MATH11007 NOTES 15: PARAMETRIC CURVES, ARCLENGTH
ETC.

1. PARAMETRIC REPRESENTATION OF CURVES

The position of a particle moving in three-dimensional space is often specified
by an equation of the form

For instance, take

x(t) = cost, y(t) =sint, z(t)=0
for t > 0. We might think of the parameter t as “time”. As t varies, the particle’s
position changes, and the curve described by the above equation is the trajectory of

the particle. In this particular example, it is obvious that the trajectory is circular;
indeed

22(t) +y*(t) = 1 for every t > 0.
We say that
(cost,sint,0), 0<t< 2m,

is a parametric representation of the circle of equation x2 + 2 = 1 in R3.

2. SOME EXAMPLES AND A BIT OF MAPLE

Example 2.1.
(z(t),y(t) = (t—2,t/(t—2)), teR,
is a parametric representation of a hyberbola. To see this, we eliminate the param-
eter t:
t=x+2.

Hence
y=(x+2)/z=1+2/z.

Example 2.2. The curve represented parametrically by
(x(t), y(t)) = (t +sint,1 —cost) , t € R,

is not so familiar. We can use MAPLE to plot it. MAPLE s a mathematical software
for which the university has a license, and which is installed on the undergraduate
computers in the laboratory. Look for it amongst the applications, double-click.
When it comes up, select the Start with a blank worksheet option. At the
prompt, type 7plot[parametric]. This explains how to plot parametric curves,
and provides some examples. To plot our curve, we use

> plot([t+sin(t),1-cos(t),t=-2*Pi..2*Pi]);
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The result is shown in Figure 1 (a). The curve is called the cycloid; it is the curve
that describes the trajectory of a point fized on the rim of a bicycle wheel, as the
wheel goes forward.

Example 2.3. Consider the curve defined parametrically by
(z(t), y(t)) = (3t/(L+ %), 3t /(1 + %)) , tEeR.
The MAPLE command
> plot ([3*t/(1+t73),3*%t72/(1+t"3) ,t=-1/2..16%Pi]);
produces the plot shown in Figure 1 (b). You can easily verify that
23+ % =3y,

The curve is called the folium of Descartes.

FIGURE 1. Two famous curves: (a) the cycloid; (b) the folium of Descartes.

3. THE TANGENT LINE OF A CURVE (IN TWO DIMENSIONS) AT A POINT

We have already discussed the problem of determining the line tangent to a curve
at a point when the curve can be expressed in the form

y=f(z).

But now we consider the case where the curve is expressed in parametric form, i.e.

(z(t), y(8)), ¢ € la,b].

To find the equation of the line tangent to the curve at, say to € [a, b], we need to
compute

P at (alto), y(t0)).
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We have, by the chain rule,

Coat)) = L))
So we find :
dy _ —?(fo)

This result is more neatly expressed if we use the prime symbol to indicate dif-
ferentiation with respect to x, and the dot symbol to indicate differentiation with
respect to t. Then

y(to)

i(to)

y'(x(to)) =
So the equation for the tangent line is

y —ylto) _ ylto)
T — ,T(to) i(to)
The equation of the normal line is easily deduced:

y—ylto) i)
z — x(to) y(to)

Example 3.1. For the circle
x(t) = cost and y(t) =sint,

the equation of the tangent line at ty is

—y(t
y=uto) _ o,
x — x(to)
The equation of the normal line at to is
t
4 y( 0) = tan to .
x —z(ty)

4. ARCLENGTH

Consider a curve of equation
y=f(x).

The length of the infinitesimal arc between the points of horizontal coordinates x

and x + dx is
ds = y/da? +dy?.

See Figure 2. If the curve is expressed in the parametric form
(x(t), y(t)) , a<t<b,
then

ds = /22 + g2 dt.

We deduce that the length of the curve between ¢t = a and t = b is

b
/ V2 + g2 dt.



4 MATH11007 NOTES 15: PARAMETRIC CURVES, ARCLENGTH ETC.

Example 4.1. The perimeter of the circle of equation
x(t) = acost, y(t) =asint,

8

2w 27
Va2sin?t + a2 cos2tdt:/ |a| dt = 27|al .

0 0

Example 4.2. The curve defined parametrically by

x(t) = acost, y(t) =bsint,

is an ellipse. Its perimeter is

27
\/a2 sin®t + b2 cos2 t dt .

0
It is not straightforward to compute the value of this integral. It may be expressed
in terms of the so-called elliptic functions.

5. CURVATURE

For a curve of equation
y = f(x)
this is defined as

(5.1) k(z) == L)l%
{1+ @7}

See Sheet 3, Q 9.
Let us work out the curvature when the curve is expressed in the parametric
form

We have shown earlier that

y=2
T
Hence, by the chain rule,
gy/ _ y”a'c
dt ’
and so J 4
o dt /_ E% o yr — yi
Yy =~V =" = Q73
& x &
Hence the “parametric form” of the curvature (5.1) is
TP
R(t) = L2 Y0
[.i‘2 + y2] 2

Example 5.1. For the ellipse of equation
x(t) =acost and y(t) =bsint

we find
_|absin®t +abcos?t| lab]

K(t)

[a2 sin? ¢t + b2 cos? t] : [a2 sin? ¢t + b2 cos? t] t

In particular, for the circle, a = b and we obtain the expected result
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dx

FIGURE 2. The length of an infinitesimal arc of the curve y = f(z)

is ds = /dz2 + dy?
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