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Summary. A new class of graphical models capturing the dependence structure of events that
occur in time is proposed.The graphs represent so-called local independences, meaning that the
intensities of certain types of events are independent of some (but not necessarilly all) events in
the past. This dynamic concept of independence is asymmetric, similar to Granger non-causal-
ity, so the corresponding local independence graphs differ considerably from classical graphical
models. Hence a new notion of graph separation, which is called δ-separation, is introduced and
implications for the underlying model as well as for likelihood inference are explored. Benefits
regarding facilitation of reasoning about and understanding of dynamic dependences as well
as computational simplifications are discussed.
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1. Introduction

Marked point processes are commonly used to model event history data, a term originating
from sociology where it is often of interest to investigate the dynamics behind events such as
finishing college, finding a job, marrying, starting a family, durations of unemployment and
illness. But comparable data situations also occur in other contexts, e.g. in survival analyses with
intermediate events such as the onset of a side effect or a change of medication (see Keiding
(1999)). Longitudinal studies and the careful analysis of the underlying processes are crucial for
gaining insight into the driving forces of inherently dynamic systems, but having to deal with
the multidimensionality as well as with the dynamic nature of these systems makes this a very
complex undertaking.

Graphical models deal with complex data structures that arise whenever the interrelation-
ship of variables in a multivariate setting is investigated. Over the last two decades, they have
proven to be a valuable tool for probabilistic modelling and multivariate data analysis in such
different fields as expert systems and artificial intelligence (Pearl, 1988; Cowell et al., 1999;
Jordan, 1999) and hierarchical Bayesian modelling (see the BUGS project at http://www.
mrc-bsu.cam.ac.uk/bugs/welcome.shtml), causal reasoning (Pearl, 2000; Spirtes et al.,
2000), as well as sociological, biomedical and econometric applications. For overviews and many
different applications see for instance Whittaker (1990), Cox and Wermuth (1996) and Edwards
(2000).

Whereas the ‘classical’ graphical models are concerned with representing conditional indepen-
dence structures among random variables, variations have been proposed to deal with feedback
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systems (Spirtes, 1995; Koster, 1996) but are still based on cross-sectional data. The application
of graphical models to truly time-dependent data, such as event histories or time series, is only
slowly beginning to progress. Dahlhaus (2000) has proposed graphical models for multivariate
time series, but his approach does not capture how the present or future of the system depends
on or is affected by the past. Instead, Eichler (1999, 2000) used graphs to represent Granger
causality, which is a dynamic concept of dependence. For continuous time one approach, called
dynamic Bayesian networks, is to discretize time and to provide directed acyclic graphs (DAGs)
that encode the independence structure for the transitions from t to t + 1 (Dean and Kanaz-
awa, 1989). The approach that was proposed by Nodelman et al. (2002, 2003) comes closest
to the kind of graphs that we shall consider. In their continuous time Bayesian networks they
represent a multistate Markov process with nodes corresponding to subprocesses and edges
corresponding to dependences of transition rates on states of other subprocesses.

In this paper, we propose and investigate the properties of graphs that represent so-called
‘local independence’ structures in event history data. The basic idea of local independence is
that, once we know about specific past events, the intensity of a considered future event is inde-
pendent of other past events. It has been developed by Schweder (1970) for the case of Markov
processes and applied for example in Aalen et al. (1980). A generalization to processes with a
Doob–Meyer decomposition can be found in Aalen (1987) who focused on the bivariate case,
i.e. local dependence between two processes. Here we extend this approach to more than two
processes. The analogy of the bivariate case to Granger non-causality has been pointed out by
Florens and Fougère (1996); see also Comte and Renault (1996). Note that the notion of ‘local
independence’ that was used by Allard et al. (2001) is a different one.

We first set out the necessary notation and assumptions for marked point processes in Section
2.1 followed by the formal definition of local independence in Section 2.2, the emphasis being
on the generalization to a version that allows us to condition on the past of other processes
and hence describes dynamic dependences for multivariate processes. Section 3.1 defines graphs
that are appropriate to represent local (in)dependence. The main results are given in Section
3.2. The properties of local independence graphs are investigated. In particular we prove that a
new notion of graph separation, called δ-separation, can inform us about independences that
are preserved after marginalizing over some of the processes. In Section 3.3, it is shown how
the likelihood of a process with given local independence graph factorizes and implications are
discussed. The potential of local independence graphs is discussed in Section 4 and proofs are
given in Appendix A.

2. Local independence for marked point processes

Marked point processes are briefly reviewed in Section 2.1, using the notation of Andersen et al.
(1993). In Section 2.2 the concept of local independence is explained in detail.

2.1. Marked point processes and counting processes
Let E = {e1, . . . , eK}, K <∞, denote the (finite) mark space, i.e. the set containing all types of
events of interest for one observational unit, and T the time space in which the observations
take place. We assume that time is measured continuously so that we have T = [0, τ ] or T = [0, τ /

where τ <∞. The marked point process (MPP) Y consists of events given by pairs of variables
.Ts, Es/, s=1, 2, . . . , on a probability space .Ω, F , P/ where Ts ∈T , 0 <T1 <T2 . . . are the times
of occurrences of the respective types of events Es ∈E . Assume that the MPP is non-explosive,
i.e. only a finite number of events occurs in the time span T . The mark-specific counting processes
Nk.t/ that are associated with an MPP are then given by
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Nk.t/= ∑
Ts�t

1{Es = ek}, k =1, . . . , K:

We write N = .N1, . . . , NK/ for the multivariate counting process, and NA, A⊂{1, . . . , K}, for
the vector .Nk/k∈A, calling NA a subprocess, with NV =N.

To investigate dependences of the present on the past it will be important to have some nota-
tion for the history of some subset or all of the processes that are involved. Hence we denote
the internal filtration of a marked point process by Ft =σ{.Ts, Es/|Ts � t, Es ∈E} which is equal
to σ{.N1.s/, . . . , NK.s//|s� t}, whereas for A⊂{1, . . . , K} we define the filtrations of a subpro-
cess as FA

t =σ{NA.s/|s� t}; in particular Fk
t is the internal filtration of an individual counting

process Nk.
Under quite general assumptions (see Fleming and Harrington (1991), page 61), a Doob–

Meyer decomposition of Nk.t/ into a compensator and a martingale exists. Both these processes
depend on the filtration considered, which is here taken to be the internal filtration of the whole
MPP Y. We shall assume throughout that all the Ft-compensators Λk are absolutely continuous
and predictable so that intensity processes λk.t/ exist, which are taken to be predictable versions
of the derivatives of the compensators, i.e. Λk.t/=∫ t

0 λk.s/ ds. Heuristically we have (Andersen
et al. (1993), page 52)

λk.t/ dt =E{Nk.dt/|Ft−}: .1/

More formally this means that the differences Nk −Λk are Ft-martingales.
An interpretation of property (1) is that, given the information on the history of the whole

MPP up to just before time t, λk.t/ dt is our best prediction of the immediately following behav-
iour of Nk. For the theory that is developed in this paper the setting can slightly be generalized,
not requiring absolute continuity of compensators (see Didelez (2000)), as might be relevant
when certain types of events can only occur at fixed times.

It will be important to distinguish between the Ft-intensity that is based on the past of the
whole MPP, and the FA

t -intensities that are based on the past of the subprocess on marks in A.
The latter can be computed by using the innovation theorem (Brémaud (1981), page 83), and a
way of doing so, which is especially relevant to our setting, is given in Arjas et al. (1992).

The following is a standard assumption in counting process theory but we want to highlight
it as it plays a particularly important role for local independence graphs.

Assumption 1 (no jumps at the same time). The Ft-martingales Nk − ∫
λk.s/ ds are assumed

to be orthogonal for k ∈ {1, . . . , K}, meaning that none of N1, . . . , NK jump at the same time.
This is implied by the above assumption that all compensators are absolutely continuous if in
addition no two counting processes Nj and Nk are counting the same type of event.

Assumption 1 might be violated, e.g. when investigating the survival times of couples and
there is a small but non-zero chance that they die at the same time, in a car accident for instance.
The reason for imposing this assumption is that we want to explain dependences between events
by the past not by common innovations. If one wants to allow events to occur at the same time,
then such a simultaneous occurrence defines a new mark in the mark space.

Note that general multistate processes can be represented as marked point processes with
every transition between two states being a mark. This is explored in more detail in Didelez
(2007) for Markov processes.

2.2. Local independence
The bivariate case is defined as follows (see Aalen (1987)).
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Definition 1 (local independence (bivariate)). Let Y be an MPP with E ={e1, e2} and N1 and
N2 the associated counting processes on .Ω, F , P/. Then, N1 is said to be locally independent of
N2 over T if λ1.t/ is measurable with respect to F1

t for all t ∈T . Otherwise we speak of local
dependence.

The process N1 being locally independent of N2 is symbolized by N2 �→N1. Interchangeably
we shall sometimes say that e1 is locally independent of e2, or e2 �→ e1.

The essence of this definition is that the intensity λ1.t/, i.e. our ‘short-term’ prediction of N1,
remains the same under the reduced filtration F1

t as compared with the full filtration Ft . This
implies that we do not lose any essential information by ignoring how often and when event e2
has occurred before t. We could say that if N2 �→ N1 then the presence of N1 is conditionally
independent of the past of N2 given the past of N1, or heuristically

N1.t/⊥⊥F2
t−|F1

t− , .2/

where A⊥⊥ B|C means that ‘A is conditionally independent of B given C’ (see Dawid (1979)).
(Expression (2) is an informal way of saying that N1.dt/ is conditionally independent of {Ts|Ts <

t, Es =2, s=1, 2, . . .} given {Ts|Ts <t, Es =1, s=1, 2, . . .}. This and similar statements later, like
expressions (3), (12) or (15), should be interpreted correspondingly.) For general processes, this
is a stronger property than local independence but it holds for marked point processes with
assumption 1, as their distributions are determined by the intensities. Expression (2) does not
imply that, for u > 0, N1.t +u/⊥⊥F2

t−|F1
t−—hence the name local independence. Also, N1.t/⊥⊥

N2.t/ will hold only if the two processes are mutually locally independent of each other. Without
assumption 1 the F1

t -measurability of λ1.t/ would, for instance, trivially be true if e1 = e2 but,
in such a case, we would not want to speak of independence of e1 and e2.

Example 1: skin disease—in a study with women of a certain age, Aalen et al. (1980) modelled
two events in the life of an individual woman: the occurrence of a particular skin disease and
onset of menopause. Their analysis revealed that the intensity for developing this skin disease
is greater once the menopause has started than before. In contrast, and as we would expect, the
intensity for onset of menopause does not depend on whether the person has earlier developed
this skin disease. We can therefore say that menopause is locally independent of this skin disease
but not vice versa. Note that, in whatever way the onset of skin disease and menopause are mea-
sured, it is assumed that they do not start systematically at exactly the same time, corresponding
to the above ‘no jumps at the same time’ assumption.

Let us now turn to the case of more than two types of event. This requires conditioning on
the past of other processes as follows.

Definition 2 (local independence (multivariate)). Let N = .N1, . . . , NK/ be a multivariate
counting process that is associated with an MPP. Let further A, B and C be disjoint subsets of
{1, . . . , K}. We then say that a subprocess NB is locally independent of NA given NC over T if all
FA∪B∪C

t -intensities λk, k ∈B, are measurable with respect to FB∪C
t for all t ∈T . This is denoted

by NA �→NB|NC or in short A �→B|C. Otherwise, NB is locally dependent on NA given NC, i.e.
A→B|C. If C =∅ then B is marginally locally (in)dependent of A.

Conditioning on a subset C thus means that we retain the information about whether and
when events with marks in C have occurred in the past when considering the intensities for marks
in B. If these intensities are independent of the information on whether and when events with
marks in A have occurred we have conditional local independence. By analogy with expression
(2) this definition of multivariate local independence is with assumption 1 equivalent to

NB.t/⊥⊥FA
t−|FB∪C

t− ∀t ∈T : .3/
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Example 2: home visits—this example is not taken from the literature but is inspired by real
studies (e.g. Vass et al. (2002, 2004)). In some countries there are programmes to assist the elderly
through regular home visits by a nurse. This is meant to reduce unnecessary hospitalizations
while increasing the quality of life for the person. It is hoped that such a programme increases
the survival time. The times of the visits as well as the times and durations of hospitalization
are monitored. In addition, it is plausible that the underlying health status of the elderly per-
son may also affect the rate of hospitalization and predict survival. This interplay of events for
an individual elderly person can be represented as an MPP if ‘health status’ is regarded as a
multistate process. Assume that the timing of the home visits is determined externally, e.g. by
the availability of nurses which has nothing to do with the patient’s development, i.e. the visits
are assumed locally independent of all the remaining processes. It might then be of interest to
investigate whether the visits affect only the rate of hospitalization directly, i.e. whether survival
is locally independent of the visits process given the hospitalization and health history or even
given only a subset thereof.

As can easily be checked, local (in)dependence needs to be neither symmetric, reflexive nor
transitive. However, since in most practical situations a subprocess depends at least on its own
past we shall assume throughout that local dependence is reflexive. An example for a subprocess
that depends only on the history of a different subprocess and not on its own history is given in
Cox and Isham (1980), page 122.

To see the relation with local independence, we briefly review Granger non-causality (Granger,
1969). Let XV = {XV .t/|t ∈ Z} with XV .t/ = .X1.t/, . . . , XK.t// be a multivariate time series,
where V ={1, . . . , K} is the index set. For any A⊂V we define XA ={XA.t/} as the multivariate
subprocess with components Xa, a ∈ A. Further let X̄A.t/ = {XA.s/|s � t}. Then, for disjoint
subsets A, B⊂V , we say that XA is strongly Granger non-causal for XB if

XB.t/⊥⊥ X̄A.t −1/|X̄V\A.t −1/,

for all t ∈ Z. The interpretation is similar to that for local independence, i.e. the present value
of XB is independent of the past of XA given its own past and the past of all other components
C =V\.A∪B/, by analogy with expression (3). Also note that the above does not imply that

XB.t +u/⊥⊥ X̄A.t −1/|X̄V\A.t −1/

for u > 0, which is again analogous to local independence. Eichler (1999, 2000) investigated a
graphical representation and rules to determine when the condition X̄V\A.t −1/ can be reduced
to proper subsets X̄C.t −1/, C ⊂V\A.

Finally, let us indicate how the definition of local independence can be generalized to stopped
processes. This is relevant when there are absorbing states such as death. In that case all other
events will be locally dependent on this one because all intensities are 0 once death has occurred.
However, the dependence is ‘trivial’ and not of much interest. Let T be an Ft-stopping time
and let NT = .NT

1 , . . . , NT
K/ be the multivariate counting process that is stopped at T. Then the

intensities of NT
k are given by λT

k , k ∈V , and local independence can be formalized as follows.

Definition 3 (local independence for stopped processes). Let NT = .NT
1 , . . . , NT

K/ be a multi-
variate counting process that is associated with an MPP and stopped at time T. Then we say that
A �→B|C if there are FB∪C

t -measurable processes λ̃k, k ∈B, such that the FA∪B∪C
t -intensities of

NT
B are given by λT

k .t/= λ̃k.t/ 1{t �T}, k ∈B.

The local independences in a stopped process must be interpreted as being valid as long as
t �T .
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3. Local independence graphs

We first give the definition of local independence graphs and then investigate what can be read
from these graphs.

3.1. Definition of local independence graphs
An obvious way of representing the local independence structure of an MPP by a graph is to
depict the marks as vertices and to use an arrow as a symbol for local dependence as in the
following small example.

Example 1 (continued): skin disease—the local independence graph for the relation between
menopause and skin disease is very simple: Fig. 1. Even with this simple example there is no
way of expressing the local independence by using a classical graph based on conditional inde-
pendence for the two times T1, the ‘time of occurrence of skin disease’, and T2, the ‘time of
occurrence of menopause’, as these are simply dependent.

For general local independence structures, we shall have directed graphs that may have more
than one directed edge between a pair of vertices, in the case of mutual local dependence, and
that may have cycles. More formally, a graph is a pair G= .V , E/, where V ={1, . . . , K} is a finite
set of vertices and E is a set of edges. The graph is said to be directed if E⊂{.j, k/|j, k∈V , j �=k}.
Later we shall also need the notion of an undirected graph where E ⊂ {{j, k}|j, k ∈ V , j �= k}.
Undirected edges {j, k} are depicted by lines, j—k, and directed edges .j, k/ by arrows, j → k.
If .j, k/∈E and .k, j/∈E this is shown by stacked arrows, j �k.

The following property (4) is called the pairwise dynamic Markov property, where we say
dynamic to emphasize the difference from graphs that are based on conditional independence.

Definition 4 (local independence graph). Let NV = .N1, . . . , NK/ be a multivariate counting
process that is associated with an MPP Y with mark space E = {e1, . . . , eK}. Let further G =
.V , E/ be a directed graph, V ={1, . . . , K}. Then, G is called a local independence graph of Y if,
for all j, k ∈V ,

.j, k/ �∈E⇒{j} �→{k}|V\{j, k}: .4/

Example 2 (continued): home visits—the graph in Fig. 2(a) is for the whole process, whereas
Fig. 2(b) shows the local independences for the stopped process (stopping when death occurs).
There are no arrows into Home visits representing that the rate of visits is locally independent
of Hospitalization given Health status as well as of Health status given Hospitalization (while
the person is still alive), reflecting that the visits are determined externally. The latter local inde-
pendence might be violated if the nurses, on their own account, increase the frequency of their
visits when they notice that the person’s health is deteriorating. The graph further represents
that survival is locally independent of the visits given hospitalization and health history, and
that the health process is also locally independent of the visits given hospitalization history
(while the person is still alive, obviously). These absent edges could reflect the null hypothesis
when investigating whether the visits affect survival in other ways than through changing the
rate of hospitalization.

menopause skin disease

Fig. 1. Local independence graph for the skin disease example
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(a)

Hospitalization

Health statusDeath Health statusDeath

(b)

Home
visits

Home
visits

Hospitalization

Fig. 2. Home visits example (a) for the whole process and (b) for the stopped process

3.2. Dynamic Markov properties
The local independence graphs as defined above allow (under mild assumptions) more proper-
ties to be read off, concerning the dependence structure, than just those given by expression (4).
We may in particular query the graph with the aim of dimension reduction, i.e. with questions
about which other processes can be ignored while investigating certain local independences. The
local dynamic Markov property that is addressed in Section 3.2.1 tells us about the immediately
relevant information when considering a single mark ek and corresponding Nk. Further, the
global dynamic Markov property in Section 3.2.2 gives graphical rules to identify when the sep-
arating set itself can be reduced, i.e. when in expression (4) we do not need to condition on
all V\{j, k} but just on a true subset. For this we need the notion of δ-separation that is also
introduced in Section 3.2.2.

Some more graph notation will be required. A path between two nodes is defined in the
obvious way (the formal definition is given in Appendix A.2): we distinguish between undirected
paths for undirected graphs, directed paths, preserving the direction of edges, for directed graphs
and trails for connections in directed graphs that do not preserve the direction. For directed
graphs we further require the following almost self-explanatory notation. If a → b then a is
called a parent of b and b is a child of a (if a�b then a is both, a child and a parent of b); pa(A)
denotes the set of all parents of nodes in A⊂V without A itself, and ch(A) analogously the set
of children of A. The set cl.A/=pa.A/∪A is called the closure of A. If there is a directed path
from a to b then a is an ancestor of b and b is a descendant of a; the corresponding set notation
is an(A) and de(A) (always excluding A itself). Consequently, nd.A/ = V\.de.A/ ∪ A/ are the
non-descendants of A. If pa.A/=∅, then A is called ancestral. In general, An(A) is the smallest
ancestral set containing A, given by A∪an.A/.

3.2.1. Local dynamic Markov property

Definition 5 (local dynamic Markov property). Let G = .V , E/ be a directed graph. For an
MPP Y the property, for all k ∈V ,

V\cl.k/ �→{k}|pa.k/ .5/

is called the local dynamic Markov property with respect to G.

In other words, property (5) says that every Ft-intensity λk is Fcl.k/
t measurable, which clearly

implies that for any ancestral set A the intensity λA is FA
t measurable. This property could for

instance be violated if two components in pa(k) were almost surely identical, which is, however,
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prevented by the orthogonality assumption 1. As shown in Appendix A.3, the exact condition
for property (5) to follow from property (4) is that

FA
t ∩FB

t =FA∩B
t ∀A, B⊂V , ∀t ∈T , .6/

where we define F∅ ={∅, Ω}. Property (6) is called ‘conditional measurable separability’ (Flor-
ens et al., 1990) and formalizes the intuitive notion that the components of N are sufficiently
‘different’ to ensure that common events are necessarily due to common components.

Example 2 (continued): home visits—let us consider the question whether the four processes
are sufficiently different to ensure property (6). If the health process is measured in a way such
that it is determined by the number and duration of past hospitalizations, not taking any other
information into account, this assumption might be violated. However, it makes sense and we
shall assume for this example that the Health status reflects more aspects of a person’s health
than just past hospitalizations. Then it seems plausible that property (6) is satisfied as the other
processes are clearly capturing different information anyway. Consequently we can use the local
dynamic Markov property to read off that the visits process is locally independent of both,
hospitalization and health status (while the person is still alive).

3.2.2. δ-separation and the global dynamic Markov property
In undirected graphs we say that subsets A, B ⊂V are separated by C ⊂V if any path between
elements in A and elements in B is intersected by C. This is symbolized by A⊥⊥gB|C. In classical
graphical models every such separation induces conditional independence between A and B
given C regardless of whether .A, B, C/ is a partition of V or not. This can obviously lead to
considerable dimension reduction if C is chosen minimally and the graph is sparse. To obtain
a similar result for local independence graphs we require a suitable notion of separation called
δ-separation, which is introduced below after some more graph notation.

The moral graph Gm is given by inserting undirected edges between any two vertices that
have a common child (if they are not already joined) and then making all edges undirected (two
directed edges between a pair of nodes are replaced by one undirected edge). This procedure of
moralization will also be applied to an induced subgraph GA, A⊂V , which is defined as .A, EA/

with EA the subset of E containing only edges between pairs of nodes in A. Finally, for B⊂V ,
let GB denote the graph that is obtained by deleting all directed edges of G starting in B.

Definition 6 (δ-separation). Let G = .V , E/ be a directed graph. Then, we say for pairwise
disjoint subsets A, B, C⊂V that C δ-separates A from B in G if A⊥⊥gB|C in the undirected graph
.GB

An.A∪B∪C//
m (the case of non-disjoint A, B and C is given in Appendix A.2).

Except for the fact that we delete edges starting in B, which makes δ-separation asymmetric,
the definition parallels the definition for DAGs. This initial edge deletion can heuristically be
explained by the fact that we want to separate the present of B from the past of A and hence
we disregard the ‘future’ of B which is where the edges out of B point to; for the same reason
only the ancestral set An.A ∪ B ∪ C/ is considered. As for DAGs the insertion of moral edges
is necessary whenever we condition on a common ‘child’ owing to a ‘selection effect’ by which
two marginally independent variables (or processes) that affect a third variable (or process)
become dependent when conditioning on this third variable. Further properties of δ-separation
are discussed in Didelez (2006).

Definition 7 (global dynamic Markov property). Let NV = .N1, . . . , NK/ be a multivariate
counting process that is associated with an MPP Y and G= .V , E/ a directed graph. The prop-
erty that, for all disjoint A, B, C ⊂V ,
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C δ-separates A from B in G⇒A �→B|C .7/

is called the global dynamic Markov property with respect to G.

The significance of the global Markov property is that it provides a way to verify whether a
subset C ⊂V\.A∪B/ is given such that A �→B|C, i.e. local independence is preserved even when
ignoring information on the past of processes in V\.A∪B ∪C/. Of course, property (7) is only
meaningful if it can be linked to the definition of local independence graphs that is addressed
next.

Theorem 1 (equivalence of dynamic Markov properties). Let Y be a marked point process
and G= .V , E/ a directed graph. Under the assumption of property (6) and further regularity
conditions (see Appendix A.3), the pairwise, local and global dynamic Markov properties,
i.e. expressions (4), (5) and (7), are equivalent.

The proof is given in Appendix A.3.

Example 2 (continued): home visits—the underlying health status of an elderly person may
be difficult to measure accurately in practice. Let us therefore investigate the local independence
structure when ignoring this underlying process altogether; in particular consider the question
of whether from Fig. 2 we can infer that survival is still locally independent of Home visits given
only the hospitalization but ignoring the health process. Graphically this means we must check
whether the node Hospitalization alone separates Home visits from Death. As can be seen from
the corresponding moral graph (for the stopped process) in Fig. 3 this is not so. Hence, even
though the home visits are assumed to be determined externally in Fig. 2 and do not affect sur-
vival directly, ignoring the underlying health process may lead to a ‘spurious’ local dependence
of survival on the home visits. The reason is that, for instance, a history of hospitalization with
a preceding home visit predicts survival differently from a hospitalization without a preceding
home visit—the former might mean that the health was especially bad and hence hospitalization
was necessary, whereas the latter allows minor health problems that could have been treated by
a nurse who was not available.

Intuitively it is clear that if the intensity of the visits depended on the underlying health status,
i.e. if there was a directed edge from Health to Visits, we could talk of confounding. Hence it is
rather surprising that even when the frequency of the visits is controlled externally we may find
a spurious dependence. For the discrete time case Robins (1986, 1997) has demonstrated that
nevertheless in a situation like Fig. 2 we can draw causal conclusions even when no information
on the underlying health process is available. However, standard methods that just model the
intensity for survival with time varying covariates for the times of previous home visits and hos-
pitalizations will typically give misleading results due to the conditional association between
Home visits and Death given Hospitalization.

Home
visits

Hospitalization

Health statusDeath

Fig. 3. Moral graph for the home visits example
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Toxic
reaction

Chemo-
therapy

Anxiety

Surgery

Tumour
size

Death

Fig. 4. Local independence graph for the chemotherapy example (a stopped process)

Example 3 (chemotherapy cycles)—to see a more complex example of a local independence
graph consider a hypothetical study (which is inspired by real studies) where early stage breast
cancer patients are observed over a period of several months during which they receive at least
one but usually more cycles of chemotherapy. The size of the tumour is monitored through pal-
pation. The doctors will consider removing the tumour by surgery if the size does not decrease
and surgery is almost certain if it increases. Furthermore, the chemotherapy may be delayed or
discontinued if the patient shows a toxic reaction following the treatment but also if the patient
requests a delay, possibly due to an increased state of anxiety. Except for the size of the tumour
all processes count one type of event that can occur once or more often. The size of the tumour
is measured categorically depending on the number and palpable size of lesions and can be
regarded as a multistate process. Fig. 4 shows a hypothetical local independence structure. For
instance it assumes that survival locally depends on the size of the tumour and whether surgery
has taken place, but once this information has been given none of the other processes are rele-
vant for the intensity of death. Note that this particular assumption could plausibly be violated
because toxic reactions and anxiety may reflect other health problems, but for simplicity we
shall assume that all patients are ‘healthy’ except for the breast cancer so that this violation is
excluded.

Fig. 5 shows the different moral graphs that are constructed from Fig. 4 to investigate δ-sepa-
rations. Fig. 5(a) shows δ-separation from the node Death allowing us to read off, for instance,
that Chemotherapy is not δ separated from Death by Tumour size alone, reflecting that chemo-
therapy predicts survival if surgery history is ignored. This is plausible because knowing that
for example a decrease in the size of a tumour was preceded by a treatment cycle is informative
for surgery, making it less likely than without preceding chemotherapy; and whether surgery
has taken place, in turn, predicts the survival chances. As Anxiety is problematic to observe and
measure we may further be interested in the question of when it can be ignored. We see from
Fig. 5(a) that Death is locally independent of Anxiety given either the set {Surgery, Tumour
size} or {Chemotherapy, Tumour size}, the latter implying that once we know the chemother-
apy history in addition to the development of the size of the tumour then anxiety will not inform
us any further about the intensity for death regardless of whether surgery and toxic reaction
history is known or not. But note that even though Anxiety does not affect Tumour size directly
the latter must be part of the separating set. Fig. 5(b) shows that Anxiety is δ separated from
Surgery by any set that includes Tumour size and similarly for Fig. 5(c) that it is δ separated
from Toxic reaction by any set that includes Chemotherapy—in these two cases δ-separation
does not tell us more than the local dynamic Markov property (5). From Fig. 5(d) we see that
Anxiety itself is locally independent of Chemotherapy and Tumour size given Toxic reaction
and of Surgery given either Toxic reaction or the set {Chemotherapy, Tumour size}.
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Toxic r.

Anxiety

Surgery

Tumour s. Death Anxiety

Surgery

Tumour s.

Anxiety Tumour s. Anxiety Tumour s.

(a) (b)

(c) (d)

Chemo th.

Toxic r. SurgeryChemo th.

Toxic r. Chemo th.

SurgeryToxic r. Chemo th.

Fig. 5. Different moral graphs for the chemotherapy example: broken edges have been added as a result
of a ‘common child’ in Fig. 4, and circles indicate that arrows out of these nodes have been deleted before
moralizing

3.3. Likelihood factorization and implications
To discuss properties and implications for the likelihood for graphical MPPs we shall regard
the data consisting of times and types of events .t1, e1/, .t2, e2/, . . . , .tn, en/ as a realization of
the history process Ht = {.Ts, Es/|Ts � t}. As for filtrations, Ht− denotes the strict pre-t history
process. Additionally, HA

t , A⊂{1, . . . , K}, which is defined as

HA
t ={.Ts, Es/|Ts � t and ∃ k ∈A : Es = ek, s=1, 2. . .},

denotes the history process restricted to the marks in A. Any set of marked points for which it
holds that ts = tu, s �=u, implies that es = eu can be a history, i.e. a realization of Ht . Note that
(up to completion by null sets) the various filtrations can be regarded as being generated by the
history processes, i.e. FA

t =σ{HA
t }, A⊂{1, . . . , K}.

Before deriving the likelihood for a given local independence graph, we recall it for the gen-
eral case. On the basis of the mark-specific intensity processes λk.t/ the corresponding crude
intensity process is given by λ.t/ = ΣK

k=1λk.t/. This is the intensity process of the cumulative
counting process ΣkNk. The likelihood process L.t|Ht/ is then given as

L.t|Ht/= ∏
Ts�t

λEs.Ts/exp
{

−
∫ t

0
λ.s/ds

}
: .8/

To see how the likelihood is affected by G being a local independence graph of Y , we first rewrite
equation (8) as
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L.t|Ht/=
K∏

k=1

∏
Ts�t

λk.Ts/
1{Es=ek} exp

{
−

∫ t

0

K∑
k=1

λk.s/ds

}

=
K∏

k=1

[ ∏
Ts.k/�t

λk.Ts.k//exp
{

−
∫ t

0
λk.s/ds

}]
,

where Ts.k/ with Es.k/ = ek are the occurrence times of mark ek. The inner product of this equa-
tion can be regarded as the mark-specific likelihood and is denoted by Lk.t|Ht/. Now, by the
definition of a local independence graph and the equivalence of the pairwise and local dynamic
Markov properties under condition (6) we have that λk.s/ is Fcl.k/

t measurable, where cl(k) is
the closure of node k. Hence, it follows that

Lk.t|Ht/=Lk.t|Hcl.k/
t /, .9/

i.e. the mark-specific likelihood Lk that is based on the whole past remains the same if the avail-
able information is restricted to how often and when those marks that are parents of ek in the
graph and ek itself have occurred in the past, which is symbolized by H

cl.k/
t .

It follows that under condition (6) the likelihood factorizes as

L.t|Ht/= ∏
k∈V

Lk.t|Hcl.k/
t /, .10/

which parallels the factorization for DAGs where the joint density is decomposed into the uni-
variate conditional distributions given the parents. Here, we replace the parents by the closure
because we also need to condition on the past of a component itself, which is not required in
the static cases.

Example 2 (continued): home visits—from Fig. 2(b) we obtain the factorization

L.t|Ht/=Lvi.t|H{vi}
t / Lho.t|H{vi,ho,hs}

t / Lhs.t|H{ho,hs}
t / Ld.t|H{d,ho,hs}

t /

for t � time of death, where vi, ho, hs and d stand for visits, hospitalization, health status and
death respectively.

Two consequences of this factorization regarding the relationship of local and conditional
independence are given next.

Theorem 2 (conditional independences). For an MPP with local independence graph G and
disjoint A, B, C ⊂V , such that C separates A and B, i.e. A⊥⊥gB|C, in .GAn.A∪B∪C//

m, we have

FA
t ⊥⊥FB

t |FC
t ∀t ∈T : .11/

The proof is given in Appendix A.4. The graph separation that A, B and C must satisfy for
condition (11) implies that for each k ∈C the FA∪B∪C

t -intensity λk is either FA∪C
t or FB∪C

t mea-
surable; otherwise C could not separate A and B in the moral graph. Also, of course, we have
that for each k ∈A and k ∈B the FA∪B∪C

t -intensity is respectively FA∪C
t and FB∪C

t measurable;
otherwise there would be edges linking A and B in the graph and they could not be separated.
A property similar to condition (11) has been noted by Schweder (1970), theorems 3 and 4, for
Markov processes. With a similar argument we can reformulate expressions (2) and (3): for any
B⊂V we have

NB.t/⊥⊥FV\cl.B/
t− |Fcl.B/

t− , .12/

i.e. the present of NB is independent of the past of NV\cl.B/ given the past of Ncl.B/.
Example 3 (continued): chemotherapy cycles—let A = Surgery, B = Toxic reaction and C =

{Chemotherapy, Tumour size}. Then .GAn.A∪B∪C//
m is the same as Fig. 5(a), where the node
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Death could be omitted as we are conditioning on the patient being alive anyway, and indeed A
and B are separated by C. With condition (11) we can infer that at any time t (before death) the
whole surgery history, i.e. whether and when surgery has taken place before t, is independent
of whether and when toxic reactions have occurred given that we know the tumour size devel-
opment up to t and when chemotherapy has been administered. As mentioned earlier we have
for the nodes in C that the FA∪B∪C

t -intensity for Tumour size is FA∪C
t and the one for Chemo-

therapy is FB∪C
t measurable; the latter can be seen, by using δ-separation, by checking that

Chemotherapy is locally independent from A=Surgery given {Chemotherapy, Toxic reaction}
(the relevant moral graph happens to be the same as Fig. 5(b)).

3.4. Extensions
Local independence graphs can easily be extended to include time-fixed covariates, such as sex,
age and socio-economic background of patients. The filtration at the start, F0, then must be
enlarged to include the information on these variables. They can be represented by additional
nodes in the graph with the restrictions that the subgraph on the non-dynamic nodes must be
a DAG (or chain graph; see Gottard (2002)) and no directed edges are allowed to point from
processes to time-fixed covariates. A process being locally independent of a time-fixed covar-
iate means that the intensity does not depend on this particular covariate given all the other
covariates and information on the past of all processes. δ-separation can still be applied to find
further local independences.

The nodes in a local independence graph do not necessarily have to stand for only one mark
(or the associated counting process); marks can be combined into one node as has been done
in examples 2 and 3 with Health status and Tumour size. This might be of interest when there
are logical dependences. For example if a particular illness is considered then the events ‘falling
ill’ and ‘recovering’ from this illness are trivially locally dependent. If one node is used to repre-
sent a collection of marks corresponding to a multivariate subprocess of the whole multivariate
counting process then an arrow into this node will mean that the intensity of at least one (but not
necessarily all) of these marks depends on the origin of the arrow. However, some interesting
information could be lost. For instance, if events such as ‘giving birth to first child’, ‘giving birth
to second child’ etc. are considered, it might be relevant whether a woman is married or not
when considering the event of giving birth to first child but it might not be relevant anymore
when considering giving birth to second child.

In many data situations the mark space is not finite, e.g. when measuring the magnitude
of electrical impulse, the amount of income in a new job or the dosage of a drug. One could
then discretize the mark space, e.g. in ‘finding a well-paid job’ and ‘finding a badly paid job’.
However, it must be suspected that too many of these types of events will generate too many
logical dependences that are of no interest and will make the graphs crammed.

As we have seen in some of the examples it is sometimes sensible to consider stopped processes
to avoid having to represent logical and uninteresting dependences. More generally we might
want to relax in definition 2 the requirement ‘for all t ∈T ’ and instead consider suitably defined
intervals that are based on stopping times. For example, it might be that the independence
structure between the time of finishing education and starting the first job is very different from
that before or after that. This deserves further investigation.

4. Discussion and conclusions

The main point of graphical models is that they allow certain algebraic manipulations to be
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replaced by graphical ones. In the case of local independence graphs, we can read properties
of intensity processes with respect to different, in particular reduced, filtrations from the graph
without the need to derive explicit formulae for these intensities, and similarly we can read off
relationships between subprocesses such as properties (11) and (12). This facilitates reasoning
about complex dependences, especially in the face of unobservable information, and simplifies
calculations by reducing dimensionality.

Clearly, it is tempting to interpret local independence graphs causally. However, we regard
causal inference as a topic of its own and it is not the aim of this paper to go into much detail
in this respect, except for the following few comments. Local independence graphs represent
(in)dependences in E{Nk.dt/|Ft−}, where conditioning is on having observed Ft− and, as we
saw in example 2, it makes a difference to what dependences there are whether we condition
on Ft− or different subsets (or even extensions) thereof. Causal inference is about predicting
Nk.dt/ after intervening in Ft− , e.g. by modulating the times of the home visits to be once a
week in the home visits example. It is well known that conditioning on observation is not the
same as conditioning on intervention (‘seeing’ and ‘doing’ in Pearl (2000)). Hence, without fur-
ther assumptions, the arrows in local independence graphs do not necessarily represent causal
dependences—the intensity of an event being dependent on whether another event has been
observed before does not imply causation in the same way as correlation does not imply causa-
tion. Such further assumptions could be that all ‘relevant’ events (or processes) have been taken
into account, like originally proposed by Granger to justify the use of the term ‘causality’ for
what is now known as Granger causality. For example if, in Fig. 2(b), we are satisfied that by
including Health all relevant processes have been taken into account, then we could say that
home visits are indirectly causal for Death. Obviously, in this particular example, there are many
other relevant processes, like the occurrence of illnesses or death of the partner, that might be
relevant. However, the literature on (non-dynamic) graphical models and causality has shown
that causal inference is possible under weaker assumptions. Analogous results based on local
independence graphs would require more prerequisites than we have given in this paper. Hence
this is a topic for further research. For non-graphical approaches to causal reasoning in a con-
tinuous time event history setting see Eerola (1994), Lok (2001), Arjas and Parner (2004) and
Fosen et al. (2004).

Another issue is the question of statistical inference for local independence graphs. This can
be subdivided into

(a) inference when a graphical structure is given, e.g. from background knowledge, but we
still want to quantify the strength of the dependences, and

(b) finding the graph from data if nothing about the local independence structure is known
beforehand, which can be regarded as a particular kind of model selection or search
task.

The former has partly been addressed in Section 3.3, where more specific results will depend
on the actual modelling assumptions about the intensity processes which in turn will depend
on the particular application. Estimation and testing within the class of Markov processes
is tackled in Didelez (2007). More generally, local independence graphs can be combined with
non-parametric, semiparametric or parametric methods but more research is required to investi-
gate how the graphical representation of the local independence structure can simplify inference
in particular settings. As to model search, Nodelman et al. (2003) provided a first attempt, which
was restricted to Markov processes, at exploiting the graphical structure to find the graph itself
when it is not postulated on the basis of background knowledge. Clearly, generalizations would
be desirable.
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Appendix A

The appendix is targeted at proving theorem 1 but to do so we first give some more results on the properties
of local independence and δ-separation which will be used in that proof. These are explored along the lines
of the graphoid axioms (Dawid, 1979, 1998; Pearl and Paz, 1987; Pearl, 1988) which have been generalized
to the asymmetric case by Didelez (2006).

A.1. Properties of local independence

Proposition 1 (properties of local independence). The following properties hold for local independence:

(a) for all A, B⊂V : A �→B|A (left redundancy);
(b) for all A, B, C ⊂V and D⊂A, if A �→B|C then D �→B|C (left decomposition);
(c) for all A, B, C⊂V and D⊂A, if A �→B|C then A �→B|.C∪D/ (left weak union) and for all A, B, C⊂V

and D⊂B, if A �→B|C then A �→B|.C ∪D/ (right weak union);
(d) for all A, B, C, D⊂V , if A �→B|C and D �→B|.A∪C/ then .A∪D/ �→B|C (left contraction);
(e) for all A, B, C ⊂V , if A �→B|C and A �→C|B then A �→ .B∪C/|.B∩C/ (right intersection).

Proof.

(a) Left redundancy holds since obviously the FA∪B
t -intensities of NB are FA∪B

t measurable, i.e., if the
past of NA is known, then the past of NA is of course irrelevant.

(b) Left decomposition holds since the FA∪B∪C
t -intensities λk.t/, k ∈B, are FB∪C

t measurable by assump-
tion so the same must hold for the FB∪C∪D

t -intensities λk.t/, k ∈B, for D⊂A.
(c) Left and right weak union also trivially hold since adding information on the past of components

that are already uninformative (left) or included (right) does not change the intensity.
(d) Left contraction holds since we have that the FA∪B∪C∪D

t -intensities λk, k ∈ B, are by assumption
FA∪B∪C

t measurable and these are again by assumption FB∪C
t measurable.

(e) The property of right intersection can be checked by noting that in the definition of local inde-
pendence the filtration with respect to which the intensity process should be measurable is always
generated at least by the process itself. �

Note that left redundancy, left decomposition and left contraction imply that

A �→B|C ⇔A\C �→B|C: .13/

It is also always true that A �→B|C ⇒A �→B\C|C, but we do not have equivalence here.
The following property will be important for the equivalence of pairwise, local and global dynamic

Markov properties (just like in the well-known case of undirected conditional independence graphs; see
Lauritzen (1996)).

Proposition 2 (left intersection for local independence). Under the assumption of property (6) local
independence satisfies the following property which is called left intersection: for all A, B, C ⊂V ,

if A �→B|C and C �→B|A then .A∪C/ �→B|.A∩C/:

Proof. Left intersection assumes that the FA∪B∪C
t -intensities λk.t/, k ∈ B, are FB∪C

t as well as FA∪B
t

measurable. With condition (6) we obtain that they are FB∪.A∩C/
t measurable, which yields the desired

result. �
The following can be regarded as an alternative version of the above property of left intersection. With

expression (13), left decomposition and left intersection we have that, for disjoint A, B, C, D⊂V ,
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A �→B|.C ∪D/ and C �→B|.A∪D/⇒ .A∪C/ �→B|D: .14/

This follows from corollary 4.3 of Didelez (2006). �
The last property that we consider, the ‘right’ counterpart of left decomposition that was given above,

makes a statement about the irrelevance of a process NA after discarding part of the possibly relevant
information NB\D. If the irrelevance of NA is due to knowing the past of NB\D then it will not necessarily
be irrelevant anymore if the latter is discarded.

Proposition 3 (conditions for right decomposition of local independence). Consider a marked point
process and assume that the cumulative counting process ΣNk is non-explosive and that intensities exist.
Let A, B, C ⊂V , D⊂B, with .B∩A/\.C ∪D/=∅. The property, which is called right decomposition,

A �→B|C ⇒A �→D|C
holds under the conditions that

B �→A\.C ∪D/|.C ∪D/

and

A �→{k}|C ∪B or B �→{k}|.C ∪D∪A/

for all k ∈C\D.

Proof. In this proof we proceed somewhat informally for simplicity. The formal proof is based on the
results of Arjas et al. (1992) and is given in Didelez (2000), page 72.

Redefine AÅ =A\.C ∪D/, BÅ =B\D and CÅ =C\D. Then AÅ ∩BÅ =∅ and, with conditions (12) and
(11), it can be shown that the assumptions of the present proposition imply that

ND.t/⊥⊥FAÅ

t− |FBÅ∪CÅ∪D
t− .15/

as well as

FAÅ

t ⊥⊥FBÅ

t |FC∪D
t : .16/

We want to show that the FA∪C∪D
t -intensity λ̃D.t/ of ND.t/ is FC∪D

t measurable. With the above expressions
and interpretation (1) we have

λ̃D.t/ dt =E{ND.dt/|FA∪C∪D
t− }=E{ND.dt/|FAÅ∪CÅ∪D

t− }
=E[E{ND.dt/|FAÅ∪BÅ∪CÅ∪D

t− }|FAÅ∪CÅ∪D
t− ]

=E[E{ND.dt/|FBÅ∪CÅ∪D
t− }|FAÅ∪CÅ∪D

t− ] by using expression (15)
=E{ND.dt/|FCÅ∪D

t− } by using expression (16)
=E{ND.dt/|FC∪D

t− },

as desired.

A.2. Properties of δ-separation
For a general investigation of the properties of δ-separation we need to complete definition 6 by the case
that A, B and C are not disjoint: we then define that C δ-separates A from B if C\B δ-separates A\.B∪C/
from B. We further define that the empty set is always δ separated from B. Additionally, we define that the
empty set δ-separates A from B if A and B are unconnected in .GB

An.A∪B//
m.

It can be shown (Didelez, 2006) that δ-separation satisfies the same properties as local independence
given above in proposition 1 if we replace A �→ B|C by ‘C δ-separates A from B’ which we shall write
as AirδB|C. In particular it satisfies left redundancy, left decomposition, left and right weak union, and
left and right contraction as well as left and right intersection without requiring further asumptions. The
property of right decomposition holds for δ-separation under conditions that are analogous to those in
proposition 3. In particular we have the following special case of right decomposition:
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AirδB|C, D⊂B⇒AirδD|.C ∪B/\D .17/

which is lemma 4.11 in Didelez (2006).
In addition, we want to show how δ-separation can be read from a local independence graph in a differ-

ent but equivalent way to definition 6. We mention this, firstly, because it will be more familiar to readers
who use d-separation for DAGs (Pearl, 1988; Verma and Pearl, 1990) and, secondly, because some parts
of the proof of theorem 2 are easier to show by using this alternative way of checking δ-separation.

First, the different notions of paths and trails need to be made more stringent. Consider a directed or
undirected graph G= .V , E/. An ordered .n+1/-tuple .j0, . . . , jn/ of distinct vertices is called an undirected
path from j0 to jn if {ji−1, ji}∈E and a directed path if .ji−1, ji/∈E for all i= 1, . . . , n. A (directed) path
of length n with j0 = jn is called a (directed) cycle. A subgraph π = .V ′, E′/ of G with V ′ ={j0, . . . , jn} and
E′ = {e1, . . . , en}⊂ E is called a trail between j0 and jn if ei = .ji−1, ji/, or ei = .ji, ji−1/ or ei = {ji, ji−1}
for all i = 1, . . . , n. Further, for a directed graph we say that a trail between j and k is blocked by C if it
contains a vertex γ such that either

(a) directed edges of the trail do not meet head to head at γ and γ ∈C or
(b) directed edges of the trail meet head to head at γ and γ as well as all its descendants are not elements

of C.

Otherwise the trail is called active.

Proposition 4 (trail condition for δ-separation). Let G = .V , E/ be a directed graph and A, B and C
pairwise disjoint subsets of V. Define that any allowed trail from A to B contains no edge of the form
.b, k/, b ∈ B, k ∈ V\B. For disjoint subsets A, B and C of V , we have that C δ-separates A from B if and
only if all allowed trails from A to B are blocked by C.

The proof is given in Didelez (2000), page 22; see also Didelez (2006).

A.3. Proof of theorem 1
It is easily checked that condition (7) implies condition (5), which implies condition (4). First, pa(k) always
δ-separates V\.pa.k/∪{k}/ from {k} in G; hence condition (5) is just a special case of condition (7). Also,
it is easy to see that the equivalence of the pairwise and local dynamic Markov properties immediately
follows from left intersection assuming condition (6), left weak union and left decomposition. Thus, the
following proof considers situations where A, B and C do not form a partition of V or pa.B/ �⊂ C. The
structure of the proof corresponds to the proof that was given by Lauritzen (1996), page 34, for the equiv-
alence of the Markov properties in undirected conditional independence graphs. Owing to the asymmetry
of local independence, however, this version is more involved.

Assume that condition (4) holds and that C δ-separates A from B in the local independence graph. We
must show that A �→ B|C, i.e. the FA∪B∪C

t -intensities λk.t/, k ∈ B, are FB∪C
t measurable. The proof is via

backward induction on the number |C| of vertices in the separating set. If |C|= |V |− 2 then both A and
B consist of only one element and condition (7) trivially holds. If |C|< |V |−2 then either A or B consists
of more than one element.

Let us first consider the case that A, B, C is a partition of V and none of them is empty. If |A|>1 let α∈A.
Then, by left weak union and left decomposition of δ-separation we have that C ∪ .A\{α}/ δ-separates
{α} from B, i.e.

{α}irδB|C ∪ .A\{α}/

and C ∪{α} δ-separates A\{α} from B in G, i.e.

A\{α}irδB|.C ∪{α}/:

Therefore, we have by the induction hypothesis that

{α} �→B|C ∪ .A\{α}/ and A\{α} �→B|.C ∪{α}/:

From this it follows with the modified version of left intersection as given in expression (14) (which can be
applied because of the assumption that condition (6) holds) that A �→B|C as desired.

If |B|> 1 we can show by a similar reasoning, applying expression (17) to {β}∈B, that A �→B|C. Let
us now consider the case that A, B, C ⊂V are disjoint but no partition of V. First, we assume that they are
a partition of An.A∪B ∪C/, i.e. that A∪B ∪C is an ancestral set. Let γ ∈V\.A∪B ∪C/, i.e. γ is not an



262 V. Didelez

ancestor of A∪B ∪C. Thus, every allowed trail (see proposition 4) from γ to B is blocked by A∪C since
any such trail includes an edge .k, b/ for some b∈B where no edges meet head to head in k and k ∈A∪C.
Therefore, we obtain

{γ}irδB|.A∪C/:

Application of left contraction, weak union and decomposition for δ-separation yields

AirδB|.C ∪{γ}/:

It follows with the induction hypothesis that

A �→B|.C ∪{γ}/ as well as {γ} �→B|.A∪C/:

With left intersection as given by expression (14) and left decomposition for local independence we obtain
the desired result.

Finally, let A, B and C be disjoint subsets of V and A∪B ∪C not necessarily an ancestral set. Choose
γ ∈ an.A∪B ∪C/ and define G̃B =GB

An.A∪B∪C/. Since A⊥⊥g B|C in .G̃B/m we know from the properties of
ordinary graph separation that

(a) either {γ}⊥⊥g B|.A∪C/ in .G̃
B
/m

(b) or A⊥⊥g {γ}|.B∪C/ in .G̃
B
/m.

In case (a) {γ}irδB|.A∪C/ and it follows from left contraction that

.A∪{γ}/irδB|C:

Application of left weak union and left decomposition yields AirδB|.C∪{γ}/. With the induction hypoth-
esis we therefore obtain

A �→B|.C ∪{γ}/ and {γ} �→B|.A∪C/:

Left intersection according to expression (14) and left decomposition for local independence yield A �→
B|C.

Case (b) is the more complicated and the proof makes use now of right decomposition for local inde-
pendence under the conditions that are given in proposition 3. First, we have from (b) that A⊥⊥g {γ}|B∪C
in .GAn.A∪B∪C//

m since the additional edges starting in B can only yield additional paths between A and γ
that must be intersected by B. Since deleting further edges out of γ does not create new paths, it holds that

Airδ{γ}|.B∪C/:

With AirδB|C, application of right contraction for δ-separation yields Airδ.B∪{γ}/|C. Now, we can apply
property (17) to obtain AirδB|.C ∪{γ}/ from where it follows with the induction hypothesis that

A �→B|.C ∪{γ}/ and A �→{γ}|.B∪C/:

With right intersection for local independence we obtain A �→ .B ∪{γ}/|C. In addition, {γ} �→A|.B ∪C/
by the same arguments as given above for A �→{γ}|.B ∪C/. To apply proposition 3 we still have to show
that for all k ∈C either Airδ{k}|.C∪B∪{γ}/ or {γ}irδ{k}|.C∪B∪A/, which by the induction hypothesis
implies the corresponding local independences. To see this, assume that there is a vertex k ∈C for which
neither holds. With the trail condition we then have that in GAn.A∪B∪C/ there is an allowed trail from A
and γ to k such that every vertex where edges do not meet head to head are not in .C ∪B∪{γ}/\{k} and
.C ∪ B ∪ A/\{k} respectively, and every vertex where edges meet head to head or some of their descen-
dants are in .C ∪B ∪{γ}/\{k} and .C ∪B ∪A/\{k} respectively. This would yield a path between A and
γ which is not blocked by C ∪B (note that k is a head-to-head node on this trail) in GAn.A∪B∪C/. This in
turn contradicts the separation of A and γ by B ∪C in GB

An.A∪B∪C/ because the edges starting in B cannot
contribute to this trail. Consequently we can apply right decomposition and obtain the desired result.

A.4. Proof of theorem 2
The factorization (10) implies that the marginal likelihood for the marked point process discarding events
that are not in An.A∪B∪C/, i.e. {.Ts, Es/|s=1, 2, . . . ; Es ∈EAn.A∪B∪C/}, is given by

L.t|HAn.A∪B∪C/
t /= ∏

k∈An.A∪B∪C/

Lk.t|H cl.k/
t /
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as none of the intensities of Nk, k ∈ An.A ∪ B ∪ C/, depend on V\An.A ∪ B ∪ C/. Hence, the likelihood
may be written as a product over factors that depend only on cl(k), k ∈An.A∪B ∪C/. Let C ={cl.k/|k ∈
An.A∪B∪C/} be the set containing all such sets and let gc.t|·/, c∈C, be these factors. Then, we have

L.t|HAn.A∪B∪C/
t /= ∏

c∈C
gc.t|Hc

t /:

Further, by rearranging the factors the sets in C can be taken to be the ‘cliques’, i.e. the maximal fully
connected sets of nodes, of the graph .GAn.A∪B∪C//

m. This thus corresponds to the factorization property
of undirected graphs which in turn implies the global Markov property for undirected graphs (Lauritzen
(1996), page 35). This means that when we have a separation, like C separating A and B, in this graph
.GAn.A∪B∪C//

m the corresponding conditional independence (11) holds, which completes the proof.
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