
MATH11007 SHEET 21: POLAR COORDINATES

Set on Monday, April 23: Qs 2,3 and 4.

(1) Using Maple’s plots[polarplot] command or otherwise, sketch the fol-
lowing curves expressed in polar coordinates.
(a) The cardioid: r = 1 + sin θ.
(b) The limaçon: r = 1 + 2 cos θ.
(c) The rose with three petals: r = cos(3θ).
(d) The lemniscate: r2 = cos(2θ).

(2) The following curves are expressed in polar coordinates. In each case, find
a formula for the curvature as a function of θ.

(a) r = eθ ; (b) r = sin(θ) ; (c) r2 = 4 cos(2θ) ; (d) r = 3 sin θ + 4 cos θ .

(3) Let f : R2 → R be defined by
(a) f(x, y) = xy .
(b) f(x, y) = sin(x + y) .

(c) f(x, y) =
√

1 + x2 + y2 .
(d)

f(x, y) =

{

ln(x2 + y2) if (x, y) 6= (0, 0)

0 otherwise
.

In each case, let u(r, θ) = f(r cos θ, r sin θ), and compute the partial deriva-
tives ur and uθ.

(4) Let f = f(x, y) be a function defined on some two-dimensional domain.
Let u(r, θ) = f(r cos θ, r sin θ). Show that

(

∂2f

∂x2
+

∂2f

∂y2

)

∣

∣

∣

x=r cos θ,y=r sin θ
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

(5) Sketch the region

R =
{

(x, y) ∈ R
2 : x ≥ 0, 1 ≤ x2 + y2 ≤ 2

}

and, by changing to polar coordinates, compute
∫∫

R

x2dxdy .
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(6) Sketch the region

R =
{

(x, y) ∈ R
2 : y ≥ x, 1 ≤ x2 + y2 ≤ 2

}

and, by changing to polar coordinates, compute
∫∫

R

xy

x2 + y2
dxdy .

(7) Let a > 0. Evaluate the following integrals
(a)

∫ a

−a

∫

√
a2−x2

−
√
a2−x2

dydx .

(b)
∫ a

0

∫

√
a2−y2

0

(x2 + y2) dxdy .

(c)
∫ a

√

2

0

∫

√
a2−y2

y

xdxdy .

(8) Find the area of the region enclosed by the curve r2 = cos θ. Then compute

the volume under the surface of equation z =
√

1− x2 − y2 above the
region.

(9) A cylindrical hole of radius 1 is bored through the center of a sphere of
radius 2. What volume is removed?

(10) Let n ∈ N, f(x, y) = 1/rn, where r =
√

x2 + y2, and

R(a, b) =
{

(x, y) ∈ R
2 : a ≤

√

x2 + y2 ≤ b
}

where 0 < a < b. By changing to polar coordinates, compute

I(a, b) :=

∫∫

R(a,b)

f(x, y) dxdy .

For which values of n does the limit

lim
a→0

I(a, b)

exist?
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