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This is an extension to the appendix of the above paper. Here we provide the
full set of adjacency matrices for all methods and all choices of tuning parameters.

A E. coli data: additional adjacency matrices
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Figure 1: Plots of the estimated adjacent matrices for E. coli data with Neighbourhood selection.



14

84

70

42

28

(A =0.1

=0.05

A

0.0005

(b) A

0.00005

(a) A

(A =14

@Ar=1

HA=0.5

e)A=0.2

Figure 2: Plots of the estimated adjacent matrices for E. coli data with G-Lasso.
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B ROC-Curves for E. coli data

‘‘‘‘‘‘‘

True positive rate

False positive rate

Figure 4: ROC curves for G-Lasso estimator (dotted), Neighbourhood selection
(solid), and Shrinkage estimator (dotdash).

C Simulation design

First, we give some more details on the simulation design. The synthetic data
is simulated from multivariate normal distributions with concentration matrices
corresponding to the three types of motifs as described in the main text. Each
network is based on a single network motif which is replicated a certain number
of times (i.e. matches) and with a specific size (i.e. motif size). The network has
also a fixed, but sparse, number of interactions (i.e. edges) out of all possible in-
teractions. A Gaussian sample of size n = 150, with mean zero and covariance
matrix according to the given network is then simulated several times (i.e. repli-
cations). The variances (i.e. the diagonal) are equal to one. Characteristic aspects
of each network are summarized in Table 1. In the smallest networks, 9 variables
are not part of the motif and they are marginally and conditionally independent.



Matches Edges Total edges Motifsize Replications Partial correlation

GROUP 1 (p = 20)

HUB (Fig. ?7a) I 10 190 11 2000 0316
CASCADE (Fig. 2?b) 1 10 190 11 2000 0.5 (last edge 0.7)
PAIRWISE (Fig. 22¢) 10 10 190 2 2000 0.581
GROUP 2 (p = 100)

HUB 9 91 4950 11 (12) 100 0316
CASCADE 9 91 4950 11 (12) 100 0.5 (last edge 0.7)
PAIRWISE 50 50 4950 2 100 0.581
GROUP 3 (p = 200)

HUB 18 182 19900 11(12) 100 0316
CASCADE 18 182 19900 11 (12) 100 0.5 (last edge 0.7)
PAIRWISE 100 100 19900 2 100 0.581

Table 1: Settings for synthetic data

For p = 100, one network motif has size 12, and for p = 200 two motifs have size

12.
For the comparative study with both real data and synthetic data, we consider

the following methods:

e Neighbourhood selection with the following penalty terms,

- real data:
A€ {56—05,56—04,56—03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4};

- synthetic data:
S {56-04,56-03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5}.

e G-Lasso with a list of different penalty terms,

- real data:
AE {56-05,56-04,56-03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4};

- synthetic data:
A € {0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5 }.

e Shrinkage estimator with two types of statistical test (at FDR 5%):

- empirical Bayes approach;

- t-test approach (if n > p).
e MLE (if n > p) with two types of statistical test (at FDR 5%):

- empirical Bayes approach;



- t-test approach.

e PC-algorithm (moralizing the estimated DAG) with a list of different sig-
nificance level,

- real data:
o c {16-08,16-07,le-06,1e-05,1e-04,1e-03,0.01,0.05,0.1};

- synthetic data:
ac {16-08,16-07,16-06,16—05,16-04,16-03,0.01,0.05,0.1}.

Synthetic data data: additional plot of adjacent
matrices for Neighbourhood selection
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E Synthetic data data: additional plot of adjacent
matrices for G-Lasso
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F Synthetic data data: additional plot of adjacent
matrices for PC-algorithm
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G Synthetic data data: ROC curves for all methods
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Figure 32: ROC curves for ML estimator (dashed), G-Lasso estimator (dotted),
Neighbourhood selection (solid), and Shrinkage estimator (dotdash). The first row
refers to the pairwise structures, the second row refers to the hub structures, and
the third row refers to the cascade structures
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