

**MATH11007 SHEET 20: INTEGRATION OVER
TWO-DIMENSIONAL DOMAINS**

Set on Monday, March 19: Qs 2 and 3.

(1) Evaluate

$$(a) \frac{d}{ds} \int_0^s e^{st^2} dt ; \quad (b) \frac{d}{da} \int_a^{a^2} \sin(ax + x^2) dx .$$

(2) Evaluate

$$(a) \int_2^6 \int_0^2 (x - y) dy dx ; \quad (b) \int_0^{\pi/2} \int_0^{\pi/4} \sin(x + y) dx dy .$$

(3) In each case, sketch the region of integration, and write down the integral with the order of integration reversed.

(a)

$$\int_0^2 \int_{x^2}^{2x} f(x, y) dy dx$$

(b)

$$\int_1^2 \int_0^{\ln x} f(x, y) dy dx$$

(c)

$$\int_0^1 \int_{1-y}^{\sqrt{1-y^2}} \phi(x, y) dx dy .$$

(4) Evaluate

$$(a) \int_0^2 \int_0^{4-2x} (x + y) dy dx ; \quad (b) \int_0^1 \int_0^{\sqrt{1-y^2}} y dx dy .$$

(5) Evaluate the following integrals, reversing the order of integration if necessary.

(a)

$$\int_0^{\pi/4} \int_0^{\tan x} \sec x dy dx .$$

(b)

$$\int_0^1 \int_0^s t \sqrt{t^2 + s^2} dt ds .$$

(c)

$$\int_0^1 \int_x^1 \cos(\xi^2) \, d\xi \, dx.$$

(6) Find the area of the portion of the plane $x + y + z = 6$ inside the cylinder $x^2 + y^2 = 4$.

REFERENCES

1. Frank Ayres, Jr. and Elliott Mendelson, *Schaum's Outline of Calculus, Fourth Edition* Chapters 54 and 56, McGraw-Hill, 1999.