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2 Vanessa Didelez et al.Key words Adjustment for multipliity, Bonferroni{Holm proedure, mul-tiple test problem, multi{way ANOVA, step{wise proedures.1 IntrodutionIf several hypotheses are to be tested simultaneously in the ontext of a sin-gle statistial experiment, the lassial test theory does not aount for themultipliity of the test deisions. For example the lassial F{test in a one{way analysis of variane is only able to show overall signi�ant di�erenesamong the population means but it annot speify them. More detailedomparisons require a multiple test proedure to apture the omplexity ofthe statistial problem and the multipliity of possibly wrong deisions.Multiple tests are often applied in the ontext of multiple pairwise ompar-ison in the setting of an analysis of variane. In partiular, for the ase ofa balaned one{way layout numerous proedures have been developed andimproved by various suggestions, for instane with less restritive adjust-ments of the size of the individual tests. The orresponding multiple testsan still be used after appropriate modi�ations in non{standard situationssuh as unequal sample sizes or linear ontrasts.Multiple tests in the ontext of a two or multi{way ANOVA, however, hasnot been paid muh attention so far, so that for this ase only few proeduresare known, e.g. the method of Hartley (1955) or Ottestad (1960, 1970).Further, the proedure disussed in Bauer et al. (1998) an be adapted forthis situation, as we will show below.



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 3In this paper, multiple test proedures are derived, in partiular for a two{way ANOVA, whih are less onservative than for instane a proedureobtained from a Bonferroni adjustment of simultaneous tests originally pro-posed for a one{way layout. As our proposals are mainly based on a modi-�ation of the Bonferroni{Holm proedure, they an easily be extended toappliations in a multi{way layout. They are de�ned as step{wise test pro-edures and are thus more powerful than their simultaneous ounterparts.The underlying idea is to onsider subfamilies of null hypotheses, for whiha `loal' test of multiple level ~� exists whih is obtained using a Bonferroni{(Holm{)type split (f. Bauer et al., 1998). In addition, it is investigatedwhether the proposed test proedures keep the multiple level �. It an beshown that two of our proposals ful�ll this property whereas the third mod-i�ation does not. Nevertheless, all modi�ations are disussed sine theyan all be enountered in pratie. The proedures are then ompared withrespet to their power by means of Monte{Carlo experiments based on thesimultaneous power (Maurer and Mellein, 1988) and the relative frequenyof orretly rejeted false hypotheses.2 Multiple tests in a two{way ANOVAThe multiple test proedures introdued in Setion 2.2 are based on theBonferroni{Holm approah. This general priniple for onstruting step{wise test proedures allows the appliation of any suitable level � test. Thus,our proedures are not restrited to the lassial Gaussian ase as introdued



4 Vanessa Didelez et al.in Setion 2.1 nor do they require a balaned design. In fat any multi{waylayout where omparisons of di�erent levels within sublasses are of interestan be takled with the proposed proedures and, if desirable or required,non{parametri tests ould be used. However, for the sake of simpliity werestrit the exposition to the lassial two{way ANOVA situation and thesimulation study (Setion 3) is based on F{tests for the overall hypothesesand multiple t{tests for the pairwise omparisons.2.1 Basi notationsFor onveniene, let us briey reall the lassial two{way ANOVA setting,where Ykln = �+ �k + �l + (��)kl + �kln; (1)for k = 1; :::;K; l = 1; :::; L; n = 1; :::; Nkl; where Nkl are the frequenies ofombinations k in fator A and l in fator B, and the error terms �kln areassumed to be i.i.d. N (0; �2) random variables. The parameters �k and �lare the main e�ets of fator A and B, respetively, (��)kl is the interatione�et, and � the grand mean.The family of hypotheses to be tested in this set{up mainly onsists ofthree intersetion hypotheses onerning the main and interation e�ets aswell as the hypotheses of all pairwise omparisons within the fators A;B,and the interations A�B. For example, the intersetion hypothesis w.r.t.fator A is denoted as HA0 withHA0 : �1 = �2 = ::: = �K



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 5and has to be tested againstHA1 : 9 j; k 2 f1; :::;Kg; j 6= k : �j 6= �k:The intersetion hypotheses HB0 and HAB0 are de�ned analogously. Themultiple pairwise omparisons are used to identify those fator levels whihatually di�er regarding their e�et on Y . For fator A, we have in total12K(K � 1) pairwise omparisons of the typeHA(jk)0 : �j = �k vs HA(jk)1 : �j 6= �k; 1 � j < k � K:The pairwise interation omparisons are given byHAB(jk;lm)0 : (��)jk = (��)lm vs HAB(jk;lm)1 : (��)jk 6= (��)lm;for 1 � j < l � K, 1 � k < m � L. Other hoies of the individualhypotheses about the interations are possible and depend on the respe-tive appliation and interpretation. With the above hoie, we onsider thegeneral ase of analysing any kind of di�erenes among the interations.In pratial appliations, however, it will often be sensible to redue theseto a smaller number of hypotheses being of main interest. For the sake ofsimpliity, the hypotheses of pairwise omparisons are in the following on-seutively numbered as HA(j)0 with j = 1; :::; K(K�1)2 and HB(j)0 , HAB(j)0analogously.2.2 Modi�ations of the Bonferroni{Holm proedureAs a �rst proposal, we onsider the original Bonferroni{Holm proedurewhih is straightforward to apply not only in the ase of a one{way ANOVA



6 Vanessa Didelez et al.but also in ANOVA settings with more than one fator.To use the Bonferroni{Holm proedure in a two{way ANOVA the p{valuesof the pairwise omparisons, only, are onsidered, irrespetive of the par-tiular fator or interation to whih they belong. These p{values are or-dered suh that p(1) � p(2) � ::: � p(n�) with n� = [ 12K(K � 1) +12L(L � 1) + 12KL(KL � 1)℄: The orresponding null hypotheses are de-noted as H(1)0 ; H(2)0 ; :::; H(n�)0 : The Bonferroni{Holm proedure rejets in-tersetion hypotheses whenever at least one of the elementary hypothesesof the pairwise omparisons forming the intersetion is rejeted. In ontrastto the proedures presented below the intersetion hypotheses are not testedexpliitly.The BH proedure is given as ('i; i = 1; :::; n�) with step{wise tests'(i) = iYj=1 ~'(j); i = 1; :::; n�; (2)where ~'(j) = 8>>>>>><>>>>>>:0 >for p(j) �(n� j + 1) ; j = 1; :::; n�;1 � (3)and ~'(j) are the individual tests for the elementary hypotheses orderedaording to the ordered p{values. For proedures of this type, the followingresult originally derived by Holm (1977, 1979) holds.Theorem 1The BH proedure aording to (2) and (3) keeps the multiple level �.



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 7Sine the Bonferroni{Holm proedure is applied to the pairwise omparisonsw.r.t. both fators and all interations, the �rst adjusted signi�ane levelis given by �[K(K�1)+L(L�1)+KL(KL�1)℄=2 . This may obviously be very smallwhih makes it in most appliations diÆult to rejet the orrespondinghypotheses.Bonferroni{Holm Modi�ation I (BHM I)The seond test proedure is a ombination of the Bonferroni{Holm pro-edure and the simple Bonferroni adjustment applied to the intersetionhypotheses. This implies that �rst, a suitable level �=3 test for eah of theintersetion hypotheses HA0 , HB0 , and HAB0 is performed. If one of these isrejeted it is investigated whih of the orresponding means di�er signi�-antly from eah other using the Bonferroni{Holm proedure.For a more formal desription of this proedure let pi; i 2 fA;B;A � Bg;denote the p{values for the intersetion hypotheses, and pi(j), j = 1; :::; ni;the p{values for the orresponding pairwise omparisons suh that pi(1) �::: � pi(ni) for eah i 2 fA;B;A � Bg; where nA = K(K�1)2 ; nB =L(L�1)2 ; nA�B = KL(KL�1)2 :The BHM I proedure is then given as ' = ('i; 'ij ; i 2 fA;B;A �Bg; j 2f1; :::; nig) with'i = 8>>>>>><>>>>>>:0 >if pi �=3; i 2 fA;B;A�Bg;1 � (4)



8 Vanessa Didelez et al.and 'i(j) = 'i �Qjk=1 ~'i(k), j = 1; :::; ni; with~'i(k) = 8>>>>>><>>>>>>:0 >if pi(k) �=3ni � k + 1 ; k = 1; :::; ni:1 � (5)Here, ~'i(j) represents the individual test for the elementary hypotheses ofthe pairwise omparisons belonging to fator i and arranged aording tothe p{values. Conerning the size of this proedure, the following result anbe shown.Theorem 2The BHM I proedure aording to (4) and (5) keeps the multiple level �.As the proof of this thorem is essentially based on the Bonferroni inequal-ity (f. Appendix) it has to be expeted that the nominal multiple level ofthis test an beome smaller than �. Thus, despite of the Bonferroni{Holmadjustment being applied separately to eah fator as well as for the inter-ations, the proedure may be rather onservative.Bonferroni{Holm Modi�ation II (BHM II)The seond modi�ation of the Bonferroni{Holm proedure is similar to theBHM I proedure, with the only, but important, di�erene that the levelsof the three tests of the intersetion hypotheses are not simply determinedby the Bonferroni inequality. They now depend on the results of the previ-ous tests aording to a seond Bonferroni{Holm adjustment, suh that thewhole test may be regarded as a nested proedure.



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 9Therefore, the p{values of the tests of the three intersetion hypotheses areordered suh that p(1) � p(2) � p(3). This modi�ation leads to a less on-servative proedure sine only the smallest p{value is now ompared to �=3.If it is larger than the adjusted level of signi�ane, the proedure stops, andall intersetion hypotheses as well as all hypotheses for the pairwise ompar-isons annot be rejeted. Otherwise those pairwise omparisons have to betested, whose intersetion yields the rejeted intersetion hypothesis. Thishas to be done aording to a Bonferroni{Holm proedure with multiplelevel �=3. As soon as a p{value for a pairwise omparison exeeds the or-responding level of signi�ane, this partiular Bonferroni{Holm proedurestops, and the whole proedure ontinues with the next intersetion hypoth-esis, where p(2) is ompared with �=2.Thus, the whole proedure stops if and only if one of the intersetion hy-potheses annot be rejeted or all hypotheses are rejeted. In ontrast,failing to rejet one of the pairwise omparisons only implies that the in-ner Bonferroni{Holm proedure stops, without testing any further pairwiseomparisons, but the proedure ontinues with the examination of the nextintersetion hypothesis. However, it does not keep the multiple level �, be-ause apart from false deisions on the �rst level of the intersetion hypothe-ses a type I error an also be ommitted on the seond level when arryingout the pairwise omparisons.The above proedure an, however, be improved so as to keep the multiplelevel, namely if the proedure does not only stop as soon as one of the in-



10 Vanessa Didelez et al.tersetion hypotheses annot be rejeted, but also if one of the elementaryhypotheses of the pairwise omparisons has to be retained.For a formal desription of this BHM II test, let pi; i 2 fA;B;A�Bg, denotethe p{values for the intersetion hypotheses and p(i) the orresponding or-dered p{values. The ordered p{values for the pairwise omparisons are givenas p(i)(j) with j = 1; :::; n(i); where n(i) = nR(i) and R(i) 2 fA;B;A�Bgis the anti{rank.The BHM II proedure is given as ('i; 'ij ; i = 1; 2; 3; j = 1; :::; ni) withthe step{wise tests'(i) = ~'(i) � i�1Yj=1 " ~'(j) n(j)Yk=1 ~'(j)(k)# and (6)'(i)(j) = '(i) � jYk=1 ~'(i)(k); (7)where ~'(i) = 8>>>>>><>>>>>>:0 >if p(i) �3� i+ 1 ; i = 1; 2; 3;1 � (8)and ~'(i)(j) = 8>>>>>><>>>>>>: 0 >if p(i)(j) �=(3� i+ 1)n(i) � j + 1 ; i = 1; 2; 3; j = 1; :::; ni:1 � (9)Here, ~'(i) and ~'(i)(j), respetively, denote the individual tests for the inter-setion and elementary hypotheses arranged aording to the orrespondingp{values. For i = 1, Qi�1j=1[ ~'(j) Qn(j)k=1 ~'(j)(k)℄ is de�ned as 1.



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 11Theorem 3The BHM II proedure aording to (6) { (9) keeps the multiple level �.For the proof we essentially refer to Bauer et al. (1998) as detailed in theappendix. Like the BHM I proedure, but in other situations, the BHM IIproedure may be rather onservative as will be disussed below.2.3 Comparison of the proeduresThere is a ruial di�erene between the BH proedure and the BHM I aswell as the BHM II method. While the intersetion hypotheses for the fa-tors A;B and the interation A � B are expliitly tested in the latter twoproedures, they are only impliitly tested in the BH proedure.Let for instane the test of HAB0 have the smallest p{value. If now one of thehypotheses related to the interation annot be rejeted, then the BHM IIproedure stops without testing any of the pairwise omparisons related tothe main e�ets of A and B. Using the BH proedure, however, one mighthave the hane to rejet some of the pairwise hypotheses of the two maine�ets. The BHM I proedure also allows for testing pairwise omparisonsrelated to the fators A and B, even if some of the pairwise interationhypotheses turn out to be non{signi�ant, sine here the two fators andthe interation are treated separately.As mentioned earlier, the BH proedure might result in very small adjustedp{values, if many elementary hypotheses are to be tested. But this is alsothe ase for the other proedures. Consider again the situation that p(A�B)



12 Vanessa Didelez et al.is the smallest p{value of the intersetion hypotheses. Then, the smallestp{value of the BHM II pairwise omparisons is ompared with �=3KL(KL�1)=2 ,whih is even smaller than the smallest of the BH proedure. However, ifp(A�B) is not the smallest p{value then the adjusted values will be larger.The smallest possible adjusted level of the BHM I proedure is �=3KL(KL�1)=2 ,too. However, the adjusted signi�ane levels that the two smallest p{valuesof fator A and B have to be ompared with are greater for the BHM IIproedure than for the BHM I method. This is beause the three interse-tion hypotheses are interonneted not simply by the Bonferroni inequality,but aording to the Bonferroni{Holm priniple.Another aspet of multiple test proedures besides ommitting errors oftype I onerns the possibility that their omponents may lead to overalldeisions whih are not free of ontraditions. Comparing the above proe-dures w.r.t. the onepts of oherene and onsonane introdued by Gabriel(1969) it is obvious that all three proedures are oherent by onstrution,but only the original Bonferroni{Holm proedure is also onsonant whereasthe BHM I and BHM II proedures may yield non{onsonant deisions.3 SimulationIn the previous setion, it was shown that the Bonferroni{Holm proedureand two of its modi�ations, namely BHM I and BHM II, keep the multiplelevel � and thus also ontrol the per{omparison error rate. To get an idea,whih of these three test proedures is best regarding its power, a small



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 13simulation study is performed, with 1000 simulation runs arried out foreah onstellation.The omparison is based on the simultaneous power, briey denoted aspower I in the following, as analogue to the multiple level, and on theproportion of orretly rejeted false hypotheses, briey denoted as powerII, orresponding to the per{omparison error rate.3.1 DesignThe simulation study is based on model (1) assuming normality for the errorterms, homogeneity of varianes, and a balaned design. For eah fator wehave three levels, i.e. K = L = 3. This results in three pairwise omparisonsfor eah fator and in 36 hypotheses onerning all possible interation om-parisons. The individual tests are performed as F{tests for the intersetionhypotheses and as t{tests for the pairwise omparisons.The multiple level � is �xed at 5%, whih results in 5:95 � 10�4 as adjustedsigni�ane level in the �rst step of the BH proedure. If p(A�B) is the small-est p{value of the three intersetion hypotheses, the smallest p{value of thepairwise omparisons using the BHM I or BHM II proedure is omparedwith 2:31 � 10�4, whih is even smaller than the one of the BH proedureas noted above. The adjusted signi�ane levels, with whih the two small-est p-values of the tests for the pairwise omparisons within fators A andB are ompared afterwards, are larger using the BHM II proedure with4:17 �10�3 and 8:33 �10�3 than using the BHM I proedure with 2:78 �10�3.



14 Vanessa Didelez et al.Using the polar Marsaglia proedure (Moeshlin et al., 1995) normally dis-tributed random numbers are generated. The sample size N is �xed at 100and the grand mean � is 0 without loss of generality. Regarding the vari-ane, another parameter is important to judge the power of the di�erentmultiple tests: the smallest di�erene of two (non equal) means denoted byÆ. Di�erent values of Æ allow us to get an idea of the apaity of the variousproedures to detet small di�erenes in the means. It seems reasonablenot to look at Æ and � separately, but to use a ombined measure, i.e. Æ=�.Thus, the atual value of � is no longer of partiular interest. It is therefore�xed at 1, but varying values of Æ=� are onsidered ranging from 0:03 to0:90 with a step width of 0:03. The obtained Monte{Carlo results are onlyreported for the most interesting ases.Three onstellations of true and false elementary hypotheses are investi-gated. First, all elementary hypotheses, i.e. those belonging to the two fa-tors and to the interation, are true. Seond, they are all false, and in thethird ase they are partially true and false.Let us denote the number of true elementary hypotheses belonging to thefators A, B and the interation A�B as jIij as above, the number of falseelementary hypotheses as jI ij; i 2 fA;B;A�Bg. If some of the elementaryhypotheses of the interation are false, there are di�erent possibilities forthe number of true and false hypotheses. We deide to report only the asesjIA�B j = 12 or 5. For all other situations with jIA�B j < 12, the results tendto be of the same order of magnitude. For jIA�B j �18, however, the results



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 15Table 1 Power I and power II for the situation of main e�ets for exatly twolevels of eah fator A and B and no interations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.006 0.156 0.000 0.139 0.000 0.0730.18 0.028 0.306 0.000 0.255 0.006 0.1530.21 0.074 0.436 0.000 0.333 0.011 0.2440.24 0.188 0.565 0.000 0.394 0.022 0.3570.27 0.383 0.755 0.000 0.466 0.138 0.5310.30 0.590 0.859 0.000 0.488 0.270 0.6640.33 0.730 0.919 0.000 0.499 0.459 0.7860.36 0.858 0.964 0.000 0.500 0.644 0.8810.39 0.929 0.985 0.000 0.500 0.781 0.9340.42 0.982 0.994 0.000 0.500 0.892 0.9680.45 0.997 0.999 0.000 0.500 0.942 0.984are quite di�erent espeially onerning the most powerful test. Only in thease desribed in Table 4 the results obtained for jIA�B j � 18 are in generalof similar size as those obtained for jIA�B j � 12. Some seleted simulationresults are summarized in Tables 1{8.3.2 ResultsLevel of Signi�aneThe situation of homogeneity of means and of no interation e�ets is mainly



16 Vanessa Didelez et al.onsidered to assess the nominal multiple level ahieved by the proposedproedures. In the simulation, we observe a multiple level of signi�aneof 3.7% for the BHM I and II proedure and a value of 3.5% for the BHproedure. Thus, the problem already addressed above, that the nominallevel an be learly below �, in fat ours. All proedures are onservativewith the BH proedure slightly more onservative than the others.For the nominal per{omparison error rate we get a value of 0.22% using theBHM I and II proedure and a value of 0.14% using the BH method. Again,the latter is most onservative. Note that the nominal multiple level andthe nominal per{omparison error rate are also kept with designs di�erentfrom the one hosen here.
PowerThe simultaneous power depends substantially more on the size of the dif-ferenes in the means than the power II. To ahieve a simultaneous powerlarger than zero, Æ=� has to be at least { with a few exeptions { 0.15 if allelementary hypotheses onerning the interation terms are true. OtherwiseÆ=� must be larger than 0.27. For a positive power II, however, we only needthe di�erenes in the means to be 0.03 times the standard deviation.Regarding the remaining simulation results, let us point out that there isno simple answer to the question whih of the proedures is best with re-gard to its power. One should be aware of the fat that the performanesof the test proedures heavily depend on the true parameter values. But



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 17Table 2 Power I and power II for the situations of no (one) true null hypothesisfor the main e�ets of fator A, one (no) for the main e�ets of fator B, and 12true (in brakets 5) null hypotheses for the interations. The results are the samefor both onstellations of fators A and B.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.040 0.850 0.000 0.721 0.101 0.879(0.114) (0.941) (0.000) (0.763) (0.242) (0.957)0.42 0.137 0.890 0.000 0.762 0.232 0.919(0.143) (0.958) (0.000) (0.781) (0.314) (0.970)0.45 0.194 0.923 0.000 0.808 0.381 0.946(0.359) (0.977) (0.000) (0.798) (0.540) (0.980)0.48 0.364 0.951 0.000 0.842 0.539 0.968(0.548) (0.983) (0.000) (0.806) (0.727) (0.990)0.51 0.493 0.970 0.000 0.857 0.664 0.981(0.793) (0.994) (0.000) (0.822) (0.850) (0.997)0.54 0.644 0.980 0.000 0.873 0.797 0.989(0.824) (0.995) (0.000) (0.840) (0.922) (0.998)0.57 0.784 0.989 0.000 0.886 0.855 0.993(0.880) (0.997) (0.000) (0.869) (0.954) (0.999)0.60 0.859 0.994 0.000 0.896 0.937 0.997(0.934) (0.998) (0.000) (0.900) (0.973) (0.999)0.63 0.902 0.996 0.000 0.895 0.959 0.998(0.981) (0.999) (0.000) (0.914) (0.992) (1.000)0.66 0.972 0.999 0.000 0.901 0.992 1.000(0.987) (1.000) (0.000) (0.922) (0.993) (1.000)



18 Vanessa Didelez et al.Table 3 Power I and power II for the situations of three (one) true null hypothesesfor the main e�ets of fator A, one (three) for the main e�ets of fator B, andno interations. The results are the same for both onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.084 0.184 0.084 0.184 0.031 0.0890.18 0.135 0.275 0.135 0.275 0.025 0.1210.21 0.301 0.447 0.301 0.447 0.108 0.2380.24 0.443 0.614 0.443 0.614 0.213 0.3790.27 0.595 0.717 0.595 0.717 0.550 0.5130.30 0.721 0.832 0.721 0.832 0.464 0.6330.33 0.881 0.933 0.881 0.933 0.668 0.7900.36 0.934 0.965 0.934 0.965 0.809 0.8890.39 0.961 0.985 0.961 0.985 0.890 0.9310.42 0.976 0.992 0.976 0.992 0.940 0.9660.45 1.000 1.000 1.000 1.000 0.992 0.998additional information for instane due to subjet{matter knowledge mayhelp to reah a deision. The results are now given in more detail.A striking result is that the simultaneous power of the BHM II proedureis exatly zero whenever at least two of the intersetion hypotheses but notall of the assoiated pairwise hypotheses are false (f. Tables 1, 2). Sinethis proedure stops as soon as one of the elementary hypotheses annotbe rejeted, the false hypotheses belonging to the other fator will always



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 19Table 4 Power I and power II for the situations of no main e�ets of the fatorsA and B, and 12 (in brakets 5) true null hypotheses for the interations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.037 0.800 0.037 0.800 0.085 0.848(0.083) (0.932) (0.083) (0.932) (0.154) (0.945)0.42 0.104 0.870 0.104 0.870 0.200 0.902(0.218) (0.955) (0.218) (0.955) (0.284) (0.963)0.45 0.216 0.906 0.216 0.906 0.344 0.930(0.400) (0.972) (0.400) (0.972) (0.488) (0.978)0.48 0.367 0.939 0.367 0.939 0.473 0.956(0.585) (0.985) (0.585) (0.985) (0.657) (0.988)0.51 0.485 0.957 0.485 0.957 0.593 0.970(0.696) (0.989) (0.696) (0.989) (0.757) (0.991)0.54 0.617 0.971 0.617 0.971 0.741 0.982(0.834) (0.994) (0.834) (0.994) (0.869) (0.995)0.57 0.774 0.985 0.774 0.985 0.848 0.991(0.872) (0.996) (0.872) (0.996) (0.919) (0.997)0.60 0.859 0.992 0.859 0.992 0.894 0.994(0.957) (0.998) (0.957) (0.998) (0.963) (0.999)0.63 0.921 0.996 0.921 0.996 0.958 0.998(0.963) (0.999) (0.963) (0.999) (0.978) (0.999)0.66 0.946 0.998 0.946 0.998 0.978 0.999(0.995) (1.000) (0.995) (1.000) (0.997) (1.000)



20 Vanessa Didelez et al.Table 5 Power I and power II for the situation of no main e�ets of the fatorsA and B and all possible interations present.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.24 0.000 0.856 0.000 0.856 0.000 0.8680.27 0.025 0.898 0.025 0.898 0.006 0.9040.30 0.133 0.932 0.133 0.932 0.095 0.9330.33 0.350 0.959 0.350 0.959 0.245 0.9570.36 0.530 0.976 0.530 0.976 0.421 0.9730.39 0.648 0.986 0.648 0.986 0.563 0.9830.42 0.774 0.992 0.774 0.992 0.659 0.9870.45 0.878 0.996 0.878 0.996 0.810 0.9940.48 0.954 0.999 0.954 0.999 0.894 0.997be retained whih yields the above phenomenon. In addition, its power IIan never reah 1 in these situations sine the BHM II proedure an rejetall false elementary hypotheses within one fator, but not those within theother one if it stops when not rejeting some true elementary hypotheses.As illustrated in Table 1, the power II, for instane, annot exeed 50% ifthere are exatly two false elementary hypotheses per fator regarding themain e�ets (and no interations).Another general result is that both modi�ations, BHM I and BHM II, havethe same power I and II when exatly one intersetion hypothesis is false(f. Tables 3, 4, 5). This seems plausible as both proedures would typially



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 21Table 6 Power I and power II for the situation of all three main e�ets of fatorA and B being present and no interations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.000 0.495 0.003 0.336 0.000 0.2840.18 0.006 0.641 0.026 0.423 0.000 0.4020.21 0.064 0.755 0.088 0.538 0.000 0.5000.24 0.190 0.842 0.254 0.693 0.006 0.5860.27 0.361 0.894 0.445 0.797 0.032 0.6780.30 0.652 0.950 0.711 0.902 0.177 0.7950.33 0.802 0.973 0.843 0.955 0.383 0.8660.36 0.882 0.985 0.906 0.973 0.600 0.9250.39 0.965 0.996 0.974 0.994 0.763 0.9570.42 0.991 0.999 0.992 0.997 0.886 0.9800.45 0.997 1.000 0.998 0.999 0.942 0.993start by testing this intersetion hypothesis using the same loal level ofsigni�ane.In the ase that there are no interations, the power of the Bonferroni{Holmproedure is usually the worst (f. Tables 1, 3, 6). This is beause the BHMI and II proedures start with an adjusted signi�ane level for the pairwiseomparisons of the main e�ets of �=33�i+1 whih is muh larger than the oneof the BH proedure with �42�i+1 for 1 � i � 3. The bad performane of theBonferroni{Holm proedure, here, is due to the muh higher number of el-



22 Vanessa Didelez et al.ementary hypotheses for the interations than for the main e�ets togetherwith all these interation hypotheses being true. In a situation where thesubsets of elementary hypotheses are of equal size one might expet resultsthat are more favourable for the BH proedure. Further, if there are nointerations and the power I of the BHM II proedure is not zero, BHM IIis usually better than BHM I w.r.t. power I but worse regarding power II(e.g. Table 6) so that no lear ranking of these two modi�ations an beestablished for these onstellations.If there is a onsiderable amount of interations, however, the Bonferroni{Holm proedure is usually the most powerful (f. Tables 2, 4, 7). A fewambiguous situations our when all interations are present with no maine�ets in one ore both fators (f. Tables 5, 8) but the power II of BHM Iand of the original Bonferroni{Holm then still seem to be very similar.4 DisussionFrom the above simulation results it beomes obvious that no simple andgeneral rule an be given for one of the proedures being the best one. Suha rule does not even exist if it is restrited to partiular situations sinethe performane of the tests heavily depends on the true parameter on-stellation. It would of ourse be helpful to have some further knowledge ofthe empirial situation before hoosing a test proedure. Typially, suh aninformation is, however, not known in advane. Without going into details,one possible way{out might be to perform preliminary tests in order to reah



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 23Table 7 Power I and power II for the situations of no (all) main e�ets of fatorA, all (no) main e�ets of fator B, and 12 (in brakets 5) true null hypothesesfor the interations. The results are the same for both onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.051 0.840 0.078 0.841 0.119 0.881(0.093) (0.937) (0.000) (0.828) (0.181) (0.951)0.42 0.131 0.882 0.151 0.896 0.231 0.914(0.189) (0.961) (0.000) (0.850) (0.354) (0.972)0.45 0.245 0.923 0.282 0.927 0.398 0.946(0.402) (0.975) (0.003) (0.865) (0.583) (0.983)0.48 0.383 0.950 0.417 0.951 0.520 0.965(0.524) (0.983) (0.010) (0.875) (0.644) (0.988)0.51 0.507 0.966 0.556 0.968 0.671 0.979(0.690) (0.990) (0.060) (0.889) (0.773) (0.993)0.54 0.639 0.979 0.686 0.981 0.760 0.987(0.847) (0.996) (0.247) (0.914) (0.884) (0.997)0.57 0.797 0.984 0.800 0.986 0.896 0.995(0.893) (0.997) (0.474) (0.945) (0.942) (0.998)0.60 0.839 0.991 0.861 0.992 0.895 0.994(0.927) (0.998) (0.758) (0.974) (0.951) (0.999)0.63 0.926 0.995 0.926 0.996 0.956 0.998(0.972) (0.999) (0.912) (0.991) (0.992) (1.000)0.66 0.971 0.999 0.986 0.998 0.990 0.999(1.000) (1.000) (0.984) (0.997) (1.000) (1.000)



24 Vanessa Didelez et al.Table 8 Power I and power II for the situations of no (all) main e�ets of fatorA, all (no) main e�ets of fator B, and all interations present. The results arethe same for both onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.24 0.000 0.835 0.000 0.789 0.000 0.8530.27 0.021 0.897 0.022 0.811 0.032 0.9320.30 0.094 0.932 0.099 0.850 0.135 0.9430.33 0.244 0.961 0.257 0.893 0.240 0.9620.36 0.616 0.980 0.622 0.945 0.633 0.9830.39 0.676 0.987 0.677 0.956 0.641 0.9880.42 0.770 0.993 0.773 0.972 0.757 0.9940.45 0.889 0.996 0.890 0.985 0.883 0.9960.48 0.938 0.998 0.939 0.992 0.912 0.9980.51 0.973 0.999 0.975 0.997 0.962 0.999a deision about the �nal test proedure. Suh an approah an be regardedas an adaptive proedure where the �nal multiple test depends on the givendata. When using suh an adaptive proedure it needs to be heked, again,whether the multiple level is being kept and how the simultaneous power orpower II behave. To summarize, the results of Setion 3 may be regardedas rough hints when onfronted with the problem of seleting an adequatetest.Furthermore, it has to be mentioned that the three proedures introdued in



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 25this paper are not optimal, sine none of them fully exhausts the signi�anelevel of 5%. The question arises whether improvements an be ahieved bya more spei� determination of the adjusted levels, as for instane thoseproposed by Sha�er (1986) or Royen (1987) exploiting logial dependeniesamong the null hypotheses and/or using di�erent test statistis (f. Royen,1988, 1990, Finner, 1988, Bergmann and Hommel, 1988). Sine the proposedproedures of the Bonferroni{Holm type are generally appliable they anbe easily modi�ed aounting for the approahes presented by the authorslisted above.Let us point out that another approah ould be based on a She��e{typeproedure (She��e, 1953). The family of null hypotheses that we are investi-gating in the two{way layout an in fat be regarded as ontrasts in a one{way layout withK�L levels of one ombined fator. However, as the She��eproedure ensures the multiple level for all ontrasts, not only for those ofspei� interest, we expet it to perform worse than the above Bonferroni{Holm modi�ations whih are designed to �nd the `deviant' main e�etsand interations. Further simulations are required to orroborate this andespeially to quantify the di�erene in performane.As a last point to be made, it has to be examined how the three proeduresbehave w.r.t. their power, if they are used in the ontext of an ANOVA withmore than two fators. Sine the adjusted levels will then be even smaller, itis obvious that any rejetion of a hypothesis beomes improbable for smalldi�erenes. Other tehniques based on modelling the orrelation struture



26 Vanessa Didelez et al.e.g. in the framework of a multivariate t{distribution and thus avoiding anyadjustments may be more appropriate (f. Bretz, 1999, and Bretz et al.,2001), although suh an approah requires more spei� distributional as-sumptions.Finally, let us emphasize that the problems ourring when adjusting formultipliity in a multi{way ANOVA point to the neessity to keep the num-ber of hypotheses to be tested small. It ould e.g. be thought about whetherall pairwise interation hypotheses are equally important or whether someof them ould be disarded.
5 AppendixProof of Theorem 2 Consider �rst testing one intersetion hypothesis, HA0say, together with the olletion of the orresponding pairwise omparisons.With G1 being the set ontaining the intersetion hypothesis and G2 theolletion of pairwise omparisons, G1 and G2 an be regarded as two setsof partially ordered nullhypotheses as addressed in Maurer et al. (1995). Itis therefore lear that our proedure ensures that the null hypotheses in G1and G2 are tested at the multiple level �=3.Now, it follows immediately from the Bonferroni inequality that the wholeset of null hypotheses, the three types of intersetions and their orrespond-ing pairwise omparisons, are being tested at the multiple level �.



Modi�ations of the Bonferroni{Holm proedure for multi{way ANOVA 27Proof of Theorem 3 The proof essentially refers to the one given in Baueret al. (1998). These authors onsider the ase of multi{dose experimentsinluding an ative ontrol but it beomes lear from the proof of theirLemma 2 that their proedure is more general. It an be used whenever aolletion of nullhypotheses that are to be tested an be partioned suh thatthe subsets an be tested at a given loal multiple level. It is not atuallyrelevant whih multiple test within the partitions is used to keep this loalmultiple level | in our ase it is a Bonferroni{Holm proedure.Furthermore, in our ase, the null hypotheses are partioned naturally intothe pairwise omparisons of the main e�ets for eah fator and the om-parisons of the interations. The loal multiple levels themselves are againhosen aording to the Bonferroni{Holm idea and this ensures (by Lemma2 of Bauer et al., 1998) the overall multiple level �.
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