MATH11007 SHEET 17: THE CHAIN RULE AND THE
GRADIENT.

Set on Tuesday, February 28: Qs 1, 2 and 4
(1) Find the gradient of each of the following functions

(a) f(z,y) =e®; (b) h(s,t) = arctan(s/t); (c)z(a,b,c) = In[(a® + b?)/c?].

(2) In each of the following, find dw/dt in two ways: (i) using the chain rule
and (ii) substituting to get w as a function of ¢, then differentiating.
(a) w = z%y? where z = sint, y = cost.
(b) w = p/q where p = et, q = t2.
(¢) w=xy/z where x = tcost, y = tsint, z = 1.

(3) In each of the following cases, find 9z/Ju and 9z /0v in two ways: (i) using
the chain rule and (ii) substituting to get z as a function of u, v and then
differentiating.

(a) 2= /22 +y% z=¢e", y=1+u?cosw.

(b) z = arctan(z/y), v = 2u+ v, y = 3u — v.

(4) Atmospheric temperature decreases exponentially with height. The temper-
ature in a certain region can be approximated by the function T'(z,y, z) =
e */(5+ 22 + y?), where z, y are horizontal coordinates and z is height.
A balloon is moving through the region, and its position at time t is given
by x = t, y = 2t, z = t — t*. Use the chain rule to find how fast the
temperature at the position of the balloon at time ¢ is changing.

(5) Suppose that

r—y
z= ,
r+y
where = uvw and y = u? +v? + w?. Use the chain rule to find z,, 2z, and

Zw-

(6) A partial differential equation is an equation for some unknown function
that relates the function’s partial derivatives. The equation

(PDE) %—i—c%zo, reR, t>0,
where c is a constant, is one example.
(a) Show that u(z,t) = sin(z — ct) is a solution of (PDE).
(b) Set ¢ = 1. Using Maple or otherwise, display the graphs of u(z,0),
u(z,1) and u(z,2) on the same (x,u) plot. You should find that the
graphs are the same, except for a shift.
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(¢) To find the general solution of (PDE), introduce the new variables
p=xz—ct and ¢gq=2x+ct,
and set
u(z,t) = U(p,q) .
Show that, for every (p, q),
ha)=0
and deduce the general solution of (PDE).
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