

MATH11007 SHEET 17: THE CHAIN RULE AND THE GRADIENT.

Set on Tuesday, February 28: Qs 1, 2 and 4

- (1) Find the gradient of each of the following functions
 - (a) $f(x, y) = e^{xy}$; (b) $h(s, t) = \arctan(s/t)$; (c) $x(a, b, c) = \ln[(a^2 + b^2)/c^2]$.
- (2) In each of the following, find dw/dt in two ways: (i) using the chain rule and (ii) substituting to get w as a function of t , then differentiating.
 - (a) $w = x^2y^2$ where $x = \sin t$, $y = \cos t$.
 - (b) $w = p/q$ where $p = e^t$, $q = t^2$.
 - (c) $w = xy/z$ where $x = t \cos t$, $y = t \sin t$, $z = t$.
- (3) In each of the following cases, find $\partial z/\partial u$ and $\partial z/\partial v$ in two ways: (i) using the chain rule and (ii) substituting to get z as a function of u , v and then differentiating.
 - (a) $z = \sqrt{x^2 + y^2}$, $x = e^{uv}$, $y = 1 + u^2 \cos v$.
 - (b) $z = \arctan(x/y)$, $x = 2u + v$, $y = 3u - v$.
- (4) Atmospheric temperature decreases exponentially with height. The temperature in a certain region can be approximated by the function $T(x, y, z) = e^{-z}/(5 + x^2 + y^2)$, where x , y are horizontal coordinates and z is height. A balloon is moving through the region, and its position at time t is given by $x = t$, $y = 2t$, $z = t - t^4$. Use the chain rule to find how fast the temperature at the position of the balloon at time t is changing.
- (5) Suppose that

$$z = \frac{x - y}{x + y},$$
 where $x = uvw$ and $y = u^2 + v^2 + w^2$. Use the chain rule to find z_u , z_v and z_w .
- (6) A *partial differential equation* is an equation for some unknown function that relates the function's partial derivatives. The equation

$$(PDE) \quad \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0, \quad x \in \mathbb{R}, \quad t > 0,$$
 where c is a constant, is one example.
 - (a) Show that $u(x, t) = \sin(x - ct)$ is a solution of (PDE).
 - (b) Set $c = 1$. Using **Maple** or otherwise, display the graphs of $u(x, 0)$, $u(x, 1)$ and $u(x, 2)$ on the same (x, u) plot. You should find that the graphs are the same, except for a shift.

(c) To find the general solution of (PDE), introduce the new variables

$$p = x - ct \quad \text{and} \quad q = x + ct,$$

and set

$$u(x, t) = U(p, q).$$

Show that, for every (p, q) ,

$$\frac{\partial U}{\partial q}(p, q) = 0$$

and deduce the general solution of (PDE).

REFERENCES

1. Frank Ayres, Jr. and Elliott Mendelson, *Schaum's Outline of Calculus, Fourth Edition* Chapters 48 and 52, Mc-Graw-Hill, 1999.