
MATH11007 NOTES 5: THE FUNDAMENTAL THEOREM OF

CALCULUS

1. The concept of primitive

Definition 1.1. We say that a function F : A → R is a primitive (or an anti-
derivative, or an indefinite integral) of the function f : A → R if F is differentiable
and

F ′ = f .

Example 1.1. Let f : R → R be defined by

f(x) = xn , n ∈ N .

Then the following functions are all primitives of f :

(1)

F (x) =
xn+1

n + 1
.

(2)

F (x) =
xn+1

n + 1
+ 106 .

Example 1.2. Let f : (0, ∞) → (0, ∞) be defined by

f(x) =
√

x .

Then

F (x) =
2

3
x3/2 + 1

is a primitive.

Example 1.3. Let f(x) = sin x. Then F (x) = − cosx + π is a primitive.

Example 1.4. F (x) = ex + 1/2 is a primitive of f(x) = ex.

Example 1.5. F (x) = arctanx is a primitive of f(x) = 1/(1 + x2).

Lemma 1.1. If F1 and F2 are two primitives of the same function f : A → R,

then there exists a constant c such that, for every x ∈ A,

F1(x) − F2(x) = c .
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Proof. Let

G(x) = F1(x) − F2(x) .

Then, for every x ∈ A,

G′(x) = F ′
1(x) − F ′

2(x) = f(x) − f(x) = 0 .

So, for every x ∈ A, the slope of the line tangent to the curve of equation

y = G(x)

is zero. It follows that the curve is a horizontal line, i.e. y = c for some constant
c. �

Given f and a function F , it is relatively easy to determine whether or not F
is a primitive of f : it suffices to compute F ′. But if we are given only f , it is not
straightforward to find a primitive.

2. The area under a curve

Let f : [a, b] → R be continuous and consider the curve of equation y = f(x);
see Figure 1.

a

“negative” area

b

“positive” area

y = f(x)

Figure 1. The area under a curve.

Notation .
∫ b

a

f(x) dx := area under the curve between x = a and x = b .

Some remarks:

(1) It does not matter what letter one uses to denote the independent variable.
Thus

∫ b

a

f(x) dx =

∫ b

a

f(t) dt =

∫ b

a

f(u) du etc.
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(2) Geometrically, it is clear that, for every a < c < b,
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx .

(3) We shall use the convention
∫ a

b

f(x) dx := −
∫ b

a

f(x) dx .

Now, let a be fixed, but allow the right endpoint to vary between a and b: we
obtain a function I : [a, b] → [0,∞) defined by

(2.1) I(x) :=

∫ x

a

f(t) dt .

This notation may be disconcerting at first sight, but remember that we agreed
that we could use any letter for the independent variable, e.g.

∫ b

a

f(x) dx :=

∫ b

a

f(u) du .

Then we are free to use x for the right endpoint of the interval! This explains the
notation in Equation (2.1).

Theorem 2.1. The function I is a primitive of f .

Proof. Let x0 ∈ [a, b] and let h 6= 0 be such that x0 + h ∈ [a, b]. We have

I(x0 + h) − I(x0)

h
=

1

h

∫ x0+h

a

f(t) dt − 1

h

∫ x0

a

f(t) dt

=
1

h

∫ x0

a

f(t) dt +
1

h

∫ x0+h

x0

f(t) dt − 1

h

∫ x0

a

f(t) dt =
1

h

∫ x0+h

x0

f(t) dt .

For simplicity, suppose that h > 0 and define

mh(x0) := min
x0≤t≤x0+h

f(t) and Mh(x0) := max
x0≤t≤x0+h

f(t) .

It is then geometrically clear (see Figure 2) that

mh(x0)h ≤
∫ x0+h

x0

f(t) dt ≤ Mh(x0)h .

After dividing by h, this gives

(2.2) mh(x0) ≤
1

h

∫ x0+h

x0

f(t) dt ≤ Mh(x0) .

Now, since, by hypothesis, f is continuous at x0, we have

lim
h→0

mh(x0) = lim
h→0

Mh(x0) = f(x0) .

So we deduce from (2.2) that

lim
h→0

1

h

∫ x0+h

x0

f(t) dt = f(x0) .

In other words,
I ′(x0) = f(x0) .
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x0

mh(x0)

x0 + h

Mh(x0)

y = f(t)

Figure 2. Proof of Theorem 2.1: the area under the curve is
squeezed between mh(x0)h and Mh(x0)h.

Corollary 2.2. Let F be any primitive of f . Then

∫ b

a

f(x) dx = F (b) − F (a) .

Proof. Let F be a primitive of f . Since I is also a primitive of f , there exists a
constant c such that, for every x ∈ [a, b],

I(x) = F (x) + c .

Then
∫ b

a

f(x) dx = I(b) = I(b) − I(a) = [F (b) + c] − [F (a) + c] = F (b) − F (a) .

�

Notation .

F (x) =

∫

f(x)dx

means “F is a primitive of f”. Also

F (x)
∣

∣

∣

b

a
:= F (b) − F (a) .

Example 2.1. Problem: Compute the area under the parabola of equation y = x2

between x = 0 and x = 1.
Solution: Set f(x) = x2. The function F (x) = x3/3 is a primitive of f . So, by

the Fundamental Theorem of Calculus, the area is
∫ 1

0

f(x) dx =
x3

3

∣

∣

∣

1

0
=

1

3
.
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Example 2.2. Problem: Compute the area of a circle of unit radius.

Solution: Set f(x) =
√

1 − x2. Then the area is

4

∫ 1

0

f(x) dx .

So we look for a primitive of f !

3. Substitutions

In this section, we consider a very useful technique for finding primitives.

Theorem 3.1. Let f : [a, b] → R be continuous, and let u be a differentiable

bijection with codomain [a, b]. Let α and β be such that

u(α) = a and u(β) = b .

Then
∫ b

a

f(u) du =

∫ β

α

(f ◦ u)(x)u′(x) dx .

Proof. Let F be a primitive of f . Then, by the chain rule,

d

dx
F (u(x)) = F ′(u(x))u′(x) = f(u(x))u′(x) .

In other words, F (u(x)) is a primitive of (f ◦u)(x)u′(x). Hence, by the Fundamental
Theorem of Calculus,

∫ b

a

f(u) du = F (b) − F (a) = F (u(β)) − F (u(α)) =

∫ β

α

(f ◦ u)(x)u′(x) dx .

�

To illustrate the use of substitutions, let us go back to Example 2.2. We have
∫ 1

0

√

1 − x2 dx
u=x

↓

=

∫ 1

0

√

1 − u2 du

u=cos x
↓

=

∫ 0

π

2

√

1 − cos2 x (− sinx) dx =

∫ π

2

0

sin2 xdx .

Now, it is easy to find a primitive of sin2 x, and we obtain
∫ 1

0

√

1 − x2 dx =

(

x

2
− sin(2x)

4

)

∣

∣

∣

π

2

0
=

π

4
.

So the area of a circle of unit radius is π.

References

1. Frank Ayres, Jr. and Elliott Mendelson, Schaum’s Outline of Calculus, Fourth Edition, Mc-

Graw–Hill, 1999.


