

MATH11007 NOTES 3: THE DERIVATIVE

1. MOTIVATION AND DEFINITION

Given a curve of equation

$$y = f(x),$$

find the equation of the tangent and normal lines at x_0 .

(Partial) solution: let $y_0 = f(x_0)$. The equation of the tangent line is

$$\frac{y - y_0}{x - x_0} = m \quad (\text{tangent})$$

where m is the *slope* of the tangent line. The equation of the normal line is

$$\frac{y - y_0}{x - x_0} = -1/m \quad (\text{normal}).$$

Example 1.1. Let the curve be the straight line of equation

$$y = mx + b.$$

For every x_0 , the tangent line is the curve itself, and its slope is given by the formula

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

where h is an arbitrary number.

Example 1.2. Next, consider the parabola of equation

$$y = f(x) = ax^2 + b.$$

Let x_0 and $h \neq 0$ be two numbers. For h small, the ratio

$$\frac{f(x_0 + h) - f(x_0)}{h} = \frac{a(x_0 + h)^2 + b - ax_0^2 - b}{h} = \frac{2ax_0h + h^2}{h} = 2ax_0 + h$$

approximates the slope of the line tangent to the parabola at x_0 . We obtain the exact value of the slope by letting h tend to 0:

$$m = \lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h} = 2ax_0.$$

Definition 1.1. Let $f : A \rightarrow B$ and $x_0 \in A$. We say that f is *differentiable at x_0* if the limit

$$\lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. Further, if f is differentiable at every point of its domain, then we say that f is *differentiable*. In this case, the function $f' : A \rightarrow B$ defined by

$$f'(x) := \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h},$$

is called the *derivative* of f .

Notation . We shall often use the following alternative notations for the derivative:

$$\begin{aligned}\frac{df}{dx} &\text{ instead of } f', \\ \frac{d^2f}{dx^2} &\text{ instead of } f'', \\ \frac{d^n f}{dx^n} &\text{ instead of } f^{(n)}.\end{aligned}$$

We will see many other notations for the derivative in the course of your studies.

2. DERIVATIVE OF THE MONOMIAL

Let $n \in \mathbb{N}$ and consider the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$f(x) = x^n.$$

Let $x_0, h \neq 0$ be two real numbers. By using the binomial expansion, we can write

$$\begin{aligned}\frac{f(x_0 + h) - f(x_0)}{h} &= \frac{(x_0 + h)^n - x_0^n}{h} \\ &= \frac{1}{h} \left[\binom{n}{0} x_0^n + \binom{n}{1} x_0^{n-1} h + \binom{n}{2} x_0^{n-2} h^2 + \cdots + \binom{n}{n} h^n - x_0^n \right] \\ &= \binom{n}{1} x_0^{n-1} + \binom{n}{2} x_0^{n-2} h + \cdots + \binom{n}{n} h^{n-1} \\ &\xrightarrow[h \rightarrow 0]{} \binom{n}{1} x_0^{n-1} = nx_0^{n-1}.\end{aligned}$$

Hence

$$f'(x) = nx^{n-1}.$$

3. DERIVATIVE OF THE SQUARE ROOT FUNCTION

Let $f : (0, \infty) \rightarrow (0, \infty)$ be defined by

$$f(x) = \sqrt{x}.$$

Let $x_0, h > 0$. Then

$$\begin{aligned}\frac{f(x_0 + h) - f(x_0)}{h} &= \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} \\ &= \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} \left[\frac{\sqrt{x_0 + h} + \sqrt{x_0}}{\sqrt{x_0 + h} + \sqrt{x_0}} \right] = \frac{1}{h} \frac{(\sqrt{x_0 + h})^2 - (\sqrt{x_0})^2}{\sqrt{x_0 + h} + \sqrt{x_0}} \\ &= \frac{1}{h} \frac{x_0 + h - x_0}{\sqrt{x_0 + h} + \sqrt{x_0}} = \frac{1}{\sqrt{x_0 + h} + \sqrt{x_0}} \xrightarrow[h \rightarrow 0]{} \frac{1}{2\sqrt{x_0}}.\end{aligned}$$

Hence

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

With some work, this result can be generalised as follows: for $f : (0, \infty) \rightarrow (0, \infty)$ given by

$$f(x) = x^\alpha, \quad \alpha \in \mathbb{R},$$

we have

$$f'(x) = \alpha x^{\alpha-1}.$$

4. THE EXPONENTIAL FUNCTION

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$f(x) = e^x$$

and let $x_0 \in \mathbb{R}$ and $h \neq 0$. Using the identity

$$e^{a+b} = e^a e^b$$

and last week's result

$$\lim_{h \rightarrow 0} \frac{e^h - 1}{h} = 1,$$

we easily obtain

$$\frac{f(x_0 + h) - f(x_0)}{h} = \frac{e^{x_0+h} - e^{x_0}}{h} = e^{x_0} \frac{e^h - 1}{h} \xrightarrow[h \rightarrow 0]{} e^{x_0}.$$

Hence

$$f'(x) = e^x.$$

5. THE SINE AND COSINE FUNCTIONS

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$f(x) = \sin x.$$

We shall use the identity

$$\sin(a + b) = \sin a \cos b + \sin b \cos a.$$

Let $x_0 \in \mathbb{R}$ and $h \neq 0$. Then

$$\begin{aligned} \frac{f(x_0 + h) - f(x_0)}{h} &= \frac{\sin(x_0 + h) - \sin(x_0)}{h} = \frac{\sin x_0 \cos h + \sin h \cos x_0 - \sin x_0}{h} \\ &= \underbrace{\sin x_0 \frac{\cos h - 1}{h}}_A + \underbrace{\cos x_0 \frac{\sin h}{h}}_B. \end{aligned}$$

Now

$$\begin{aligned} \frac{\cos h - 1}{h} &= \frac{\cos h - 1}{h} \frac{\cos h + 1}{\cos h + 1} = \frac{1}{h} \frac{\cos^2 h - 1}{\cos h + 1} \\ &= -\frac{1}{h} \frac{\sin^2 h}{\cos h + 1} = -\frac{\sin h}{h} \sin h \frac{1}{\cos h + 1} \xrightarrow[h \rightarrow 0]{} -1 \times 0 \times \frac{1}{2} = 0. \end{aligned}$$

Therefore

$$A \xrightarrow[h \rightarrow 0]{} 0.$$

On the other hand, from last week's lecture,

$$B \xrightarrow[h \rightarrow 0]{} \cos x_0.$$

Hence

$$f'(x) = \cos x.$$

A similar calculation gives

$$\frac{d}{dx} \cos x = -\sin x.$$

6. SOME USEFUL RESULTS

The following results follow immediately from the theorems or “rules” for limits.

Theorem 6.1. *Let $f, g : A \rightarrow B$ be differentiable. Then*

(1) *Sum rule: $f + g$ is differentiable and*

$$(f + g)' = f' + g'.$$

(2) *Product rule: fg is differentiable and*

$$(fg)' = f'g + fg'.$$

(3) *Quotient rule: if, in addition, g never vanishes, then f/g is differentiable and*

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

Example 6.1. *By the product rule with $f = g = \sin x$,*

$$\frac{d}{dx} \sin^2 x = \cos x \sin x + \sin x \cos x = 2 \sin x \cos x.$$

Example 6.2. *By the quotient rule with $f = \sin x$ and $g = \cos x$,*

$$\frac{d}{dx} \tan x = \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x.$$

7. THE CHAIN RULE

Definition 7.1. Let $u : A \rightarrow B$ and $f : B \rightarrow C$. The *composition* $f \circ u : A \rightarrow C$ is the function defined by

$$(f \circ u)(x) = f(u(x)).$$

Theorem 7.1 (Chain rule). *Let $u : A \rightarrow B$ and $f : B \rightarrow C$ be differentiable. Then $f \circ u : A \rightarrow C$ is also differentiable and*

$$(f \circ u)'(x) := \frac{d}{dx} f(u(x)) = f'(u(x)) u'(x).$$

Proof. Let $x_0 \in A$ and $h \neq 0$ be such that $x_0 + h \in A$. Using the trivial identity

$$u(x_0 + h) = u(x_0) + h \frac{u(x_0 + h) - u(x_0)}{h},$$

we can write

$$\begin{aligned} \frac{f(u(x_0 + h)) - f(u(x_0))}{h} &= \frac{f\left(u(x_0) + h \frac{u(x_0 + h) - u(x_0)}{h}\right) - f(u(x_0))}{h} \\ &= \frac{\left[f\left(u(x_0) + h \frac{u(x_0 + h) - u(x_0)}{h}\right) - f(u(x_0))\right] \frac{u(x_0 + h) - u(x_0)}{h}}{h \frac{u(x_0 + h) - u(x_0)}{h}}. \end{aligned}$$

Set

$$H := h \frac{u(x_0 + h) - u(x_0)}{h}$$

and note that

$$\lim_{h \rightarrow 0} H = \lim_{h \rightarrow 0} h \lim_{h \rightarrow 0} \frac{u(x_0 + h) - u(x_0)}{h} = 0 \times u'(x_0) = 0.$$

Then, from the above,

$$\frac{f(u(x_0 + h)) - f(u(x_0))}{h} = \frac{f(u(x_0) + H) - f(u(x_0))}{H} \frac{u(x_0 + h) - u(x_0)}{h}.$$

Hence

$$\begin{aligned} \lim_{h \rightarrow 0} \frac{f(u(x_0 + h)) - f(u(x_0))}{h} \\ = \lim_{H \rightarrow 0} \frac{f(u(x_0) + H) - f(u(x_0))}{H} \lim_{h \rightarrow 0} \frac{u(x_0 + h) - u(x_0)}{h} \\ = f'(u(x_0))u'(x_0). \end{aligned}$$

□

Example 7.1 (Implicit differentiation). Take $u(x) = \sqrt{x}$ and $f(x) = x^2$. Then, for $x > 0$,

$$f(u(x)) = x.$$

By the chain rule

$$1 = \frac{d}{dx}x = \frac{d}{dx}f(u(x)) = f'(u(x))u'(x).$$

We deduce that

$$u'(x) = \frac{1}{f'(u(x))} = \frac{1}{2u(x)} = \frac{1}{2\sqrt{x}}.$$

REFERENCES

1. Frank Ayres, Jr. and Elliott Mendelson, *Schaum's Outline of Calculus, Fourth Edition*, McGraw-Hill, 1999.
2. E. Hairer and G. Wanner, *Analysis by its History*, Springer-Verlag, New-York, 1996.