
MATH11007 NOTES 2: LIMITS

Abstract. What limits are, and how to use them.

You will be used to statements like

lim
x→0

1− x

1 + x
= 1 and lim

x→∞

1

x
= 0 .

What do they mean exactly?

1. Definitions

Let x0, L ∈ R, f : A → R. We assume that x0 is either in the set A, or else is
an accumulation point of the set A, i.e.

∀ δ > 0 , ∃x ∈ A such that |x− x0| < δ .

Definition 1.1. We say that L is the limit of f(x) as x tends to x0 if

∀ ε > 0 , ∃ δ > 0 such that x ∈ A and |x− x0| < δ =⇒ |f(x)− L| < ε .

Notation . We write interchangeably

lim
x→x0

f(x) = L ,

f(x) −−−−→
x→x0

L

or

f(x) → L as x → x0 .

This definition can be extended to the following cases:

(1) x0 ∈ R, L = ±∞.
(2) x0 = ±∞, L ∈ R.
(3) x0 = ±∞, L = ±∞.

For example,

lim
x→x0

f(x) = ∞

means: For every ε > 0, there exists δ > 0 such that

x ∈ A and |x− x0| < δ =⇒ f(x) >
1

ε
.

More
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Notation .

lim
x→x0+

f(x) = L

means: the limit of f(x) as x approaches x0 from the right (i.e. x > x0) is L.

lim
x→x0−

f(x) = L

means: the limit of f(x) as x approaches x0 from the left (i.e. x < x0) is L.

2. Examples

Example 2.1. Show that

lim
x→1

(x + 1) = 2 .

Solution: Here x0 = 1, L = 2 and f(x) = x + 1 with, say, A = R. According to

the definition, we have to show that, for every ε > 0, no matter how small, we can

find a number δ > 0 such that |x − 1| < δ implies |f(x) − 2| < ε. So, let ε be any
positive number. Let x ∈ R be such that |x− 1| < ε. Then

|f(x)− 2| = |x+ 1− 2| = |x− 1| < ε .

So by taking δ = ε, we have found a positive number δ for which the required

implication does hold.

Example 2.2. Show that

lim
x→∞

sinx

x
= 0 .

Solution: Here x0 = ∞, L = 0 and f(x) = (sinx)/x with, say, A = (0, ∞).
According to the definition, we have to show that, for every ε > 0, no matter how

small, we can find a number δ > 0 such that x > δ implies |f(x)| < ε. So, let ε be

any positive number. Let x > 1/ε. Then

|f(x)| =
| sinx|

|x|
≤

1

|x|
< ε .

So by taking δ = 1/ε, we have found a positive number δ for which the required

implication does hold.

3. A theorem about limits

It would be painful to have to compute every limit from the definition. The
following simple result enables the computation of many limits from known results
without the need for ε and δ.

Suppose that
lim

x→x0

f(x) = Lf and lim
x→x0

g(x) = Lg .

Then

(3.1) lim
x→x0

[f(x) + g(x)] = Lf + Lg ,

(3.2) lim
x→x0

f(x)g(x) = LfLg

and, if g does not vanish in its domain and Lg 6= 0,

(3.3) lim
x→x0

f(x)

g(x)
=

Lf

Lg

.
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Example 3.1. Take f(x) = g(x) = x+ 1, x0 = 1, Lf = Lg = 2. Then

lim
x→1

(x+ 1)2 = 4 .

Example 3.2. For every polynomial p and every x0,

lim
x→x0

p(x) = p(x0) .

4. More sophisticated results

The computation of some limits requires a degree of ingenuity.

4.1. A famous trigonometric limit. Let us show that

lim
x→0

sinx

x
= 1 .

O A B

C

D

Figure 1. A sector of positive angle x (in radians) of the unit circle

Figure 1 shows a sector of positive angle x (in radians) of the unit circle. In
other words, the length of the arc BD is precisely equal to x. We have

Area of triangle OBD ≤ Area of sector ≤ Area of triangle OBC .

So
sinx

2
≤

x

2
≤

tanx

2
.

The first inequality yields
sinx

x
≤ 1

and the second
sinx

x
≥ cosx .

Combining these two results, we obtain

(4.1) cosx ≤
sinx

x
≤ 1 .
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Now, by definition of cosx,

lim
x→0

cosx = 1 .

Reporting this in (4.1), we find

lim
x→0+

cosx = 1 ≤ lim
x→0+

sinx

x
≤ 1 .

The limit

lim
x→0−

sinx

x
= 1

can be obtained in the same way.

4.2. The exponential function. The exponential number e is defined by

e := lim
n→∞

(

1 +
1

n

)n

.

That the limit on the right-hand side exists is a non-trivial fact (see Analysis), but
if we accept it, then it is not too hard to show that, for every positive integer n, we
have

(

1 +
1

n

)n

< e <

(

1 +
1

n

)n+1

.

This gives a method for computing the decimal expansion of e:

e = 2.7182818 . . .

Now let x ∈ N. We have

ex =

[

lim
n→∞

(

1 +
1

n

)n]x

= lim
n→∞

(

1 +
1

n

)nx

=
↑

nx=m

lim
m→∞

(

1 +
x

m

)m

m=n
↓

= lim
n→∞

(

1 +
x

n

)n

.

We then define the exponential function on R by

ex := lim
n→∞

(

1 +
x

n

)n

.

Notation . We use

ex and exp(x)

interchangeably.

Example 4.1. Show that

lim
x→0+

ex − 1

x
= 1 .

Solution: Let x > 0 and n ∈ N. Recall the binomial expansion

(

1 +
x

n

)n

= 1 +
n

n
x+

n(n− 1)

2n2
x2 + · · ·+

(

n

n

)

1

nn
xn .

We deduce

1 + x ≤
(

1 +
x

n

)n

≤ 1 + x+ · · ·+ xn ≤ 1 + x+ · · ·+ xn + · · ·

=
1

1− x
=

1− x+ x

1− x
= 1 +

x

1− x
.
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That is

1 + x ≤
(

1 +
x

n

)n

≤ 1 +
x

1− x
.

Let n → ∞:

1 + x ≤ ex ≤ 1 +
x

1− x
.

Hence

1 ≤
ex − 1

x
≤

1

1− x
.

Let x → 0+:

1 ≤ lim
x→0+

ex − 1

x
≤ lim

x→0+

1

1− x
= 1 .
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