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COORDINATES.

1. Volumes and hypervolumes

Consider the problem of computing the volume of the “box”

D = [a1, b1]× [a2, b2]× [a3, b3] .

Since we are very good at computing areas, we may compute the volume of the box
by slicing “along the z axis”; see Figure 1.

Fix z ∈ [0, 1] and consider the contribution of a slice at z, of infinitesimal thick-
ness dz; its volume is

(surface area of the slice)× (thickness of the slice) =

∫∫

R

dxdy × dz

where
R := [a1, b1]× [a2, b2] .

The total volume of the box is obtained by summing over every value of z:

volume =

∫ b3

a3

{∫∫

R

dxdy

}

dz .
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Figure 1. Slicing the unit cube along the z axis.

1



2 MATH11007 NOTES 22: TRIPLE INTEGRALS, SPHERICAL COORDINATES.

This is an example of a triple integral. We could express the result in the equiv-
alent form

∫∫∫

D

f(x, y, z) dxdydz =

∫ b3

a3

{∫∫

R

f(x, y, z) dxdy

}

dz

with f ≡ 1.
There is no reason to confine ourselves to the case where the integrand f is

identically one. For a general integrand, the triple integral on the left may be
thought of as a “hypervolume”— something like a volume, but in four-dimensional
space. When D is a box and R the rectangle defined earlier, the equality between
the triple integral and the simple integral (of a double integral!) on the right gives
a method for computing the triple integral by slicing along the z axis.

2. Triple integrals over more general domains

Triple integrals may be defined more generally on other three-dimensional re-
gions. Consider a region defined by

D =
{

(x, y, z) ∈ R
3 : a ≤ x ≤ A(y, z), b ≤ y ≤ B(z), c ≤ z ≤ C

}

where A is a function of y and z, B is a function of z, and C is a constant. Then
the triple integral over D may be written in terms of simple integrals as follows:

(2.1)

∫∫∫

D

f(x, y, z) dxdydz =

∫ C

c

{

∫ B(z)

b

[

∫ A(y,z)

a

f(x, y, z) dx

]

dy

}

dz .

Example 2.1. Let T be the tetrahedron of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1); see Figure 2. Then

T =
{

(x, y, z) ∈ R
3 : 0 ≤ x ≤ 1− y − z, 0 ≤ y ≤ 1− z, 0 ≤ z ≤ 1

}

and so the formula (2.1) gives
∫∫∫

T

f(x, y, z) dxdydz =

∫ 1

0

{∫ 1−z

0

[∫ 1−y−z

0

f(x, y, z) dx

]

dy

}

dz .

In particular, the volume |T | of the tetrahedron is

|T | =
∫ 1

0

{∫ 1−z

0

[∫ 1−y−z

0

dx

]

dy

}

dz

=

∫ 1

0

{∫ 1−z

0

[1− y − z] dy

}

dz =

∫ 1

0

{[

y(1− z)− y2

2

]

∣

∣

∣

1−z

0

}

dz

=

∫ 1

0

{

(1− z)2

2

}

dz = − (1− z)3

6

∣

∣

∣

1

0
=

1

6
.

The integrand need not be unity. For instance,

∫∫∫

T

y dxdydz =

∫ 1

0

{∫ 1−z

0

[∫ 1−y−z

0

y dx

]

dy

}

dz

=

∫ 1

0

{∫ 1−z

0

[

(1− z)y − y2
]

dy

}

dz =

∫ 1

0

{[

(1 − z)
y

2
− y3

3

]

∣

∣

∣

1−z

0

}

dz

=

∫ 1

0

{

(1− z)3

6

}

dz = − (1− z)4

24

∣

∣

∣

1

0
=

1

24
.
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Figure 2. A tetrahedral domain.

3. Spherical coordinates

Consider the problem of computing the volume of a sphere S of unit radius. This
volume equals

∫∫∫

S

dxdydz = 8

∫ 1

0

{

∫

√

1−z2

0

[

∫

√
1−y2

−z2

0

dx

]

dy

}

dz .

We have already mentioned the spherical coordinates ρ, θ and ϕ; see Figure 3.
They are connected to the cartesian coordinates via

(3.1) (x, y, z) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) .

To compute a triple integral over a sphere, it would seem more natural to use
spherical coordinates. So we would like to make the substitution

∫∫∫

S

f(x, y, z) dxdydz

(x,y,z)=(ρ sinϕ cos θ,ρ sinϕ sin θ,ρ cosϕ)
↓

= ?

For this purpose, we require the following extension of the result we obtained earlier
in the two-variable case: suppose we make the substitution

(x, y, z) = g(u, v, w) := (g1(u, v, w), g2(u, v, w), g3(u, v, w)) .

Then

(3.2)

∫∫∫

g(D)

f(x, y, z) dxdydz

(x,y,z)=g(u,v,w)
↓

=

∫∫∫

D

(f ◦ g) (u, v, w) |detJg| dudvdw
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Figure 3. The spherical coordinates ρ, θ and ϕ of the vector x in
three dimensions.

where

(3.3) Jg :=













∂g1
∂u (u, v, w) ∂g1

∂v (u, v, w) ∂g1
∂w (u, v, w)

∂g2
∂u (u, v, w) ∂g2

∂v (u, v, w) ∂g2
∂w (u, v, w)

∂g3
∂u (u, v, w) ∂g3

∂v (u, v, w) ∂g3
∂w (u, v, w)













is the Jacobian matrix of the transformation g.
We now apply this general formula to the particular substitution (3.1). Here u

is ρ, v is ϕ and w = θ. Furthermore

g(ρ, ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) .

To apply Formula (3.2), we need to compute the determinant of the Jacobian matrix

Jg :=





sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ
cosϕ −ρ sinϕ 0



 .

Using the third row to develop the determinant, we find

detJg = cosϕ

∣

∣

∣

∣

ρ cosϕ cos θ −ρ sinϕ sin θ
ρ cosϕ sin θ ρ sinϕ cos θ

∣

∣

∣

∣

+ ρ sinϕ

∣

∣

∣

∣

sinϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ sinϕ cos θ

∣

∣

∣

∣

= cosϕ[ρ2 cosϕ sinϕ]

∣

∣

∣

∣

cos θ − sin θ
sin θ cos θ

∣

∣

∣

∣

+ ρ sinϕ[ρ sin2 ϕ]

∣

∣

∣

∣

cos θ − sin θ
sin θ cos θ

∣

∣

∣

∣

= cosϕ[ρ2 cosϕ sinϕ] + ρ sinϕ[ρ sin2 ϕ] = ρ2 sinϕ[cos2 ϕ+ sin2 ϕ] .

Hence

detJg = ρ2 sinϕ .
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The formula for changing to spherical coordinates is therefore

(3.4)

∫∫∫

g(D)

f(x, y, z) dxdydz

=

∫∫∫

D

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕdρdϕdθ .

Example 3.1. Let us calculate the volume of S, the unit sphere. The substitution

(x, y, z) = g(ρ, ϕ, θ) := (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)

enables us to write

S = g(D) where D := [0, 1]× [0, π]× [0, 2π] .

Then, using (3.4), we obtain

∫∫∫

S

dxdydz =

∫∫∫

D

ρ2 sinϕdρdϕdθ =

∫ 2π

0

{∫ π

0

[∫ 1

0

ρ2 sinϕdρ

]

dϕ

}

dθ

=

∫ 2π

0

{∫ π

0

[

ρ3

3
sinϕ

∣

∣

∣

1

0

]

dϕ

}

dθ =

∫ 2π

0

{∫ π

0

[

1

3
sinϕ

]

dϕ

}

dθ

∫ 2π

0

{

−
[

1

3
cosϕ

]

∣

∣

∣

π

0

}

dθ =

∫ 2π

0

{

2

3

}

dθ =
4π

3
.

Example 3.2. Consider the sphere of unit radius centered at (0, 0, 1), and the cone
of equation

z2 = x2 + y2 .

Find the volume above the cone and inside the sphere.
Solution: The volume may be expressed as a triple integral over a certain region.

It seems advisable to use spherical coordinates to describe the region. The equation
of the sphere is

1 ≥ x2 + y2 + (z − 1)2 = x2 + y2 + z2 − 2z + 1 .

In spherical coordinates, this gives

ρ ≤ 2 cosϕ .

On the other hand, for the points above the cone,

z2 ≥ x2 + y2 .

In spherical coordinates, this is

ρ2 cos2 ϕ ≥ ρ2 sin2 ϕ .

This simplifies to give

tan2 ϕ ≤ 1

or, equivalently, since we are only interested in the range ϕ ∈ [0, π/2],

0 ≤ ϕ ≤ π/4 .

We conclude that the region whose volume is sought is given (in spherical coordi-
nates) by

D := {(ρ, θ, ϕ) : 0 ≤ ρ ≤ 2 cosϕ , 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π/4} .
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Hence the volume is

∫ π/4

0

{∫ 2π

0

[∫ 2 cosϕ

0

ρ2 sinϕ dρ

]

dθ

}

dϕ =

∫ π/4

0

{∫ 2π

0

[

ρ3

3
sinϕ

∣

∣

∣

2 cosϕ

0

]

dθ

}

dϕ

=

∫ π/4

0

{∫ 2π

0

[

8

3
cos3 ϕ sinϕ

]

dθ

}

dϕ =

∫ π/4

0

{

16π

3
cos3 ϕ sinϕ

}

dϕ

= −4π

3
cos4 ϕ

∣

∣

∣

π/4

0
=

4π

3

(

1− 1

4

)

= π .

4. Application: the center of mass of a body

Consider a string extending from a point x = a to a point b, made of some
material whose density (mass per unit length) we denote by ̺. If the material is
inhomogeneous, ̺ will depend on the position x along the string. The total mass
of the string is

m :=

∫ b

a

̺(x) dx .

The center of mass of the string is then defined by

x :=
1

m

∫ b

a

x̺(x) dx .

These definitions extend readily to higher-dimensional bodies occupying a region
D in R

d: the total mass is given by

(4.1) m :=

∫

· · ·
∫

D

̺(x) dx1 · · · dxd

and the jth coordinate of the center of mass is defined by

(4.2) xj :=
1

m

∫

· · ·
∫

D

xj ̺(x) dx1 · · ·dxd .

Example 4.1. Let D be the region represented in polar coordinates by

D = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2} .

This is the quarter-circle of unit radius. The total mass of a body of uniform density
(̺ ≡ 1) is

m =

∫ π/2

0

{∫ 1

0

rdr

}

dθ =

∫ π/2

0

{

1

2
r2
∣

∣

∣

1

0

}

dθ =

∫ π/2

0

1

2
dθ = π/4 .

Let us calculate the center of gravity: we have

x =

∫ π/2

0

{∫ 1

0

r2 cos θdr

}

dθ =

∫ π/2

0

{

1

3
r3 cos θ

∣

∣

∣

1

0

}

dθ

=

∫ π/2

0

1

3
cos θ dθ =

1

3
sin θ

∣

∣

∣

π/2

0
= 1/3 .
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Also

y =

∫ π/2

0

{∫ 1

0

r2 sin θdr

}

dθ =

∫ π/2

0

{

1

3
r3 sin θ

∣

∣

∣

1

0

}

dθ

=

∫ π/2

0

1

3
sin θ dθ = −1

3
cos θ

∣

∣

∣

π/2

0
= 1/3 .

So the center of gravity of the body is

(x, y) =
4

3π
(1, 1) .

Example 4.2. Let C be the cone of height h whose base is the unit disk x2+y2 ≤ 1.
Assume that the density is uniform, i.e. ̺ ≡ 1. Find the center of mass.

Solution: The equation of the cone (in cartesian coordinates) is

(

h− z

h

)2

= x2 + y2 .

If the cone were upside down, there would be some advantage in using spherical
coordinates . . . but this is not the case and so we stick to cartesian coordinates for
the moment. The total mass is given by

m =

∫
h−z

h

0

{

∫∫

R(z)

dxdy

}

dz

where

R(z) :=

{

(x, y) ∈ R
2 : x2 + y2 ≤

(

h− z

h

)2
}

.

At this point, we switch to polar coordinates to evaluate the double integral over
R(z). This yields

∫∫

R(z)

dxdy =

∫ 2π

0

[

∫
h−z

h

0

rdr

]

dθ =

∫ 2π

0

[

r2

2

∣

∣

∣

h−z

h

0

]

= 2π
(h− z)2

2h2
.

We deduce

m =

∫ h

0

π

(

h− z

h

)2

dz = πh

∫ 1

0

u2du =
πh

3
.

Then, using the same approach,

mx =

∫ h

0

{

∫∫

R(z)

x dxdy

}

dz =

∫ h

0

{

∫ 2π

0

[

∫
h−z

h

0

r2 cos θ dr

]

dθ

}

dz

=

∫ h

0

{

∫ 2π

0

[

1

3

(

h− z

h

)3

cos θ

]

dθ

}

dz =

∫ h

0

{[

1

3

(

h− z

h

)3

sin θ

]

∣

∣

∣

2π

0

}

dz

=

∫ h

0

{0} dz = 0 .

By symmetry

my = 0 .
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Finally

mz =

∫ h

0

zπ

(

h− z

h

)2

dz =
π

h2

∫ h

0

z (h− z)
2
dz

=
π

h2

∫ h

0

z3 − 2hz2 + h2z dz = πh2

[

1

4
− 2

3
+

1

2

]

= π
h2

12
.

Thus, we have found

(x, y, z) =
h

4
(0, 0, 1) .

Example 4.3. Find the mass of a cylinder of radius a and height h assuming its
density is proportional to the square of the distance from the axis.

Solution: we let the axis be the z-axis and assume that the cylinder rests on the
xy-plane at the origin. Then

̺(x, y, z) = k
(

x2 + y2
)

for some positive constant k, and so

m =

∫ h

0

{∫∫

D

k
(

x2 + y2
)

dxdy

}

dz

where D is the disk of radius a centered at the origin. Using polar coordiantes for
the double integral, we obtain

m =

∫ h

0

{∫ 2π

0

[∫ a

0

kr3 dr

]

dθ

}

dz =

∫ h

0

{∫ 2π

0

[

k
a4

4

]

dθ

}

dz = khπ
a4

2
.
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