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Abstract: ML—estimation of regression parameters with incomplete covariate infor-
mation usually requires a distributional assumption regarding the concerned covari-
ates that implies a source of misspecification. Semiparametric procedures avoid such
assumptions at the expense of efficiency. In this paper a simulation study with small
sample size is carried out to get an idea of the performance of the ML—-estimator
under misspecification and to compare it with the semiparametric procedures when
the former is based on a correct assumption. The results show that there is only little
gain by correct parametric assumptions, which does not justify the possibly large
bias when the assumptions are not met. Additionally, the easily computed estima-
tor proposed by CAIN and BRESLOW (1988) appears to be nearly semiparametric

efficient.
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1 Introduction

The problem of coping with incomplete information in the covariates when estimat-
ing a regression parameter is common in applied work. A simple solution is given by
the complete case analysis where all incomplete cases are discarded. The resulting
complete case estimator, however, is obviously inefficient and not generally consis-
tent under the missing at random assumption (MAR). This assumption excludes
that the observability of a variable depends on its unobserved value but it does
allow dependence on the values of the observed variables (RUBIN, 1976). Another
standard method to cope with missings consists in imputing the unobserved values
and then treating the data set as if it was complete. Besides requiring an appropriate
model for generating the imputed values, this method obviously does not take the
additional uncertainty due to the missing values into account and generates mislead-
ing variance estimations. Instead it seems in general more reasonable to use multiple
imputation as proposed by RUBIN (1987) which is facilitated by simulation meth-
ods, e.g. Markov chain Monte Carlo, developed in the past decades (SCHAFER,
1997). However, in the context of regression analysis multiple imputation as well as
proper ML—estimation via the EM-algorithm necessitate a distributional assumption
concerning the covariates. Other approaches avoid the assumption of any distribu-
tion concerning the covariates and are therefore often termed ‘semiparametric’. This
paper aims at comparing these two strategies, assuming a possibly false covariate
distribution versus avoiding such an assumption, in order to give an impression on
the sensitivity to false distributional assumptions as well as to the loss of information
when a semiparametric method is chosen. We further focus on the simple task of
non-Bayesian estimation of the regression parameters and therefore omit multiple
imputation. For a discussion of the latter method in the context of misspecified or
semiparametric models and the associated problem of estimating the variance we
refer to ROBINS and WANG (2000).

Full parametric procedures have for instance been proposed by LITTLE (1992),



BLACKHURST and SCHLUCHTER (1989), IBRAHIM (1990), and IBRAHIM and
WEISBERG (1992). Typically, the conditional distribution of the incomplete co-
variate given a subset of, or all, the other covariates and the response variable is
specified. The resulting ML-estimator is asymptotically efficient if the assumptions
are correct. However, misspecification is likely to occur when restrictive assump-
tions are inevitable as for example when one of the involved variables is continuous.
In such a situation, LITTLE (1992) and IBRAHIM and WEISBERG (1992) use
a Gaussian covariate distribution. However, there is no apparent reason why this
standard assumption should be correct and, so far, nothing is known about its ‘ro-
bustness’ against misspecification. In our simulation study we therefore investigate
the behaviour of a ML-estimator assuming a Gaussian covariate distribution while
the true distribution is Student or 2.

Semiparametric procedures have been intensively investigated in the last years. For
the situation of two—stage case—control studies BRESLOW and CAIN (1988) pro-
pose a pseudoconditional likelihood approach yielding a consistent estimator under
the MAR assumption. It has been shown (CAIN and BRESLOW, 1988; VACH and
ILLI, 1997) that in the situation of a logistic regression model this turns out to
be a simple modification of the complete case estimator. Another approach uses
the empirical distribution or nonparametric kernel estimates to estimate the un-
known distribution. This has been proposed by PEPE and FLEMMING (1991) and
CARROLL and WAND (1991) in the context of mismeasured covariates but the
resulting estimators for the regression parameter are only consistent if the miss-
ing mechanism is MAR and does not depend on the response variable. REILLY
and PEPE (1995) apply the same idea in order to estimate the score function for
incomplete observations. Their so—called mean score estimator is consistent under
MAR. ROBINS et al. (1994) and ROBINS et al. (1995) address the performance
of such semiparametric estimators by considering the lower variance bound of any
regular semiparametric estimator. The estimator that attains this variance bound,

however, usually depends on the unknown covariate distribution. For rather general



cases they describe adaptive semiparametric efficient estimators which are feasible
without this knowledge. The simulation study conducted here gives an idea of the
gain in efficiency of this estimator as compared to the mean score and the pseudo-
conditional likelihood methods. In addition, the simulation results allow contrasting
the performance of the semiparametric efficient estimator to the ML—estimator with
correct assumption about the covariate distribution for finite sample size.

The outline of the paper is as follows. We restrict ourselves to the situation of a
logistic regression model, which is mostly used in practice to model the influence of
one ore more explanatory variables on a binary response. The situation of a binary
outcome with discrete as well as continuous covariates often arises in biomedical ap-
plications e.g. when recovery from a disease is considered. In Section 2 we describe
this model and the missing data situation to which we apply the different estimators
that are, in turn, presented in Section 3. The considered estimators are the complete
case, the ML—, the Breslow—and—Cain, the mean score, and the semiparametric effi-
cient estimator. These are motivated for the special situation of a logistic regression
restricting the presentation to the essentials since the general situation is treated
in the literature mentioned above. The simulation designs are described in Section
4, the results of the simulation study in Section 5. Finally, we discuss the obtained

results.

2 The Model

We compare the different approaches to estimating a regression parameter along the
special case of a logistic regression. Let Y denote a binary response variable, X; a
completely observed binary covariate and X, an incompletely observed continuous
covariate. The logistic regression model is given by the assumption that

ex Tr*
PI‘(Y = 1|X1 = .731,X2 = T2, /6) = 1 n fjﬁﬁ—ri*}’




where r* = (1,21,22)", and 87 = (B, B1, B2) is the parameter vector to be esti-
mated. For ease of notation we also write Pr(y|z1, zo; 8) instead of Pr(Y = y|X; =
T1, Xo = Ta; 5)

The considered missing situation can be described as follows. Let R be an indicator
variable indicating whether X, is observable (R = 1) or not (R = 0). The missing
mechanism is assumed to satisfy the MAR assumption, that is Pr(R = 1|y, 1, x) =
Pr(R = 1ly,z,) for all y,x1,xs. These conditional probabilities for complete ob-
servations will be denoted by ¢y, y,21 € {0,1}, and are assumed to be bounded
away from zero. The MAR assumption implies that unobserved values of X, have
the same conditional distribution as the observed values. The likelihood generating

(Y, X1, Xs, R) reads as

L(B,6) = f(aila)f(rly, 21379) {Pr(ylas, 23 8) alor; )Y
{[Prlo, o) Glasg as} )

where 6 = (a,7,&) and f is used as generic symbol for a density. The parameters
a, v and & refer to the marginal distribution of X7, to the conditional distribution
of R given Y and X; which is Bernoulli with probabilities gy;,, and to the condi-
tional distribution of X5 given X7, respectively. Maximising (1) in S is obviously
not feasible without knowledge of f(-|z1;£) whereas knowledge of f(-|a) and the
missing mechanism is not required as long as the latter is MAR. The parametric
approach that will be proposed in the next section consists in specifying f(-|z1; &)
up to the unknown parameter £, which is assumed to be finite, and then maximising
(1) simultaneously in 5 and €. The semiparametric approach views 6 as an ‘infinite
dimensional’ parameter with values in the set of the corresponding densities.

Assume now that (Y?, X!, X2 R'), i =1,..., N, is an independent sample of (Y, X,
X5, R). With ¥V = {i|r® = 1}, the observable data is given by {(y, 2%, x5, 7%)|i € V}
U {(v’, zi,r")|i € V} where V = {1,..., N}\V. The empirical response rates Gyq,
are given as the proportion of sample units with values y, ; and an unobserved X,

among all those with values y and z;. These rates can be regarded as estimates of
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Qyz1> ¥, 1 € {0,1}. Note that this straightforward estimation is only possible if YV’

and X; are discrete.

3 The Estimators

3.1 Complete case analysis

The complete case analysis consists in applying complete data methods to the re-
duced data set {(y*, z¢,x%)|i € V}, i.e. it maximizes
LEC(B) = [] Pr(y'|at, 25 B).-
i€V
The resulting estimator will be denoted by 8°C. As shown by VACH and BLETT-
NER (1991) it is consistent if the missingness is conditionally independent of Y
given X; and X, but it may be biased under MAR (see also ZHAO et al., 1996).
Obviously the complete case estimator is in general not efficient since it ignores the

information in {(y%,z%)|i € V}.

3.2 ML—estimation

Following IBRAHIM and WEISBERG (1992) the considered ML—estimator is com-
puted under the assumption that the conditional distribution of X5 given X is
Gaussian. This is parametrised as follows: Let u, = E(X3|X; = z), z € {0,1},
denote the means depending on X, and o2 the variance, which is independent of
X1, i.e. we have in (1) that &€ = (ug, p1, o). The likelihood to be maximised is given
by
Mg, e) =TT [Pr(ylat, 25 B)f (ahl2d; )] T1 [ / Pr(y|ai, z; B) f (2|21; €) dz|
i€V jev

where f(-|z1;€) is the density of the Gaussian distribution with parameter & =
(tz,,0?). In general, maximisation of LM% (3,£) has to be carried out numerically

due to the integration in the second product. This can partly be simplified by using
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the EM algorithm (DEMPSTER et al., 1977), which is easy to apply when the
considered model is an exponential family. In our special case, the joint conditional
distribution of Y and X, given X; constitutes an exponential family as one can
easily check. Still, the E-step involves numerical integration in order to compute

the expectations with respect to the distribution of X5 given Y and X; with density

. . Pr(y|zyi, z2; B) f(z2|z1; &)
Fwely: 2038 0) = T, 2 B) F(elons &) d 2

In our simulation the denominator is approximated by a 10 point Gaussian quadra-

ture which is sufficiently exact according to IBRAHIM and WEISBERG (1992).

3.3 Semiparametric estimation

In this section we first present some specific semiparametric estimators that leave
the unknown distributions in (1) completely unrestricted and that are consistent
under the MAR assumption. Their relation to the parametric ML-estimator is also
addressed. Thereafter, a general class of semiparametric estimators is introduced

containing the semiparametric efficient estimator.

3.3.1 Corrected complete case estimator

The complete case estimator may be biased under the MAR assumption. By con-
sidering the bias factor VACH and ILLI (1997) show that in the special case of a

logistic regression model a simple correction is given by

ACCC  _ ACC qo0

0 = pPo  + log —,
q10

ACCC  __  ACC 10901

1 = B +log——, (3)
qooq11

ACCC _  pCC

2 = Pg -

Note that this estimator utilises the incomplete observations since the correction
terms use ¢, and therefore the additional knowledge about the frequencies N(y, z1).

CAIN and BRESLOW (1988) derive 3°CC as a special case of a pseudoconditional
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likelihood approach in a more general setting where they prove the asymptotic nor-

mality (BRESLOW and CAIN, 1988).

3.3.2 Mean score estimator

As shown by ROBINS et al. (1995), the contribution of an incomplete observation
to the total score function is given by the derivation of the logarithm of (1) with

respect to 3, which can be written as
0
(86 log Pr(Y'| Xy, Xy; ﬁ)‘ YV=yX = $1)

oy ( log [Px( y|x1,xz,6)]> F @y, z1: 5.€) d (4)

evaluated at the unknown true conditional density f(-|y,z1;3,€&). Under the MAR
assumption a consistent estimate of f(:|y,z1;5,£) can be based on the complete
cases. REILLY and PEPE (1995) choose the empirical conditional distribution lead-

ing to

1 0
log Pr(y|z1, z4; 8 5
e, Vi a0 PO 20 ®

as an estimator for (4), where V(y,x1) = #{i € V|y* = y,2° = z:} and V(y,11) =
{i € V|y* = y Ax} = z1}. As shown by the authors, replacing the unknown con-
tribution of an incomplete observation to the total score function by (5) leads to a
weighted sum of the contributions of the complete cases which motivates the name
of the mean score method. The estimated total score function is thus given by
iez; (7]‘\/[83) 885 log Pr(y’|z, 23; B),

where N(y,z,) = #{i € {1,...,N}|y* = y,2} = x;}. Computation of the corre-
sponding estimator A%5 as root of the above expression is straightforward. REILLY
and PEPE (1995) show that it is consistent and asymptotically normal.

PEPE and FLEMING (1991) and CARROLL and WAND (1991) pursue a similar

idea. Note that expression (4) can be rewritten as

PT(Z/|$1, Z2; ﬁ)f(332|$1; f)
[ (5 s Prtvion, ) [Pr(ylan, 7 ) f el €)dz (©)
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The authors propose to substitute f(-|z1;£) in (6) by a nonparametric density esti-
mator. Since this estimator has to be based on the complete cases it is only consistent
if the missing mechanism is MAR and, additionally, does not depend on the response
variable. It follows that the resulting estimator of /3, too, is only consistent under
this more restrictive condition. A detailed discussion can be found in ROBINS et
al. (1995).

Note that the contribution of an incomplete observation given by (4) or (6) is iden-
tical to the expectation of the loglikelihood for a complete observation with respect
to the conditional distribution of X5 given Y and X; (cf. equation (2)). The idea
of REILLY and PEPE (1995) and PEPE and FLEMING (1991) can therefore be
viewed as approximation of the ML-estimation by estimating the E-step and per-

forming only one iteration of the EM algorithm.

3.3.3 Semiparametric efficient estimation

ROBINS et al. (1994) propose a class of semiparametric estimators which depend on
two functions: With K denoting the dimension of the regression parameter the first
one, h : IR? — IRY | is a function of the covariates and the second one, ¢ : R?> — R¥,
is a function of the completely observed variables. The associated estimator B (h, @)

is given as solution of the following equation system

>

=1

N (mih(xzi,x’é)€i(5) (m’ _qyiw’i)(p(yi’xi)> =0 (7)

Qyizi Qyizi

where £*(3) = y' —E(Y |z}, z%; 8). The above equation can be regarded as a corrected
and weighted estimation equation where the first term depends on the complete and
the second on the incomplete cases. Under regularity conditions and under MAR
B(h, ¢) is consistent and asymptotically normal. If the unknown missing mechanism
Qyigi in (7) is replaced by §yi,i the resulting estimator of 3 will be denoted by
B (h, ¢). Further, if ¢ = 0 the incomplete observations do not contribute to equation

(7). Thus, B(h, 0) can be regarded as a pseudo complete case estimator since it

utilises the incomplete observations only to estimate the response rates gy, .



The main interest of ROBINS et al. (1994) concerns the derivation of an estimator
which is semiparametric efficient. They show that the proposed class contains an
estimator B(hesy, pess) that attains the lower variance bound with the functions

hepr and @.r given as follows. The first is the solution of the functional equation

h(z1,z9) = t(z1,x2) [%“gl,zﬂ‘
B{(a, = DE (h(X0, X)e(@)Y, X1 = 1) e(@or, e} | (8)

with g ., = E(V|21,22;8°), t(z1,22) = {E(e(8°)*/avx,| X1 = 21, Xo = z2)}7"
and 3° as true value of the regression parameter. The function ¢” that minimizes
the asymptotic variance of B (h, ¢") for a general function h is given as conditional

expectation
0" (y,21) = E(h(X1, Xo)e(B)|Y =y, X1 = 21). 9)

It follows that ¢.;; = ¢"/f. The authors further show that B(h, ") is asymptoti-
cally equivalent to the pseudo complete case estimator E(h, 0) for any choice of the
function h.

In order to get closed expressions for p.¢; and h.rs we can make use of the fact that
Y is discrete. Let Y denote the finite set of possible realisations of Y. Then taking
expectation of (9) with respect to the conditional distribution of X5 given ¥ and X;
leads to a closed expression for each ¢.fr(yo, ), yo € V. These are imputed in (8) to
get hesp. Both functions obviously still depend on the unspecified distribution of X,
given Y and X1, on the true value 3° of the regression parameter, and on the missing
mechanism ¢,,,. Estimators izeff and @.r; with the property that E(izeff,gbeff) is
asymptotically equivalent to B (heff, @esr) can for example be obtained in the fol-
lowing way. The conditional distribution of X5 given Y and X is estimated by the
corresponding empirical one and the unknown 3° can be replaced by any consistent
estimator even an inefficient one. In our simulation study we choose the mean score
estimator since it is easy to compute. Finally, Qyigi 18 replaced by C/]\yilni . ROBINS et

al. (1994) show the desired asymptotic equivalence of the resulting estimator ¢/
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to the semiparametric efficient estimator.

Note that the semiparametric estimators proposed in the previous sections are el-
ements of the class just defined. If we choose h = hff s as the optimal function for
complete data and if ¢,,, = ¢ where ¢ is a constant then 3¢ = B(hff »0). But in
contrast to the complete case estimator, B(hfff,O) is consistent for general MAR
mechanisms and identical to the mean score estimator. Furthermore, one can find a
function AP¢ such that E(hBC, 0) is asymptotically equivalent to the estimator pro-
posed by BRESLOW and CAIN (1988), which in our case is the corrected complete
case estimator. But neither B(hfff, 0) nor B(hBC, 0) are in general semiparametric

efficient.

4 Simulation Designs

The simulation study presented here compares the proposed estimators for small
sample size. A similar study has been carried out by ROBINS et al. (1994) with a
large sample size (N=2000) and without including the ML—estimator. Other studies
(ZHAO and LIPSITZ, 1992; VACH, 1994) consider only discrete covariates where
the problem of misspecification, which is of special interest here, does not occur.
The different simulation designs are given by varying the type of missing mech-
anism, the type of the conditional distribution of X, given X;, the dependence
between these covariates, and the regression parameter. The chosen missing mech-
anisms can be read off Table 1 and are all MAR-mechanisms. The first mechanism
means missing completely at random (MCAR) since the missingness is independent
of Y and X;. The second depends only on X; (MDX) and the third only on Y
(MDY). Consequently, MDXY means that the mechanism depends on both, ¥ and
X;. Note that the MCAR mechanism leads to a greater over all missing rate than
the other mechanisms, which has to be taken into account when interpreting the
results.

The conditional distribution of X, given X; is either Gaussian, or ¢(6) representing
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a symmetric but heavy—tailed distribution, or x?(2) representing a non—symmetric
distribution. All distributions are rescaled so as to have variance equal to one. These
choices of covariate distributions are rather meant as archetypes than as being real-
istic. With respect to the dependence between the covariates we consider two choices
for p, = E(X3| X, = z) implemented by shifting the above distributions. In the case
o = p1 = 0 the covariates are independent, in the case pg = —1,u; = 1 they are

dependent.

Table 1: The missing mechanisms and the corresponding probabilities gy, .
oo qi0 qo1 4n
MCAR 0.3 03 0.3 0.3

MDX 0.8 0.8 03 0.3
MDY 0.8 0.3 0.8 0.3
MDXY 0.8 0.3 03 0.8

To keep the number of parameter constellations limited we let 8y take the values
{—1.5,0,1.5} whereas 5y and §; are kept fixed as Sy = 0 and $; = 1. The covariate
X; follows a Bernoulli distribution with Pr(X; = 1) = 0.5. The sample size is chosen
to be N = 200 (before generating the missings). For each of the resulting 72 designs

1000 samples are generated using Turbo Pascal 7.0.

5 Results

In order to compare the estimators we compute the estimated relative mean squared
errors which are the ratios of the Monte Carlo mean squared error of the semipara-
metric efficient estimator and that of the respective other estimator. This will simply
be called relative MSE, i.e. all relative MSEs are relative to the semiparametric ef-
ficient estimator. A relative MSE larger than one thus means that the considered

estimator is better, w.r.t. the MSE, than the semiparametric efficient estimator and
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we would expect such findings only for the ML—estimator when the covariate dis-
tribution is correctly specified. Note that the relative MSE is no absolute measure:
In some situations both estimators can be bad. Since the semiparametric efficient
estimator is used as a reference we report its observed bias first (Section 5.1.1).
ROBINS et al. (1994) consider the estimated relative efficiencies, i.e. the ratio of
the Monte Carlo variances, instead of the relative MSE. This is not sensible, here,
as the sample size is considerably smaller and hence bias is not negligible. For the
same reason we additionally compute the means of the observed biases which we will
simply call bias. A negative bias indicates that the estimator tends to underestimate

the true value.

5.1 Comparison of the semiparametric efficient estimator

and the ML—estimator

We first discuss the bias of the semiparametric efficient and the ML—estimator and
then the relative MSE of the latter one. The former is asymptotically unbiased but
there can be considerable deviations for finite samples. The latter is not expected to
be unbiased when the distributional assumptions are false. We therefore distinguish

the cases where the specification of the covariate distribution is correct or false.

5.1.1 Bias of the semiparametric efficient estimator

The bias of the semiparametric efficient estimator can be read off Table 2. In case
that X, has no influence, i.e. 8, = 0, the bias of all three components Bgf I BT and
Agf Tisin general negligible.

The case By # 0 is more serious especially concerning the estimation of 3, when the
covariate distribution is x2. Here, the bias of /3, is for 1o = pq often, and for py # pq
and any covariate distribution nearly always in absolute value larger than 0.1, and

even larger for the x? distribution. The bias of 30 and Bl is for By # 0 and g = 1

still relatively small but serious deviations occur for 31 if po # p1. In general, the
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bias given a t—distribution is only slightly larger than for a Gaussian covariate.

Table 2: Bias of the semiparametric efficient estimator.

covariable distrib.

po = p1 =0

wo=—l,pp =1

— Gaussian gef! ‘ ERE ‘ gl || Bt ! ‘ et s ‘ gl f
-1.5 -0.02 0.08 | -0.13 -0.07 0.21 | -0.18

MCAR, B2 = 0 -0.01 0.03 | -0.01 -0.02 0.07 | -0.02
1.5 -0.00 0.08 0.19 0.07 | -0.07 0.24

-1.5 -0.00 0.05 | -0.08 -0.02 0.11 | -0.10

MDX, B2 = 0 -0.01 0.02 | -0.01 -0.01 0.03 | -0.00
1.5 -0.02 0.07 0.09 0.01 | -0.00 0.10

-1.5 -0.02 0.05 | -0.09 -0.05 0.11 -0.09

MDY, B2 = 0 -0.01 0.02 0.00 -0.02 0.06 | -0.01
1.5 -0.03 0.04 0.08 0.01 | -0.02 0.13

-1.5 -0.03 0.08 | -0.09 -0.05 0.13 | -0.08

MDXY, B2 = 0 -0.02 0.04 | -0.01 -0.01 0.03 0.01
1.5 -0.01 0.07 0.08 0.02 0.03 0.14

covariable distrib. pwo=p1 =0 po=—1l,u; =1

= 52 Bgff ‘ R ‘ gt 7 Bgff ‘ getf ‘ gt
-1.5 || -0.05 | 0.06 | -0.24 || -0.16 | 0.32 | -0.25
MCAR, 2= 0 -0.00 | 0.04 | 0.02 | 0.03| -0.00| 0.02
1.5 0.06 | 0.04 | 0.28 | 0.20)| -0.38 | 0.31
1.5 || -0.04 | 0.08 | -0.14 || -0.06 | 0.12 | -0.09
MDX, B2 = 0 0.00 | 0.02 | 0.00 | 0.01 | -0.00 | -0.00
1.5 0.04 | 0.02| 0.14 0.06 | -0.08 | 0.10
1.5 || -0.03 | 0.04 | -0.08 || -0.12 | 0.20 | -0.14
MDY, 35 = 0 -0.01 | 0.08 | 0.00 || -0.01 | 0.01 | -0.01
1.5 0.02 | 0.04 | 0.11 || -0.00 | -0.04 | 0.14
-1.5 || -0.03 | 0.08 | -0.12 || -0.15 | 0.25 | -0.15
MDXY, 2= 0 -0.01 | 0.04 | -0.01 || -0.01 | 0.04 | -0.00
1.5 0.01 | 0.05| 0.15 | 0.00 | -0.01 | 0.12

covariable distrib. po=p1 =0 pwo=—-1l,ur =1
— student elt ‘ gett ‘ gt I || Bt T ‘ ERE ‘ gty
1.5 || -0.02 | 0.09 | -0.22 || -0.08 | 0.24 | -0.18
MCAR, B2 = 0 -0.01 | 0.08 | -0.00 || 0.00| 0.04 | -0.00
1.5 || -0.01 | 0.08 | 0.17 || 0.11 | -0.11 | 0.28
-1.5 0.01 | 0.01 | -0.08 || -0.05 | 0.15 | -0.11
MDX, 5 = 0 -0.01 | 0.04 | -0.01 0.01 | 0.00 | 0.01
1.5 || -0.00 | 0.04 | 0.08 | 0.02| -0.00| 0.08
1.5 || -0.02 | 0.04 | -0.08 || -0.07 | 0.18 | -0.12
MDY, B2 = 0 0.00 | 0.01 | -0.01 || -0.01 | 0.08 | -0.01
1.5 || -0.01 | 0.01 | 0.08 | 0.01 | -0.02| 0.11
1.5 || -0.03 | 0.09 | -0.08 || -0.06 | 0.17 | -0.11
MDXY, 2= 0 -0.02 | 0.05 | -0.01 || -0.08 | 0.10 | -0.01
1.5 || -0.03 | 0.10 | 0.11 0.02 | 0.00| 0.15
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An additional aspect concerns the direction of the bias. The estimation of 5y has
nearly always a negative bias. In contrast to this, the bias of Bff 7 is in general
positive. The direction of the bias of Bgf s depends on the true value: it is negative

for B, = —1.5 and positive for F, = 1.5.

5.1.2 Bias of the ML—estimator

As can be seen from Table 3, the bias of the ML-estimator is very similar to the one

of the semiparametric efficient estimator for the Gaussian covariate distribution.

Table 3: Relative MSE and bias of the ML—estimator with incomplete data

assuming a Gaussian covariate distribution (bias in brackets).

covariable distrib. po =p1 =0 pwo=—-Lu =1
= Gaussian BML | ppr | pyr ML | pr | By-
-1.5 || 1.05 (-0.02) | 1.05 (0.07) | 1.04 (-0.13) || 1.05 (0.19) | 1.04 (-0.06) | 1.03 (-0.17)

MCAR, 2= 0 || 1.00 (-0.01) | 1.00 (0.03) | 1.00 (-0.01) || 1.01 (-0.02) | 1.01 (0.07) | 1.00 (-0.02)
1.5 || 1.04 (-0.00) | 1.05 (0.08) | 1.02 (0.19) || 1.06 (0.06) | 1.05 (-0.07) | 1.07 (0.22)

-1.5 || 1.01 (-0.00) | 1.04 (0.05) | 1.01 (-0.08) || 1.00 (-0.02) | 1.01 (0.10) | 1.01 (-0.10)
MDX, 2= 0 | 1.00 (-0.01) | 1.00 (0.02) | 1.00 (-0.01) || 1.00 (-0.01) | 1.00 (0.03) | 1.00 (-0.00)
1.5 || 1.00 (-0.02) | 1.03 (0.07) | 1.01 (0.09) || 1.01 (0.01) | 1.03 (0.01) | 1.04 (0.10)

-1.5 || 1.07 (-0.02) | 1.07 (0.04) | 1.10 (-0.09) || 1.07 (-0.04) | 1.04 (0.10) | 1.05 (-0.09)
MDY, 2= 0 || 1.00 (-0.01) | 0.99 (0.03) | 0.99 (0.00) || 1.01 (-0.02) | 1.01 (0.06) | 1.00 (-0.01)
1.5 || 1.05 (-0.02) | 1.06 (0.04) | 1.04 (0.08) || 1.03 (0.02) | 1.04 (-0.00) | 1.10 (0.12)

-1.5 || 1.06 (-0.02) | 1.07 (0.06) | 1.07 (-0.08) || 1.06 (-0.03) | 1.07 (0.10) | 1.03 (-0.07)
MDXY, B2 = 0 | 1.00 (-0.02) | 1.00 (0.04) | 0.99 (-0.01) || 1.02 (0.00) | 1.02 (0.02) | 1.01 (0.01)
1.5 || 1.04 (-0.01) | 1.04 (0.06) | 1.04 (0.08) | 1.06 (0.03) | 1.07 (0.01) | 1.16 (0.12)

Table 4 shows the bias of the ML—estimator in the situations where the distributional
assumptions are wrong, i.e. for the x? and Student covariate distribution. Here,
we observe only a small bias whenever 35 = 0. As should be expected, the wrong
assumption about the covariate distribution does not appear to affect the consistency
of the ML—estimator when this covariate has no influence.

If B, # 0 and X, follows the x? distribution the bias is clearly affected. Especially
the estimation of £, in the presence of a missing mechanism that depends on the
response variable (MDY and MDXY) appears to be distinctly biased. The bias when
estimating [, and (3, is also quite large in these situations, especially when pg # ;.

For the MCAR and MDX mechanisms we observe no such severe bias although it is
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sometimes over (.1 for the estimation of 5; and f5. The largest observed absolute
bias among the designs with x? distribution is 0.85

If the covariate distribution is Student we can observe the same bias pattern as for
the Gaussian covariate distribution with a slight general tendency to extreme values
and a clear tendency to extreme values for the estimation of 8; and (3, in the special
case of pg = p1, B2 # 0, and a MDXY missing mechanism. With this last exception,
the results are also similar to those of the semiparametric efficient estimator for the
Student distribution. The largest observed absolute bias among the designs with

Student covariate distribution is 0.27.

Table 4: Relative MSE and bias of the ML—estimator with incomplete data falsely

assuming a Gaussian covariate distribution.

covariable distrib. po=p1 =0 po=-—-1lur =1

P ) ) 2 AML AML
. Bt [ pue [ aye By | A1 | )

-1.5 || 1.02 (0.09) | 1.05 (0.07) | 1.36 (-0.12) || 1.53 (0.08) | 1.36 (0.08) | 1.23 (-0.15)
MCAR, 2= 0 || 0.98 (-0.00) | 0.98 (0.05) | 0.98 (0.03) || 1.03 (0.03) | 1.02 (-0.01) | 0.99 (0.02)
1.5 || 1.09 (-0.07) | 0.72 (0.12) | 1.20 (0.17) || 1.60 (-0.05) | 1.53 (0.15) | 1.62 (0.15)

-1.5 || 1.05 (0.00) | 0.87 (0.19) | 1.17 (-0.09) || 1.11 (0.01) | 1.02 (0.09) | 1.09 (-0.06)
MDX, 2= 0 || 1.00 (-0.00) | 1.00 (0.02) | 1.00 (0.00) || 1.01 (0.01) | 1.01 (-0.00) | 1.01 (-0.00)
1.5 || 1.03 (0.00) | 0.82 (0.01) | 1.08 (0.12) || 1.17 (-0.02) | 1.05 (0.19) | 1.16 (0.05)

-1.5 || 1.05 (0.06) | 0.98 (0.04) | 0.79 (0.44) || 1.11 (0.46) | 1.02 (-0.78) | 1.33 (0.30)
MDY, B2= 0 | 0.99 (-0.01) | 0.99 (0.04) | 0.95 (0.03) || 0.98 (0.02) | 0.94 (-0.04) | 0.93 (0.02)
1.5 || 0.79 (-0.03) | 0.86 (0.08) | 0.25 (0.77) || 0.89 (0.20) | 0.60 (-0.38) | 1.03 (0.23)

-1.5 || 0.59 (-0.08) | 0.85 (0.19) | 0.98 (-0.15) || 1.28 (0.13) | 1.17 (0.09) | 1.14 (-0.08)
MDXY, B2 = 0 | 0.95 (-0.02) | 0.89 (0.06) | 0.66 (0.03) || 0.80 (0.03) | 0.85 (-0.02) | 0.66 (0.04)
1.5 || 0.72 (-0.13) | 0.18 (0.69) | 0.29 (0.74) || 0.48 (0.51) | 0.64 (-0.57) | 0.33 (0.85)

covariable distrib. pwo=p1 =20 pwo=-—-1l,u1 =1

— BML 3ML 3ML 3ML BML 3ML
= student o ‘ By ‘ 2 0 ‘ By ‘ 2

-1.5 || 0.97 (-0.02) | 0.97 (0.11) | 1.03 (-0.21) || 1.03 (-0.05) | 1.00 (0.18) | 0.95 (-0.17)
MCAR, 2= 0 || 0.99 (-0.01) | 1.00 (0.03) | 1.00 (-0.00) || 1.00 (0.00) | 1.01 (0.04) | 1.00 (-0.00)
1.5 | 0.97 (-0.01) | 0.98 (0.09) | 1.03 (0.16) || 1.12 (0.06) | 1.11 (-0.08) | 1.07 (0.26)

-1.5 || 0.99 (0.01) | 0.98 (0.03) | 1.01 (-0.08) || 1.02 (-0.04) | 1.02 (0.12) | 1.01 (-0.10)
MDX, B2 = 0 || 1.00 (-0.01) | 1.00 (0.04) | 1.00 (-0.01) || 1.00 (0.01) | 1.00 (0.01) | 1.00 (0.01)
1.5 || 0.99 (-0.00) | 0.96 (0.06) | 1.00 (0.08) || 1.01 (0.01) | 1.06 (0.05) | 1.01 (0.08)

-1.5 || 0.94 (-0.04) | 0.98 (0.05) | 1.02 (-0.07) || 0.98 (-0.05) | 1.05 (0.08) | 1.05 (-0.11)
MDY, B2= 0 | 1.00 (-0.00) | 0.99 (0.01) | 0.99 (-0.01) || 0.99 (-0.01) | 1.00 (0.03) | 0.99 (-0.01)
1.5 | 0.97 (-0.04) | 1.01 (0.02) | 1.04 (0.07) || 1.07 (-0.01) | 1.06 (0.05) | 1.10 (0.11)

-1.5 || 0.89 (-0.07) | 0.78 (0.19) | 0.84 (-0.15) || 1.03 (-0.01) | 1.07 (0.07) | 1.15 (-0.05)
MDXY, 2= 0 | 0.99 (-0.02) | 0.98 (0.05) | 0.94 (-0.01) || 0.98 (-0.02) | 0.98 (0.09) | 0.96 (-0.01)
1.5 | 0.86 (-0.07) | 0.76 (0.21) | 0.85 (0.18) || 1.00 (0.05) | 1.03 (-0.06) | 0.80 (0.27)
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Note that the estimation of 3, is always biased away from zero, i.e. the absolute effect
is overestimated. The same phenomenon can be observed for all other methods. This

seems to illustrate that consistency is merely an asymptotic property.

5.1.3 Relative MSE of the ML—estimator with correct assumptions

The results presented in Table 3 further allow a direct comparison of the semipara-
metric efficient and the parametric efficient estimation. Since the bias is similar for
both estimators the relative MSE essentially reflects the gain in efficiency due to the
additional parametric assumption.

At first, one can say that the results of both estimators are nearly equal for 5, = 0,
i.e. when the incompletely observed covariate has no effect on the response. Fur-
thermore, the gain in efficiency is generally only modest for the MCAR and MDX
missing mechanisms. If 8, # 0 and the missing mechanism is MDY or MDXY we
can observe that in more than half of the designs the relative MSE is greater than
1.05 reaching the maxima of 1.10 and 1.16, respectively, for S5 = 1.5. The missing
mechanisms depending on the response variable may therefore be those where the

ML-estimator truly outperforms the semiparametric efficient one.

5.1.4 Relative MSE of the ML—estimator with wrong assumptions

Despite the wrong distributional assumption there are some situations where the
ML-estimator performs almost as good as the semiparametric efficient one with
respect to the relative MSE. This is the case when 3, = 0 for both covariate distri-
butions and all missing mechanism except MDXY while at the same time the bias is
always very small as we have seen above. Thus, in these situations the ML—estimator
seems neither inconsistent nor inefficient. For the MDXY designs and the x? distri-
bution, however, a serious loss in efficiency of the ML—estimator can be observed
while the bias is still very small.

If By # 0 and X, is distributed according to the x? distribution the ML—estimator

performs fairly well for the MCAR and MDX missing mechanisms. Taking the bias
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into account, it follows that the good results are mainly due to a small variance
of the ML-estimator. But if the missing mechanism additionally depends on the
response variable the results indicate a serious deficiency of the ML approach. The
smallest observed relative MSE amounts to 0.18 and occurs in the MDXY designs.
It is not surprising that, in contrast, the ML—estimator performs nearly as well for
the Student as for the Gaussian covariate distribution. The designs with a small loss
in efficiency are given when the covariates are independent and the missing mecha-
nism is not MCAR. It reaches a minimal MSE of 0.76 for the MDXY mechanism.
If, in contrast, pg # u; the relative MSE is not worse for the Student than for the
Gaussian covariate distribution. This may suggest that the ML-estimator is still
appropriate for dependent covariates because it makes a correct assumption about

the dependence structure although the distributional assumption is wrong.

5.2 Performance of the semiparametric estimators

In this section, we discuss the performance of the complete case, the corrected com-
plete case, and the mean score estimators compared with the semiparametric efficient

one. The results of the simulation study are not given in details.

5.2.1 The complete case estimator

For the designs where the complete case estimator is inconsistent we get that the
bias of BOCC is always less than -1 for both missing mechanisms that depend on the
response variable whereas Blcc is distinctly biased only for the MDXY mechanism
showing a bias of typically more than 2. But even when /S’CC is consistent the relative
MSE is severely affected by discarding the incomplete cases, it often takes values

between 0.55 and 0.8.
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5.2.2 The corrected complete case estimator

Surprisingly, the corrected complete case estimator produces results nearly identical
to the semiparametric efficient one. The relative MSEs are almost always between
0.99 and 1.00, exceptions arising only for the non—-Gaussian covariate distributions
when the missing mechanism depends on the response variable and By # 0. But
even then the relative MSE is at least 0.98. Concerning the bias we can observe the
same pattern as for the semiparametric efficient estimator with a slight tendency
to a greater bias of BgCC for the missing mechanisms that depend on the response

variable.

5.2.3 The mean score estimator

The mean score estimator is clearly dominated by the semiparametric efficient es-
timator. The relative MSE is almost always definitely smaller than 1.00. The worst
result is a relative MSE of 0.65 but in most cases it is still at least 0.8 and even
greater than 0.9 for the MCAR missing mechanism. The main difficulty seems to
concern the estimation in the MDX situation especially for py # p. Here, the rela-
tive MSEs are roughly about 0.8.

Although the results are similar for the different covariate distributions, it can be
observed that in case of a non-MCAR mechanism, fs = 0, and ug # p1 the relative
MSE of all three components is always greater for the Gaussian covariate distribu-
tion than for the others. Note that the performance of the mean score estimator is

essentially the same in the case of a discrete covariate X, (cf. VACH, 1994, p. 34).

6 Discussion

The main result of the simulation study concerns the performance of the ML-
estimator compared to the semiparametric efficient one proposed by ROBINS et

al. (1994). On the one hand, we have seen that in the situation of a correct as-
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sumption about the covariate distribution and rather small sample size the gain in
efficiency by ML—estimation is only modest. On the other hand, this parametric
approach can lead to serious bias if the assumed covariate distribution is ‘far away’
from the true one, where ‘far away’ means x? instead of Gaussian. The Student
distribution is in contrast similar enough to the Gaussian for the bias of the ML~
estimator to be negligible, at least for a sample size of 200. However, simulations
with a sample size of 1000, which are not reported here, show a more serious bias
of the ML—estimator given a Student covariate distribution. In contrast, the per-
formance of the semiparametric efficient estimator appears to be satisfying also for
finite sample size notwithstanding that efficiency is an asymptotic property. Strictly
speaking, these results of course only apply for the specific situations considered
in the simulation study. As conclusion we propose that if one doubts the appro-
priateness of the Gaussian distribution in a specific application one may consider
semiparametric efficient estimation as a reasonable alternative, in particular if the

missing mechanism is far from being completely at random.

Another interesting result has been obtained for the corrected complete case esti-
mator. It strengthens the conjecture that in the special case of a logistic regression
where all variables except the incomplete one are discrete the estimator proposed by
BRESLOW and CAIN (1988) is nearly semiparametric efficient. An analytic proof
of this property is not known to the author. Moreover, we have to restrict this con-
jecture to the logistic regression model since ROBINS et al. (1994) show that peec
is not semiparametric efficient in general regression models.

The remaining estimators, complete case and mean score, meet the expectation of
being biased or inefficient so that they are not recommendable despite their simple

computation.

The possibility of misspecifying the missing mechanism has not been addressed so

far but has to be taken into account. All the discussed semiparametric approaches
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require an estimation of the observation probabilities given by §,;,. For continuous
Y or X, however, there is no such straightforward estimation procedure. Instead,
a model for the missing mechanism has to be assumed. As shown by ZHAO et al.
(1996) the correctness of this model is crucial in assuring the consistency of the

semiparametric estimators.
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