
MATH11007 SHEET 22: TRIPLE INTEGRALS, SPHERICAL

COORDINATES

Set on Monday, April 30: Qs 1, 2 and 4.

(1) Compute the volume of the region defined by the following inequalities:

0 ≤ x ≤
√

1− y2 − z2 , 0 ≤ y ≤
√

1− z2 , 0 ≤ z ≤ 1 .

(2) Compute the integral∫ π

0

∫ sin θ

0

∫ ρ cos θ

0

ρ2 dz dρdθ .

(3) Let T be the tetrahedron defined by the inequalities

0 ≤ x ≤ 1− y − z , 0 ≤ y ≤ 1− z , 0 ≤ z ≤ 1 .

Find ∫∫∫
T

ex+y+z dxdy dz .

(4) Compute the volume inside the cone√
x2 + y2 ≤ z ≤ 1

by using spherical coordinates.

(5) Let 0 < a < 1.
(a) Compute the mass of a spherical ball of radius a if the density at any

point is equal to a constant k times the distance of that point to the
center.

(b) Compute the integral of the function

f(x, y, z) =
1√

x2 + y2 + z2

over the spherical shell of inside radius a and outside radius 1.

(6) Let n be a positive integer, and let f(x, y, z) = 1/ρn, where

ρ =
√
x2 + y2 + z2 .

(a) Compute the integral of the function

f(x, y, z) = 1/ρn

over the region contained between two spheres of radii a and b respec-
tively, with 0 < a < b.

(b) For which value of n does this integral approach a limit as a→ 0?
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(7) Find the mass and the center of mass of the cylinder

C :=
{

(x, y, z) : 0 ≤ z ≤ 1 , 0 ≤ x2 + y2 ≤ 1
}
,

assuming its density is uniform.

(8) Find the mass and the center of mass of a circular plate of radius a, as-
suming its density is proportional to the square of the distance from the
center.

(9) Find the center of mass of a (filled) cone of height h, whose base has a
radius equal to a, assuming its density is proportional to the distance from
the base.
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