0,x1,…,xm . The appeal of this construction is that sampling from qx1,…,xm becomes straightfor-
ward (it is enough to sample from the continuous H0,x1,…,xm , instead of computing km weights
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as would be otherwise required). In what follows, we use a Gaussian copula. More specifically,
we consider L = .L1, . . . , Lm/ ∼ Nm.0, Σ/, with marginal DFs F1, . . . , Fm, and let Ui = Fi.Li/,
i = 1, . . . , m. Then, each Ui has a uniform distribution on .0, 1/ and their joint distribution
H0 = H0.·;Σ/ reflects the dependence structure of the underlying Gaussian distribution. The
latter construction is extended to the functional case by considering a stationary Gaussian
process L = .L.x/, x ∈ D/ with mean function identically 0 and covariance function σ.x − x′/
say, L ∼ F =GP{0, σ.x − x′/}. For any x ∈ D, let U.x/ = Fx{L.x/}. Then, the random process
U = .U.x/, x ∈ D/ has probability law H0 = H0.·|ξ/; for any choice of m � 1 and .x1, . . . , xm/,
the vector .U.x1, . . . , U.xm// ∼ H0,x1,…,xm where H0,x1,…,xm is an m-variate Gaussian copula.
The family of probability measures qx1,…,xm that is obtained by discretizing H0,x1,…,xm defines
a probability measure q on {1, . . . , k}D, with uniform marginals and dependence structure
regulated by H0. We use this q in the modelling above and for the applications that are described
in Section 5.

4.2. Study of the prior
The nature and the behaviour of realizations from an hDPk prior with a copula model for the
label process can be best appreciated by means of a simulation study. Here, we imagine that
x is univariate, e.g. time. Our aim is to illustrate three basic features of the hybrid Dirichlet prior:
the choice of the canonical curves, through the base measure G0; the modelling of the species
recombination (hybridization), through the labelling prior; the clustering, that results from the
predictive rule. Sensitivity to k and in particular the behaviour of the prior for increasing k has
been discussed in Section 3.3.

As base measure G0, we use an m-variate Gaussian distribution with zero mean and covariance
matrix σ2

0 R.φ0/, where R.φ0/ is the correlation matrix with .i, j/th entry exp{−φ0.xi − xj/2},
φ0 �0, i.e. the finite dimensional distribution of a Gaussian process with exponential covariance
function. If σ2

0 is large, we expect high variability across the pure species. Thus, small differences
between two vectors θi and θi′ are explained by the random error, rather than being described
by two different species, say θÅ

j and θÅ
j′ . The decay parameter φ0 controls the ‘smoothness’ of the

vector realizations. In general, we imagine smooth canonical curves and, thus, φ0 will typically
be small.

The labelling prior is centred on a distribution q=q.·;φq/ specified via the auxiliary Gaussian
copula. Here, we use the copula that is obtained from an m-variate Gaussian distribution with
mean vector zero, variance 1 and correlation matrix R.φq/. Note that this choice satisfies the
continuity property that was discussed in Section 3.2, since for x→x′ the correlation between
γ.x/ and γ.x′/ goes to 1. The labelling prior controls the amount of recombination of the pure
vectors θÅ

j s. To discourage too much local selection, q may be fairly concentrated on the diagonal
.i, . . . , i/ of {1, . . . , k}m; the limit case of q degenerate on the diagonal is obtained for φq = 0
and corresponds to the DPk prior on G. For the copula model, there is an interplay between k
and the probability that is assigned on the diagonal of {1, . . . , k}m; given φq, this probability
decreases as k becomes larger.

Fig. 1 shows samples from the hDPk prior, for various values of the hyperparameters. We
consider θ = .θ.x1/, . . . , θ.xm//|G ∼ G and G ∼ hDPk.αq, G0/, with q and G0 as above, on a
grid of m=200 equally spaced points in D= .0, 100/. Here, k =5, α=5 and σ2

0 =9, whereas φ0
and φq vary as detailed in Fig. 1. In particular, φ0 = 0:01 illustrates the limit case of constant
canonical curves θÅ

j (φ0 =0). Instead, φq =0:1 exemplifies the effects of a strong correlation in
the label process; as a consequence, we observe none or just a few change-points. If φq =3, we
allow for an accentuated local selection; therefore, we may observe (slight or abrupt) changes
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in the trajectories. The curves are essentially IID samples from E.G/=ΣC q.C/G0,C, with G0,C
as in theorem 2. For illustration, in Fig. 1 we highlight a few pure and hybrid curves.

Now consider the joint distribution of .θ1, . . . , θn/, with n > 1. Since, θi.x/|Gx ∼IID Gx, with
Gx ∼DPk.α, G0,x/, marginally θ1.x/∼G0,x and θi+1.x/|θ1.x/, . . . , θi.x/ is assigned to one of the
species observed at x, or to a new species, according to distribution (8). The joint predictive rule
of θi+1|θ1, . . . , θi takes into account the possibility of dependent local mutations. To describe the
structure of the implied joint clustering, we exploit the hidden labels formulation of the model,
i.e. we sample from the joint distribution of the θis and the labels,

π.θ1, . . . , θn, γ1, . . . , γn/=π.θ1, . . . , θn|γ1, . . . , γn/ π.γ1, . . . , γn/:

A sample from π.γ1, . . . , γn/ is obtained by drawing the components one at a time, from the
Dirichlet updating rule; namely γ1 ∼q, and, for i> 1,

γi+1|γ1, . . . , γi ∼ α

α+ i
q+ 1

α+ i

di∑
j=1

njδγÅ
j

, .16/

where γÅ
1 , . . . , γÅ

di
are the vectors among γ1, . . . , γi that differ at least in one co-ordinate, and nj is

the frequency of γÅ
j , j =1, . . . , di. Sampling from distribution (16) is made simple by the copula

labelling prior, since we can sample the underlying, continuous vector U ∼ H0 instead of the
high dimensional q. Rule (16) suggests that the Dirichlet parameter α controls the probability of
global ties; however, global and local ties can occur, with probabilities governed by q. If q models
strong correlation between labels, such that q.j, . . . , j/>q.j1, . . . , jm/ for unequal jis, the prob-
ability that γn+1 is one of the vectors already in the sample, say γÅ

i , is greater if γÅ
i = .j, . . . , j/,

so pure or canonical species tend to be more frequent in the sample, whereas hybrid species are
more rare. Given .γ1, . . . , γn/, the mean curves θ1, . . . , θn are generated according to the labels’
configurations. In practice, a sample from π.θ1, . . . , θn|γ1, . . . , γn/ is obtained by first generating
θÅ

1 , . . . , θÅ
k ∼IID G0 and then letting θi =θÅ.γi/, where θÅ.γ/ is defined as in distribution (14).

As a proof of purpose, we provide a simple illustration of the clustering that is implied by the
hDPk prior in Fig. 2, for n = 10, k = 5 and m = 100, and hyperparameters σ2

0 = 9, φ0 = 3, and
φq = 0:1 and α = 5 (Figs 2(a) and 2(b)) or φq = 1 and α = 20 (Figs 2(c) and 2(d)). Figs 2(a)
and 2(c) show a sample γ1, . . . , γ10 from the Dirichlet updating rule (16). The frequency of each
configuration is reported on the outermost right-hand side of the panels. Figs 2(b) and 2(d) show
the corresponding sample of .θ1, . . . , θ10/. For α small and strongly correlated labels, we tend to
observe global ties, whereas higher values of α and φq favour local selection and local clustering.
In the example of Figs 2(a) and 2(b), we distinguish two global clusters; more specifically, five
θis share the constant label γ.x/= 1 and three have γ.x/= 4, for all x. In addition, we observe
local clusters; two of the θis are hybrids since they belong to different species at different points.
Some of these behaviours are explicitly highlighted in Fig. 2. Figs 2(c) and 2(d) exemplify the
situation where α and φq are large, to favour local selection and local clustering; this is clearly
indicated by the larger number of change-points on the trajectories of the hybrid curves.

4.3. Markov chain Monte Carlo computations
As discussed at the beginning of this section, the hybrid Dirichlet prior leads to a mixture model
(13) with local random effects. Bayesian inference via MCMC sampling for mixture models
usually takes advantage of the hidden labels to facilitate sampling; see, for example, Marin and
Robert (2007). However, the local nature of the likelihood in our case makes standard MCMC
algorithms not computationally feasible; sampling the km mixing weights in distribution (13)
is not manageable. We integrate the p weights out and, using distribution (14), we focus on the
posterior
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Fig. 2. Example of simulation of one sample from the joint distribution of .γ1,. . . ,γn/ and .θ1,. . . ,θn/j.γ1,. . . ,γn/
(the n D 10 vectors are clustered both globally and locally, as detailed in Section 4.2): here, m D 100, k D 5,
σ2

0 D9 and φ0 D3, and (a), (b) φq D0:1 and αD5, and (c), (d) φq D1 and αD20

π.γ1, . . . , γn, θÅ
1 , . . . , θÅ

k |y1, . . . , yn/∝
n∏

i=1
N{yi|θÅ.γi/, σ2} Pr.γ1, . . . , γn/

k∏
j=1

g0.θÅ
j /,

where θÅ.γi/ is defined as in distribution (14), g0 is the density corresponding to G0 and
Pr.γ1, . . . , γn/ is characterized by the predictive rule (16). The challenges for MCMC compu-
tations are evident in the discreteness of the γis, the presence of the allocation prior q in
rule (16) and the way that the γis enter the likelihood. We suggest a computational strategy
that can be described in two steps.

Recall that γi|p ∼IID p and p ∼D.αq/. The first step requires rewriting the latter in a com-
putationally useful way. In fact, if q is assigned through the copula construction, we can set
γi = .j1, . . . , jm/ if and only if Ui ∈Cj1,. . . ,jm , where U1, . . . , Un are auxiliary random variables
such that Ui|H ∼IID H , H ∼DP.αH0/. Indeed,

p.j1, . . . , jm/=Pr{γi = .j1, . . . , jm/|p}=Pr.U ∈Cj1,:::,jm |H/=H.Cj1,:::,jm/,

and, by the well-known properties of the DP, the vector of probabilities H.Cj1,…,jm/ on the finite
partition in hypercubes of .0, 1/m has a Dirichlet distribution with parameters H0.Cj1,…,jm/=
q.j1, . . . , jm/, as required. The high dimensional discrete labels γi are replaced by the easier-to-
sample, continuous, Ui. The posterior becomes
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π.u1, . . . , un, θÅ
1 , . . . , θÅ

k |y1, . . . , yn/∝
n∏

i=1
N{yi|θÅ.Ui/, σ2} π.u1, . . . , un/

k∏
j=1

g0.θÅ
j /,

where π.·/ is the probability law of U1, . . . , Un characterized by the Polya urn scheme that is asso-
ciated with the DP. However, the update of the Uis in a Gibbs sampler is still complicated, because
of the local nature of the likelihood term (piecewise constant over the hypercubes Cj1,…,jm ). It is
worth noting that sampling the vectors Ui one co-ordinate at a time would not be feasible, owing
to the peculiar nature of the random conditional distribution of Ui.x1/|Ui.x2/, . . . , Ui.xm/ for
a DP (Ramamoorthi and Sangalli, 2006); here, that would lead to a Markov chain that is not
reversible.

Thus, we perturb the Uis with a small noise or ‘jitter’; details are provided in section A.2 of
the appendix. Basically, the jitter is an artificial perturbation of the label Ui, say Ũi, such that

P.Ũi ∈Cj1,…,jm |Ui ∈Cj1,…,jm/≈1,

so that the resulting allocation is not significantly altered by the perturbation. Moreover, we
assume that

Ũi.xj/|Ui.xj/=u
ind∼ fj{ũi.xj/|u}, j =1, . . . , m, i=1, . . . , n,

i.e. independence across the xs. Thus, we can augment the parameter space and approximate
the posterior distribution with its ‘jittered’ version,

π.u1, . . . , un, ũ1, . . . , ũn, θÅ
1 , . . . , θÅ

k |y1, . . . , yn/∝
n∏

i=1

m∏
j=1

N[yi.xj/|θÅ{ũi.xj/}, σ2]

×
n∏

i=1

m∏
j=1

fj{ũi.xj/|ui.xj/}π.u1,. . ., un/
k∏

j=1
g0.θÅ

j /:

.17/

The aim of the jitter is evident. The jittered posterior is easier to sample from, since we can
now separate the update of Ũi from that of Ui. Moreover, given the independence of the Uis,
the posterior allocation is determined by sampling only from m-dimensional distributions. An
MCMC algorithm for the slightly perturbed posterior distribution (17) can be easily described
in the following steps (details are given in section A.2 of the appendix).

(a) Update Ũ1, . . . , Ũn, one co-ordinate at a time from the full conditional of Ũi.xj/,

π{ũi.xj/|ui.xj/, y1, . . . , yn}∝N[yi.xj/|θÅ{ũi.xj/}] fj{ũi.xj/|ui.xj/}:

(b) Update U1, . . . , Un one at a time. The full conditional of Ui,

π.ui|ũi, u1, . . . , ui−1, ui+1, . . . , un/∝
m∏

j=1
fj{ũi.xj/|ui.xj/} π.u1, . . . , un/,

is the standard full conditional for the point masses of an m-dimensional DP mixture
model. We use the strategy that was described by Bush and MacEachern (1996) for
improving possible slow mixing due to the update of the Uis one at a time.

(c) Update θÅ
1 , . . . , θÅ

k one at a time, on the basis of the allocation structure that is de-
fined by the label process γ.x/. The full conditional of θÅ

j is N .μm, Λm/, where μm =
.1=σ2/Λm Σi,l:γi.xl/=j Yi.xl/, and

Λm =
[

1

σ2
0

R−1.φ0/+ 1
σ2

∑
i,l

I{γi.xl/= j}
]−1

:
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The specific implementation and the full conditionals that are used for the simulation and
application example in Section 5 are detailed in the appendix.

4.4. Alternative label process models
Many other choices for the random labelling measure could be considered. For example, we
might assume a Markov dependence for the label process. Then, our framework would lead
to Bayesian mixtures of hidden Markov models, a development which is in line with Teh
et al. (2006). In a rather different spirit, Green and Richardson (2002) employed a hidden Potts
model for spatial count data. Here, the set of xs is finite and the association is captured through a
proximity matrix. Under the Potts model, P{γ.xr/= jr, r =1, 2, . . . , m|δ}∝ exp{−δΣr �=r′I.jr =
jr′/}. As known, calculation of the normalizing constant (a function of δ) requires summation
over .j1, j2, . . . , jm/ ∈ {1, 2, ::, k}m. More similar to our approach is the work of Duan et al.
(2007). They specified a generalized DP model through the formalization of multivariate stick
breaking distributions to create partitions of an m-dimensional hypercube. In their application,
they created labels by using a countable collection of IID Gaussian process replicates, say Zu,
u=1, 2, . . .. Then, P{γ.xr/= jr, r =1, 2, . . . , m}=P{Zu.xr/ < 0, u < jr, Zjr > 0, r =1, 2, . . . , m}.
For a fixed variance, these probabilities are determined by the mean and decay parameters
of the Gaussian processes; if those parameters are random, then the stick breaking distri-
bution is, as well. Model fitting is done by truncating the stick breaking to, say, k pieces
but computation remains challenging since it requires k Gaussian processes instead of just
one.

Finally, we observe that the copula construction of q is attractive for its simplicity and flexi-
bility. However, it suggests an ordering of the labels’ values that is not further exploited when
we generate the associated species. Such behaviour is common in mixture modelling, given
the standard assumption of IID support points for the mixing distribution. In other words, a
change in the label’s value reflects a change-point in the curve trajectory, but a priori the values
of the curve before and after the change-point are identically distributed; of course, the prior
assumption is updated with inferential evidence. Otherwise, we could introduce an order among
the θÅ

j ; however, that would require ad hoc assumptions and may not be easy when m is large,
unless G0 is degenerate on constant species (see Rodriguez et al. (2008)). A different approach
may use a ‘symmetric’ labelling prior, i.e. a model where q is uniform on each subspace of label
configurations (see Section 3.3). Then, the copula construction might be helpful to specify the
values of q on each configuration set, also taking into account the continuity requirement of
Section 3.2. Of course, we would need to consider a different DF H0 or a different partition
of .0, 1/m. These extensions are an open research direction. A recent, interesting, proposal of a
local labelling process is given by Dunson (2008).

5. Empirical study: hDPk mixtures for spatial data

We discuss the behaviour of our model where x is a spatial co-ordinate and the random curve is
a surface. The data Yi = .Yi.x1/, . . . , Yi.xm//, i=1, . . . , n, are observations of different surfaces
at m sites. We introduce a common mean term μ= .μ.x1/, . . . , μ.xm// in model (3), so that

Yi|μ, θi, σ2 ind∼ N .μ+θi, σ2Im/,

θi|Gx1,…,xm

IID∼ Gx1,…,xm:

More generally, the mean term would include the effects of covariates, e.g. μi =Xiβ. We com-
pare two choices for the prior on G—the standard symmetric DPk.α, G0,x1,…,xm/ and the hybrid
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Fig. 3. Regular grid of 14�19 points where we collect measurements for the two applications that are
discussed in Section 5 .N D266/: the locations that are denoted by ‘�’ are explicitly discussed in Section 5.1;
those denoted by ‘4’ are discussed in Section 5.2

Fig. 4. Image plots of the various observational patterns that were created for the simulation in Section 5.1:
(a) i D 3; (b) i D 6; (c) i D 9; (d) i D 12; (e) i D 15; (f) i D 18; (g) i D 21; (h) i D 24; (i) i D 27; (j) i D 30; (k) i D 33;
(l) i D36; (m) i D39; (n) i D42; (o) i D45; (p) i D48
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DPk.αq, G0,x1,…,xm/. As base measure G0,x1,…,xm , in both cases we use the finite dimensional
distribution of an isotropic Gaussian process with mean 0, variance σ2

0 and exponential correl-
ation function with decay parameter φ0. The labelling prior is centred on a measure q defined
from a Gaussian copula, as in Section 4.2. To facilitate comparison between the models, we
fix the mass parameter α= 1. The priors for μ, σ2 and σ2

0 are chosen following Gelfand et al.
(2005). The priors for φ0 and φq are given below.

We expect that the hDPk mixture model provides a good reconstruction of the curve
trajectories with a sensibly smaller number of canonical species than the DPk mixture. It is
worth stressing that both models are location mixtures of Gaussians; the hDPk mixture model
(13) allows also local smoothing, by local selection of the mean vector components, but in both
models the measurement error variance is constant along the curves and across the mixture
components. As usual with location mixtures, this implies a trade-off between the size of the
measurement error and the number of species that are required to describe the data, as we
discuss in Section 5.2. Also, an inadequate specification of the base measure G0 may require
more species to describe the sample of curves. However, choosing G0 degenerate on constant
species (φ0 = 0) may be attractive since such choice facilitates species identifiability. In fact, if

Fig. 5. By rows, image plots of (a)–(d) the simulated data and (e)–(t) posterior predictive means from a DPk
or an hDPk prior, specifically, (e)–(h) DPk, k D 2, (i)–(l) hDPk, k D 2, (m)–(p) DPk, k D 10, and (q)–(t) hDPk,
k D10: by columns, (a), (e), (i), (m), (q) correspond to observation i D3, (b), (f), (j), (n), (r) i D13, (c), (g), (k),
(o), (s) i D23 and (d), (h), (l), (p), (t) i D33
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G0 is too flexible, pure and hybrid species may be confounded, even if the model still succeeds in
giving a good reconstruction of the data. Prior knowledge about the nature of the pure species
θÅ

j clearly helps identifiability and can be easily incorporated in the prior (see Section 4.2). For
example, in modelling possibly abrupt changes in an otherwise smooth surface, e.g. the degree
of impairment of different regions in the brain, we may require that each cluster be characterized
by realizations of a highly correlated base process. This requirement is easily expressed in the
model by centring the prior on φ0 and φq on small values (recall that a small value of φq

discourages too many local changes). In the examples that follow, however, we use a weak
inverse gamma IG.0:5, 1:0/ distribution for φ0 and φq so that the prior mean for both decay
parameters is 0.5, which corresponds to an effective range of 1

2 of the maximum intersites
distance that is observed in our data set.

In our model, k is the number of species in the population. Again, we expect the hDPk to
succeed in reconstructing the data with small k, whereas the DPk should require many more

Fig. 6. Posterior number of clusters at (a) x213 and (b) x45 under an hDPk (k D 10), for the application
in Section 5.1, and boxplots of the ordered values of θÅ.x45/ corresponding to d.x45/, for (c) the hDPk and
(d) DPk (k D10)
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‘available’ species. We do not study the case where k is random but note that the number of
species needed to describe the sample (or ‘discovered’ species) is random, with a prior which
is implicitly given by the prior on G. Rather than a random k, we studied the behaviour
of the model for increasing k (Section 3.3). With the copula labelling prior used in the next
examples, for large k, the hDPk tends to encourage more species. Note that part (b) of theorem
2 applies, since here we took q with uniform marginals, to have a direct comparison with
the usual symmetric DPk mixtures (one can easily modify the symmetric copula construc-
tion by changing the hypercube partition). In this case, when k increases the hDPk tends to
DP.αGq/, whereas the DPk tends to DP.αG0/, so the behaviour that we obtain in the next
examples is not unexpected. The form of the base measure in the limit DP for the hybrid
Dirichlet mixture still enables better modelling of the presence of irregular areas on the surfaces
than the DP.αG0/, and the resulting description of the data remains more parsimonious.

Computations are implemented by using the MCMC algorithm that was described in Section
4.3 and detailed in section A.2 of the appendix. Here, we set the jitter variance η2 =0:01.

5.1. Simulated data
To illustrate the behaviour of our model, we first investigate a simulated data set. The data set
can be viewed as a toy example for the brain magnetic resonance imaging data that are analysed

Fig. 7. Effect of the data reduction: image plots of the original data set for (a) i D6 and (b) i D12, and image
plots of the measurements that were collected on the grid in Fig. 3 for (c) i D6 and (d) i D12
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in Section 5.2. In fact, the observations are generated on the same regular grid of 14×19 points
(Fig. 3) that is considered for that application. For each site x and each replicate i, we observe
a noisy realization of either one of two base (or ‘pure’) processes. To be more specific, we take
a common mean μ= 90 and generate two independent species θÅ

j ∼N{mj, τ2 R.φ/}, j = 1, 2,
with m1 =−30 and m2 =30, τ =3 and φ=0:5. Then, we create a sample of noisy hybrid surfaces
Yi.x/=μ+θÅ

j .x/+ "i.x/, "i.x/∼IID N .0, σ2 =3/, with j =1 or j =2 according to the values of
the co-ordinates of x and the replicate i. More specifically, we generate n=48 replicates, three
belonging to each of the 16 different patterns (‘checkerboards’) that are illustrated in Fig. 4.
Note that these data are not simulated from the model since the species θÅ

1 and θÅ
2 are not IID,

and the ‘hybridization’ and the clustering are arbitrarily chosen, rather than being induced by
the prior as in Section 4.2. Recall that here we fix α=1.

We compare the behaviour of the DPk and hDPk for k =2 and k =10. As expected, with k =2,
the DPk relies only on k =2 ‘global’ species and cannot recover the full pattern of the data. In
contrast, the hDPk captures well the observed pattern by allowing local choices of the relevant
process. When k =10, the DPk struggles to recover complex patterns fully. See Fig. 5, where we
show the image plots of the original observations and the posterior means estimated by the two
models, for k =2 and k =10.

Fig. 8. By rows, (a)–(d) image plots of observations and posterior predictive means for (e)–(h) the DPk
prior and (i)–(l) the hDPk prior, with k D 2, for some individuals considered in the application in Section 5.2:
specifically, by columns, (a), (e), (i) i D2, (b), (f), (j) i D6, (c), (g), (k) i D12 and (d), (h), (l) i D17
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If we fix k sufficiently large, the DPk (and the DP) roughly identifies 16 clusters; hence, the fit
is greatly improved. However, the hDPk can anyway provide a simpler description of the data.
Figs 6 (a) and 6(b) show the posterior distribution on the random partition of the replicates that
is implied by the DPk and hDPk, for k =10. Of course, the random partition at a single location
x is determined by the posterior of θ1.x/, . . . , θn.x/ and it is characterized by the number dn.x/

of distinct values θÅ
1 .x/, . . . , θÅ

dn.x/ observed at x, together with the size and composition of
the groups. We show the posterior of dn.x/ at two locations, x213 and x45, under the hDPk.
The corresponding figure for the DPk (which is not shown) insists on dn.x/=k =10 species. For
the hDPk, the posterior modes of dn.x213/ and dn.x45/ are respectively 3 and 4, suggesting that
the data might support more variety in the pure species. In fact, this reflects the variability of
the data around the two pure species as well as the choice of the hyperparameters, in particular
α and the standard prior that is used for φ0 and φq. Figs 6(c) and 6(d) report the boxplot of the
ordered values of the distinct θÅ.x/s for those iterations where dn.x/ is equal to the posterior
mode (for both models). Here, x=x45. It is evident that the hDPk supports the existence of only
two species.

5.2. Brain magnetic resonance imaging images
Alzheimer’s disease is a neurodegenerative disease, that induces hippocampal atrophy in the
brain (Ashburner et al., 2003). Magnetic resonance imaging images of the brain of patients who
are affected by the disease show impaired as well as normal regions. The statistical analysis of
brain images is a notoriously difficult task, primarily because of the large amount of data and
the evident non-stationarity of the spatial processes that are involved. In particular, regions
that are far apart in the brain might show higher correlations than neighbouring regions. For
a discussion of this issue and a solution from a Bayesian perspective, see, for example, DuBois
Bowman (2005).

We analyse magnetic resonance imaging data from 17 patients. The data have been provided

Fig. 9. Posterior probability maps of pixel impairment for individuals (a) i D2 and (b) i D17: see Section 5.2
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by the Laboratory of Epidemiology and Neuroimaging, Centro San Giovanni di Dio-Fatebene-
fratelli, Brescia, Italy, and have been previously normalized by using the freely available
SPM5 software (http://www.fil.ion.ucl.ac.uk/spm/; see Worsley and Friston
(1995)). For simplicity, we reduce the original data set and record grey density matter intensity
only on a regular two-dimensional grid of 14 ×19 pixels encompassing the hippocampus. The
data are treated as continuous and point referenced. Image plots of the full and reduced data set
for two patients are presented in Fig. 7; the reduction of the data to a smaller grid does not seem
to alter significantly the perception of the main features of the biological processes affecting the
brain.

Ideally, we would like to be able to capture the action of two processes: one describing the
features of healthy individuals and another characterizing the impaired regions of the brain.
However, since we consider a location mixture of Gaussian distributions, more than two species

Fig. 10. Posterior number of clusters at (a) x122 and (b) x220 under an hDPk .k D 10/, for the application
in Section 5.2, and boxplots of the ordered values of θÅ.x220/ corresponding to d.x220/D6, for (c) the hDPk
and (d) DPk .k D10/
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(i.e. kernels) may be required for reconstructing the data if the variability inside the healthy and
diseased groups is different and/or larger than the measurement error that is explained by σ2.

In Fig. 8, for four patients, we show the image plots of the observations and the posterior
predictive means for the DPk and hDPk models, k =2. It is evident that, with small k, the hDPk

captures the features of the data better; as a result, we have evidence to support a model of two
types of regions: normal and impaired. In general, the hDPk describes the existence of two clearly
separate processes, whereas the DPk tends to overshrink the estimates for observations that are
quite dispersed. Fig. 9 shows a posterior probability map of pixel impairment for two individuals.
For illustration, here we consider a pixel impaired if p[θi.x/=minj{θÅ

j .x/}|data]>0:7. Posterior
probability maps of this kind, jointly with an appropriate loss function, may be used to define
multicomparison procedures in a coherent Bayesian framework (Friston and Penny, 2003;
Müller et al., 2004).

More generally, it may be imagined that different levels of impairment arise for different
regions, thus suggesting the existence of k > 2 groups. As in the simulated data set, the DPk

and the DP models tend to recognize as many species as the number of replicates (or number
of available species, whichever is less), thus defeating any dimension reduction purposes. How-
ever, for the hDPk, when k = 10, Fig. 10 reports the posterior distribution of the number of
species selected at x122 and x220 and the boxplots of the ordered θÅ in x220. Unlike the DPk,
the hDPk does suggest the existence of species (surfaces) corresponding to different levels of
impairment.

6. Final remarks

In the context of functional data, we have generalized the functional DPk and DP priors to
versions that enable more parsimonious representations in terms of species of curves, accounting
for global and local heterogeneity in the data. We have illustrated our method with spatial data,
but more general applications in the area of supervised learning can be envisaged. Examples may
include the analysis of time course gene expression data in bioinformatics or clustering of time
series in econometrics. We can also consider clustering objects other than curves, e.g. shapes or
sets in two or three dimensions. We can imagine adding a dynamic aspect to our specifications,
considering the curves to be temporally evolving rather than conditionally independent. Further
promising interchanges are with fields such as population genetics, where our construction of
dependent local partitions may allow modelling of the partial evolution of multivariate or
functional processes. On the methodological side, further development of labelling measures
would be useful. We gave a notion of hybrid species priors which extends species sampling
models. As briefly discussed in Section 4.4, an open direction of research is to study appropriate
specifications of the labelling measure to facilitate the characterization of the hybrid species
sampling models in terms of the predictive rule.
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