
MATH11007 NOTES 15: PARAMETRIC CURVES, ARCLENGTH

ETC.

1. Parametric representation of curves

The position of a particle moving in three-dimensional space is often specified
by an equation of the form

x(t) = (x(t), y(t), z(t)) .

For instance, take

x(t) = cos t , y(t) = sin t , z(t) = 0

for t > 0. We might think of the parameter t as “time”. As t varies, the particle’s
position changes, and the curve described by the above equation is the trajectory of
the particle. In this particular example, it is obvious that the trajectory is circular;
indeed

x2(t) + y2(t) = 1 for every t > 0 .

We say that

(cos t , sin t , 0) , 0 ≤ t < 2π ,

is a parametric representation of the circle of equation x2 + y2 = 1 in R
3.

2. Some examples and a bit of MAPLE

Example 2.1.

(x(t) , y(t)) = (t − 2, t/(t − 2)) , t ∈ R ,

is a parametric representation of a hyberbola. To see this, we eliminate the param-
eter t:

t = x + 2 .

Hence

y = (x + 2)/x = 1 + 2/x .

Example 2.2. The curve represented parametrically by

(x(t), y(t)) = (t + sin t , 1 − cos t) , t ∈ R ,

is not so familiar. We can use MAPLE to plot it. MAPLE is a mathematical software
for which the university has a license, and which is installed on the undergraduate
computers in the laboratory. Look for it amongst the applications, double-click.
When it comes up, select the Start with a blank worksheet option. At the
prompt, type ?plot[parametric]. This explains how to plot parametric curves,
and provides some examples. To plot our curve, we use

> plot([t+sin(t),1-cos(t),t=-2*Pi..2*Pi]);
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The result is shown in Figure 1 (a). The curve is called the cycloid; it is the curve
that describes the trajectory of a point fixed on the rim of a bicycle wheel, as the
wheel goes forward.

Example 2.3. Consider the curve defined parametrically by

(x(t), y(t)) =
(

3t/(1 + t3) , 3t2/(1 + t3)
)

, t ∈ R .

The MAPLE command

> plot([3*t/(1+t^3),3*t^2/(1+t^3),t=-1/2..16*Pi]);

produces the plot shown in Figure 1 (b). You can easily verify that

x3 + y3 = 3xy .

The curve is called the folium of Descartes.

(a) (b)

Figure 1. Two famous curves: (a) the cycloid; (b) the folium of Descartes.

3. The tangent line of a curve (in two dimensions) at a point

We have already discussed the problem of determining the line tangent to a curve
at a point when the curve can be expressed in the form

y = f(x) .

But now we consider the case where the curve is expressed in parametric form, i.e.

(x(t), y(t)) , t ∈ [a, b] .

To find the equation of the line tangent to the curve at, say t0 ∈ [a, b], we need to
compute

dy

dx
at (x(t0), y(t0)) .
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We have, by the chain rule,

d

dt
y(x(t)) =

dy

dx
(x(t))

dx

dt
(t) .

So we find

dy

dx
(x(t0)) =

dy

dt
(t0)

dx
dt

(t0)
.

This result is more neatly expressed if we use the prime symbol to indicate dif-
ferentiation with respect to x, and the dot symbol to indicate differentiation with
respect to t. Then

y′(x(t0)) =
ẏ(t0)

ẋ(t0)
.

So the equation for the tangent line is

y − y(t0)

x − x(t0)
=

ẏ(t0)

ẋ(t0)
.

The equation of the normal line is easily deduced:

y − y(t0)

x − x(t0)
= −

ẋ(t0)

ẏ(t0)
.

Example 3.1. For the circle

x(t) = cos t and y(t) = sin t ,

the equation of the tangent line at t0 is

y − y(t0)

x − x(t0)
= − cot t0 .

The equation of the normal line at t0 is

y − y(t0)

x − x(t0)
= tan t0 .

4. Arclength

Consider a curve of equation

y = f(x) .

The length of the infinitesimal arc between the points of horizontal coordinates x
and x + dx is

ds =
√

dx2 + dy2 .

See Figure 2. If the curve is expressed in the parametric form

(x(t), y(t)) , a ≤ t ≤ b ,

then

ds =
√

ẋ2 + ẏ2 dt .

We deduce that the length of the curve between t = a and t = b is
∫ b

a

√

ẋ2 + ẏ2 dt .
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Example 4.1. The perimeter of the circle of equation

x(t) = a cos t , y(t) = a sin t ,

is
∫ 2π

0

√

a2 sin2 t + a2 cos2 t dt =

∫ 2π

0

|a| dt = 2π|a| .

Example 4.2. The curve defined parametrically by

x(t) = a cos t , y(t) = b sin t ,

is an ellipse. Its perimeter is
∫ 2π

0

√

a2 sin2 t + b2 cos2 t dt .

It is not straightforward to compute the value of this integral. It may be expressed
in terms of the so-called elliptic functions.

5. Curvature

For a curve of equation
y = f(x)

this is defined as

(5.1) κ(x) :=
|y′′(x)|

{

1 + [y′(x)]
2
}

3

2

.

See Sheet 3, Q 9.
Let us work out the curvature when the curve is expressed in the parametric

form
(x(t), y(t)) .

We have shown earlier that

y′ =
ẏ

ẋ
.

Hence, by the chain rule,
d

dt
y′ = y′′ẋ ,

and so

y′′ =
d
dt

y′

ẋ
=

d
dt

ẏ
ẋ

ẋ
=

ÿẋ − ẏẍ

ẋ3
.

Hence the “parametric form” of the curvature (5.1) is

κ(t) =
ÿẋ − ẏẍ

[ẋ2 + ẏ2]
3

2

.

Example 5.1. For the ellipse of equation

x(t) = a cos t and y(t) = b sin t

we find

κ(t) =

∣

∣ab sin2 t + ab cos2 t
∣

∣

[

a2 sin2 t + b2 cos2 t
]

3

2

=
|ab|

[

a2 sin2 t + b2 cos2 t
]

3

2

.

In particular, for the circle, a = b and we obtain the expected result

κ(t) =
1

a
.
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y = f(x)

dx

dy

ds

Figure 2. The length of an infinitesimal arc of the curve y = f(x)

is ds =
√

dx2 + dy2
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