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CTED PAbstract

We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent
variables underlying a multivariate time series. It is shown how the collapsibility and separation properties
of partial correlation graphs can be used to understand the relation between a factor model and the
structure among the observable variables.
r 2005 Published by Elsevier B.V.
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E
NCORR1. Introduction

Statistical modelling should appropriately reflect the correlations among the components of a
multivariate time series. This claim usually leads to complex models involving numerous
parameters and requiring a high amount of data to enable reliable inference. Thus, suitable
strategies for dimension reduction are called for when analyzing high-dimensional processes as the
available data does not often suffice to consider the full set of variables. This problem is known as
the curse of dimensionality.
U
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Factor analysis is a well-known approach to reduce the observed variables to a few underlying
latent variables. Peña and Box (1987) suggest the following simple generalization to model a d-
variate stationary time series fYV ðtÞ ¼ ðY 1ðtÞ; . . . ;YdðtÞÞ

0; t 2 Zg, V ¼ f1; . . . ; dg. They assume
that there is an l-variate latent factor process fXF ðtÞ; t 2 Zg following a VARMAðp; qÞ model and
driving the observable variables, i.e. for each time point t

YV ðtÞ ¼ LXF ðtÞ þ �ðtÞ (1)

is assumed, where L is a d � l-matrix of loadings and f�ðtÞ; t 2 Zg, �ðtÞ�Nð0;S�Þ, is a d-variate
white noise process, which is independent of fXF ðtÞ; t 2 Zg. If model (1) holds with independent
factors, i.e. if all matrices in the VARMAðp; qÞ model are diagonal, the autocovariance matrices
GY ðhÞ of fYV ðtÞ; t 2 Zg are symmetrical for hX1 and the columns of L are the common
eigenvectors of GY ðhÞ while the corresponding eigenvalues giðhÞ; i ¼ 1; . . . ; l; are the diagonal
elements of the autocovariance matrices GX ðhÞ of fXF ðtÞ; t 2 Zg. These relations can be exploited
to identify factor models.
For illustration, we analyze an 11-variate time series of vital signs (different types of blood

pressures, heart rate, pulse, and blood temperature) of a critically ill patient. In a first rough
analysis using model (1), we compute the eigenvalues and eigenvectors of the autocorrelation
matrices GY ðhÞ; h ¼ 1; 2; 3, i.e. the autocovariance matrices of the standardized time series (Table
1). Based on these values it seems reasonable to assume that there are four or five underlying
factors. Gather et al. (2001) use four factors for a similar data situation, but without pulsoximetry,
and so we decide to use five factors, here. In the present example, it is important that the factors
can be interpreted by the physician who has to make decisions regarding changes of treatments.
Therefore we rotate the factors in the l-dimensional space using the automatic ‘varimax’
procedure. The resulting loadings, shown in Table 2, allow to relate each of the factors with a
physiological meaningful subset of the variables, e.g. the second factor consists mainly of the
arterial pressures. In order to further improve the interpretation of the factors, Gather et al.
(2001) suggest to impose restrictions on the loading matrix using physiological knowledge and the
results obtained from an analysis of the partial correlations among the component processes. This
seems even more important given the problems that may occur with automatic rotations w.r.t. the
identification of underlying dependence structures even for i.i.d. data (Jolliffe, 1989). In the
following we put the suggestions of Gather et al. (2001) on a sound basis by exploiting the
factorization properties of partial correlation graphs and relating them to dynamic factor models.
UNCO
Table 1

Eigenvalues of the autocorrelation matrices at the first three time lags

Lag EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11

1 3.772 2.163 1.279 0.962 0.650 0.390 0.310 0.193 0.013 0.007 0.005

2 3.623 2.036 1.196 0.895 0.590 0.357 0.265 0.156 0.010 0.004 0.003

3 3.520 1.968 1.167 0.853 0.533 0.342 0.234 0.133 0.010 0.005 0.001
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Table 2

Left: Factor loadings for physiological time series after varimax rotation. The first rotated factor can be identified

mainly with the intrathoracic pressures (PAPx and CVP), the second with HR and Puls, the third with the arterial

pressures, the fourth with the temperature and the fifth with SPO2. Right: Factor loadings for ‘partitioned factor

model’

Var. fac. 1 fac. 2 fac. 3 fac. 4 fac. 5 fac. 1 fac. 2 fac. 3 fac. 4 fac. 5

PAPS 0.380 �0.142 �0.016 �0.031 �0.346 0.484 0 0 0 0

PAPM 0.558 �0.001 0.041 �0.067 �0.049 0.565 0 0 0 0

PAPD 0.582 0.041 �0.001 0.003 0.145 0.510 0 0 0 0

CVP 0.424 0.048 �0.047 0.413 �0.004 0.432 0 0 0 0

APS 0.002 �0.102 0.592 �0.046 0.273 0 0.530 0 0 0

APM 0.039 0.018 0.604 �0.025 �0.015 0 0.622 0 0 0

APD �0.037 0.092 0.535 0.085 �0.276 0 0.577 0 0 0

HR 0.008 0.690 0.011 0.003 0.003 0 0 0.702 0 0

Puls 0.001 0.698 �0.003 �0.010 0.015 0 0 0.712 0 0

Temp �0.138 �0.036 0.023 0.909 0.014 0 0 0 1 0

SPO2 0.084 �0.015 �0.010 0.011 0.844 0 0 0 0 1

R. Fried, V. Didelez / Statistics & Probability Letters ] (]]]]) ]]]–]]] 3
UNCORRECTED P2. Graph notations

Graphical models aim at analyzing the associations among a vector of variables such that they
can uniquely be represented by a graph (Lauritzen, 1996). A graph G ¼ ðV ;EÞ consists of a finite
set of vertices V and a set of edges E � V � V . If only ða; bÞ is in E, we draw a directed edge
(arrow) from a to b, a ! b, and call a a parent of b, and b a child of a. If both ða; bÞ 2 E and
ðb; aÞ 2 E, we use an undirected edge (line) a–b and call a and b neighbors. Directed and undirected
edges typically encode different dependence structures subject to the kind of graphical model. The
sets of parents, children and neighbors of a 2 V are denoted by paðaÞ, chðaÞ and neðaÞ,
respectively. Similarly, we define the parents, children and neighbors of a subset A � V by
paðAÞ ¼

S
a2A paðaÞnA, chðAÞ ¼

S
a2A chðaÞnA and neðAÞ ¼

S
a2AneðaÞnA. The boundary of A is

bdðAÞ ¼ paðAÞ [ neðAÞ. If bdðAÞ ¼ ; we call A an ancestral set. The closure clðAÞ of A is
A [ bdðAÞ. The subgraph GA of G induced by A is obtained by eliminating all vertices except those
in A and all edges ða; bÞ not contained in A� A. A path from a 2 V to b 2 V is a sequence of
vertices a ¼ a0; . . . ; am ¼ b, mX1, such that ðai�1; aiÞ 2 E, i ¼ 1; . . . ;m, and is denoted by a 7!b. If
both a 7!b and b 7!a we say that a and b are connected. Connectivity defines an equivalence
relation and the equivalence classes are called connectivity components.
In order to address factor models we will make use of chain graphs. The vertex set V of such a

chain graph can be partitioned into disjoint subsets BðjÞ, V ¼ Bð1Þ [ � � � [ BðkÞ, such that all edges
between vertices in the same subset are undirected and all edges between different subsets are
directed, pointing from the subset with the lower number to the subset with the higher number.
We assume w.l.o.g. that Bð1Þ; . . . ;BðkÞ are connectivity components and call them chain
components, while CðjÞ ¼ Bð1Þ [ � � � [ BðjÞ is called set of concurrent variables, j ¼ 1; . . . ; k. For a
chain graph G we define its moral graph Gm as the undirected graph with the same vertex set but
with a–b in Gm iff, in G, we have a–b, a ! b, b ! a or if there are ca; cb in the same chain
component such that a ! ca and b ! cb.
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Undirected graphs (no directed edges) are special cases of chain graphs, where V ¼ Bð1Þ in case
of a single connectivity component. In such graphs, subsets A;B � V are separated by S � V if
any path from every a 2 A to b 2 B intersects S. An undirected graph that contains all possible
edges is called complete. It typically represents the saturated model.
UNCORRECTED P
ROOF

3. Partial correlation graphs

Brillinger (1996) and Dahlhaus (2000) introduce partial correlation graphs for multivariate time
series to represent the essential linear, possibly time-lagged relations among the components
which remain after eliminating the linear effects of the other variables. We consider throughout
the paper a vector-valued weakly stationary time series fYV ðtÞ; t 2 Zg, V ¼ f1; . . . ; dg, and denote
it briefly by YV . Similarly, for A � V we denote the subprocess of all variables a 2 A by YA. We
further assume that the covariance function gabðhÞ ¼ CovðYaðtþ hÞ;YbðtÞÞ is absolutely summable
with respect to all time lags h 2 Z for all pairs a; b 2 V . Then the cross spectrum between the time
series Ya and Yb is defined as the Fourier transform of their covariance function:

f YaYb
ðlÞ ¼

1

2p

X1
h¼�1

gabðhÞ expð�ilhÞ.

The variables Ya and Yb are uncorrelated at all time lags h iff f abðlÞ equals zero for all
frequencies.
We are interested in the partial correlations, adjusting for the linear effects of the remaining

variables on Ya and Yb. This is done by considering the residual series �aðtÞ and �bðtÞ obtained by
subtracting all linear influences of YVnfa;bg from YaðtÞ and YbðtÞ, respectively (Brillinger, 1981).
The cross spectrum between the series �a and �b then yields the partial cross spectrum of Ya and
Yb, f YaYb�Vnfa;bgðlÞ ¼ f �a�bðlÞ. The (partial) cross spectrum between two vector time series YA and
YB, A;B � V , can be defined in a similar way. The partial spectral coherency is a standardization
of the partial cross spectrum

RYaYb�YVnfa;bg
ðlÞ ¼

f YaYb�YVnfa;bg
ðlÞ

½f YaYa�YVnfa;bg
ðlÞf YbYb�YVnfa;bg

ðlÞ�1=2
. (2)

With these definitions, the partial correlation graph of a multivariate time series is given as the
undirected graph G ¼ ðV ;EÞ, where two vertices a and b are connected by an undirected edge
whenever the partial spectral coherency RYaYb�YVnfa;bg

ð�Þ is not identical to zero. A missing edge
between a and b is denoted by a ? bjVnfa; bg and indicates that the linear relation between these
two variables given all the others is zero at all time lags. This relation between a graph and the
partial correlation structure is known as undirected pairwise Markov property (PU). Under the
assumption that the spectral density matrix is regular for all frequencies, the PU implies the
undirected global Markov property, a stronger property in general. The latter states that A ? BjS
for all subsets A;B;S � V , whenever S separates A and B in G. It is plausible to consider
undirected graphs because the residual series are adjusted not only for the past but also for the
future effects so that the graph cannot carry any information on the dynamics of the
dependencies.
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4. Chain graphs and dynamic factor models

In the following, we derive what a partial correlation graph of an observed time series should
look like given an underlying factor model. This allows to derive suitable restrictions for a factor
model from a preliminary data analysis using partial correlation graphs. Particularly, the resulting
graph provides an assistance in identifying the number and types of factors. Throughout this
section, we assume that the spectral density matrix of the multivariate stationary time series YV is
regular at all frequencies.
The first proposition needed gives a condition which ensures that missing edges in a subgraph

can still be regarded as zero partial correlations within the corresponding subprocess after
marginalizing over the remaining components (see Fried and Didelez, 2003).

Proposition 1. Let G ¼ ðV ;EÞ be the partial correlation graph of a multivariate time series. If the

boundary of each connectivity component of B � V is complete then GVnB is not smaller than the
partial correlation graph of the subprocess XVnB, i.e. GVnB has the same or more edges than the

latter. We say that G is collapsible on to VnB (or over B).

In order to derive partial correlation graphs for time series models with latent variables, we next
define partial correlation chain graphs. The idea is that factor models consist of two building
blocks: The first one reflects the assumptions about the interdependence among the underlying
factors; this constitutes the first chain component Bð1Þ. Then we model the distribution of the
observable variables given the factors; this constitutes Bð2Þ, and the conditional distribution of
Bð2Þ given Bð1Þ is specified by some suitable model.
The implementation of this idea requires the generalization of the notion of a chain graph to

time series. While time series models are often thought to be causal in time, some time series
methods like dynamic principal component analysis (Brillinger, 1981) apply noncausal filters with
nonzero weights for past and future observations. The following definition is designed for the
latter case due to our interest for such latent variable techniques. We define a partial correlation
chain graph G ¼ ðV ;EÞ by the pairwise block-recursive Markov property (PB) relatively to a
dependence chain Bð1Þ; . . . ;BðkÞ. It states that for any pair a; b of nonadjacent vertices we have

a ? bjCðj%Þnfa; bg,

where j% is the smallest j 2 f1; . . . ; kg with a; b 2 CðjÞ. We consider two further Markov properties
that are commonly used for i.i.d. data. The global chain graph Markov property (GC) states that
A ? B j S for all subsets A, B, S of V such that S separates A and B in ðGAnðA[B[SÞÞ

m, which is the
moral graph of the smallest ancestral subgraph containing A [ B [ S. The pairwise chain Markov
property (PC) states a ? b j ndðaÞnfbg, whenever a; b are nonadjacent and b 2 ndðaÞ. Obviously,
we have (GC) ) (PC) ) (PB). In order to prove that these properties are even equivalent,
provided that the spectral density matrix is regular everywhere, we first state another result, which
is also interesting by itself.

Proposition 2. If the PC is satisfied with respect to a partial correlation chain graph G, then the PU

is satisfied w.r.t. Gm, too.
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Proof. Proposition 2 can be proven along the same lines as Lemma 3.33 in Lauritzen (1996, p.
56f) using Lemma 3.1(ii) in Dahlhaus (2000). It only requires the property X ? Y j Z ) hðX Þ ?

Y j Z for any component selection function h, which is satisfied for zero partial correlation. &

Proposition 3. If the spectral density matrix is regular everywhere then the PB, the PC and the
pairwise GC for partial correlation chain graphs are equivalent.

Proof. Proposition 3 can be proven in the same way as Theorem 3.34 in Lauritzen (1996, p. 57f)
using Lemma 3.1(ii) in Dahlhaus (2000) and Proposition 2. &

Partial correlation chain graphs are most useful for hierarchical time series models of which
factor models are a special case. Assume that

YBðjÞðtÞ ¼
Xj�1

i¼1

X1
h¼�1

Lj;iðhÞYBðiÞðt� hÞ þ �BðjÞðtÞ,

�BðjÞðtÞ ¼
Xp
h¼1

YjðhÞ�BðjÞðt� hÞ; j ¼ 1; . . . ; k,

i.e. �BðjÞ follows a VAR-model, where the elements YjðhÞb;a of YjðhÞ denote the influence of
variable a in the regression of b on the other variables. The partial correlation chain graph of the
whole multivariate time series obeying the above model is given by the following algorithm, where
we make use of the results of Dahlhaus (2000) for VAR-processes.

Construction of partial correlation chain graph:
1.
 CTStarting with Bð1Þ. Connect each pair ða; bÞ 2 Bð1Þ � Bð1Þ whenever YjðhÞa;ba0 or YjðhÞb;aa0
for any h 2 f1; . . . ; pg, or if c 2 Bð1Þ and ha; hb 2 f1; . . . ; pg exist such that YjðhaÞc;aa0 and
YjðhbÞc;ba0.
2.
REDraw vertices for the variables in Bð2Þ, connect the pairs of variables in Bð2Þ by a line using an
analogous rule as in step 1, and draw an arrow from a 2 Bð1Þ to b 2 Bð2Þ if (with obvious
notation) L2;1ðuÞb;aa0 for any u 2 Z.
3.
UNCORRepeat step 2 for Bð3Þ; . . . ;BðkÞ drawing an arrow from a variable a 2 BðiÞ to a variable
b 2 BðjÞ, j4i, if Lj;iðuÞb;aa0 for any u 2 Z, and using the rule stated above for connecting pairs
of variables in BðjÞ by lines.

To show that this construction is valid, we only need to prove that steps 1–3 are correct for the
construction of the partial correlation chain graph, i.e. we have to prove (PB) for the resulting
graph. This can be done by induction on j. The correctness for j ¼ 1 is verified by Dahlhaus (2000)
as �Bð1Þ is a VAR(p)-process. Now assume that the statement is true for all jpn. In order to prove
correctness for j ¼ nþ 1 let w.l.o.g. b 2 Bðnþ 1Þ, and assume a 2 Cðnþ 1Þ is nonadjacent to b. As
�b ? YCðnÞ the regression coefficients for variables a 2 CðnÞ when regressing Yb on YCðnþ1Þnfbg are
given by the elements ðLj;iðuÞÞb;a; u 2 Z. Hence, a ? b j Cðnþ 1Þnfa; bg for any nonadjacent a 2

CðnÞ follows from Proposition 3 in Fried and Didelez (2003). The coefficients for a 2 Bðnþ 1Þ are
the same as the coefficients for a in the regression of �b on YBðnþ1Þnfbg. As �b ?
f
Pn

i¼1

P1

u¼�1Lj;iðuÞYBðiÞðt� uÞg these coefficients are zero if the coefficients of �a in the
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regression of �b on �Bðnþ1Þnfbg are zero, and this in turn is equivalent to �b ? �aj�Bðnþ1Þnfa;bg, which
proves the result. &

Now we have all necessary tools available for constructing the partial correlation graph for the
observed variables generated by a dynamic factor model, where k ¼ 2. A general stationary
dynamic factor model is given by

YV ðtÞ ¼
X1

h¼�1

LðhÞXF ðt� hÞ þ �V ðtÞ,

with an unobserved factor series and an error series following VAR(pÞ-processes:

XF ðtÞ ¼
Xp
h¼1

FðhÞXF ðt� hÞ þ ZðtÞ; �V ðtÞ ¼
Xp
h¼1

YðhÞ�V ðt� hÞ þ dðtÞ.

We note that the model in this very general form is not identifiable but it can serve to investigate
which information on the model structure can be gained from partial correlation graphs without
imposing any further restrictions.
First, we have to construct the partial correlation chain graph, according to the above

algorithm, with YBð1Þ ¼ XF , YBð2Þ ¼ YV . Then we moralize this chain graph, according to
Proposition 2, obtaining the partial correlation graph for ðYV ;XF Þ. Finally, we marginalize this
moral graph w.r.t. XF by applying Proposition 1 for all collapsible connectivity components of
YBð1Þ ¼ XF and completing the boundaries of noncollapsible components in YBð2Þ ¼ YV . This
yields the partial correlation graph GY of YV . It is easy to see that all subgraphs of GY on
variables that are affected by the same underlying factor will be complete. Therefore, it is
straightforward to detect possible factors from the partial correlation graph of the observable
time series by identifying such complete subsets. However, the identification of common factors
can be obscured since dependencies within the error process �V ðtÞ can cause additional edges in
GY . Nevertheless, it seems reasonable to attribute strong relations to the factors and weaker ones
to the errors.
 E
UNCORR5. Application to physiological time series

The ideas of the previous section are now applied to detect the partial linear relations and
underlying factors in the physiological time series mentioned in the Introduction. To begin with,
the cross spectra are estimated from the data, and then the partial spectral coherencies are
computed using Eq. (2). For our calculations we use the program Spectrum (Dahlhaus and
Eichler, 2000) which is based on a nonparametric kernel estimator. In this first step, the partial
spectral coherencies are estimated in the saturated model.
As relations among (physiological) variables may have different strengths we classify the

empirical partial relations into strong (S), moderate (M), weak (W) and negligible (N) partial
correlation on the basis of the area under the estimated partial spectral coherence. This area can
be measured by the partial mutual information between Ya and Yb:

�
1

2p

Z
logf1� jRYaYb�YVnfa;bg ðlÞj

2gdl.
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The resulting partial correlation graph is shown in Fig. 1 with distinct edges for different
classifications and negligible edges omitted.
In a second step, we verify the obtained graph by exploiting its collapsibility properties such as

described in Proposition 1 (cf. also Fried and Didelez, 2003). Consider a missing edge ða; bÞ: If G is
the partial correlation graph for YV then YV also satisfies the pairwise Markov property w.r.t. the
graph G0 with clðaÞ as well as bdðaÞ [ fbg made complete. Then Proposition 1 applies to G0 with
B ¼ VnðclðaÞ [ fbgÞ and we find that an edge between a and b is missing in G if it is missing in G0

A,
where A ¼ ðclðaÞ [ fbgÞ. Therefore, we can restrict testing the existence of an edge ða; bÞ to the
subprocess YA. This allows to double check the previous classifications in a stepwise procedure.
However, we do not change the initial classification by more than one class.
Since false omission of an edge is more serious than false inclusion because it induces more

restrictions than supported by the data, we start by verifying the edges classified as (N). We can,
e.g. check the missing edges (HR,APD), (HR,APM) and (HR,APS) applying Proposition 1 to
fAPM;APD;APS;HR; SPO2g. We find that only the partial mutual information for (HR,APM)
is increased while the others remain about the same. Therefore, we reclassify this edge as (W). A
similar argument leads to the reclassification of the edges (APM,PULS), (APM,PAPM) and
(APM,CVP) as (W).
Next we look at the edges in (W). We find the partial mutual information for (CVP,HR) to be

very small when considering the subgraph on fCVP;HR;PULS;SPO2;APMg. Hence, we
reclassify this edge as (N). Similarly, we find (SPO2,PULS) and (APS,SPO2) to be negligible based
on fSPO2;PULS;HR;CVP;TEMPg and fAPS; SPO2;Temp;Puls;HRg.
Since we could eliminate some edges in the previous step we obtain more graph separations,

that can be used for further double checking. In particular, we reinvestigate the relations between
CVP and the pulmonary pressures based on fCVP; SPO2;Temp;PAPxg with
PAPx 2 fPAPD;PAPM;PAPSg, where APM has to be included when PAPx ¼ PAPM. We find
all these edges to be significant and the partial mutual information to be much higher for
(CVP,PAPx) than, e.g. for (CVP,SPO2). This suggests that conditioning on the other pulmonary
UNCORRE
APD

HR

PAPD

Puls

CVP
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Fig. 1. Partial correlation graph for hemodynamic system, one-step selection (left) and final selection (right).
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Table 3

Percentage of nonexplained variation: Factor model (top), partitioned factor model (bottom).

PAPS PAPM PAPD CVP APS APM APD HR Puls Temp SPO2

0.268 0.041 0.181 0.199 0.146 0.024 0.168 0.022 0.019 0.053 0.128

0.309 0.070 0.234 0.412 0.271 0.027 0.227 0.013 0.012 0.000 0.000
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pressures hides some of the relations, in particular those to CVP. Indeed, the pulmonary arterial
pressures and CVP are jointly denoted as intrathoracic pressures because of their well-known
physiological association.
Further double checking of the remaining edges does not lead to any more alterations of the

graph. The final model found by our stepwise search is also depicted in Fig. 1. It shows strong
relations among the arterial pressures, among the heart rate and the pulse, as well as among the
intrathoracic pressures. In addition, there are some weak relations. The strong relation between
SPO2 and Temp is caused by a systematic error of the measurement instruments, of which the
physicians were unaware before. The other results agree with medical knowledge.
Disregarding the edges classified as (W), the final partial correlation graph consists of four

complete subgraphs, just like the partial correlation graph for a dynamic factor model with four
independent factors. This seems to justify the assumption of a separate factor for each of these
groups of variables, respectively. As we believe the relation between Temp and SPO2 to be a
measurement artifact, we also treat them separately.
When applying the Peña–Box dynamic factor model to the clusters of variables identified

above, we find one factor to be sufficient for each group. The resulting factor loadings are
provided in Table 2, and a comparison of the residual variances for the factor model for all
variables and the ‘partitioned’ factor model is given in Table 3. Most of the variables are
explained almost equally well by both models. The residual variance in the simpler partitioned
model is substantially larger for CVP, only. If we assume two factors for the group of
intrathoracic pressures, we find the second factor to be essentially the difference between PAPS
and CVP.
 R
UNCO6. Conclusion

Statistical methods for dimension reduction aim at condensing the information provided by a
high-dimensional time series into a few essential variables. In this regard, partial correlation
graphs are a suitable tool: On the one hand, they help to explore the relations among the
observable variables. On the other hand, they can be used to identify suitable rotations of the
loading matrices in dynamic factor analysis, or even to partition the variables according to
clusters of closely related variables. With this kind of information we can identify meaningful and
interpretable factor models as we have demonstrated in the present paper. This is particularly
important as automatic rotations are difficult to apply when a more complicated dynamic factor
model with nonzero loadings at various time lags is used. However, very strong relations among
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some of the variables may hide other, weaker relations or even cause spurious relations, thus
misleading the initial analysis of the partial correlation structure. Using the stepwise selection
procedure suggested by Fried and Didelez (2003), and further refined here, seems a promising
alternative.
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