
MATH11007 NOTES 3: THE DERIVATIVE

1. Motivation and definition

Given a curve of equation
y = f(x) ,

find the equation of the tangent and normal lines at x0.
(Partial) solution: let y0 = f(x0). The equation of the tangent line is

y − y0
x− x0

= m (tangent)

where m is the slope of the tangent line. The equation of the normal line is

y − y0
x− x0

= −1/m (normal) .

Example 1.1. Let the curve be the straight line of equation

y = mx+ b .

For every x0, the tangent line is the curve itself, and its slope is given by the formula

m =
f(x0 + h)− f(x0)

h
where h is an arbitrary number.

Example 1.2. Next, consider the parabola of equation

y = f(x) = ax2 + b .

Let x0 and h 6= 0 be two numbers. For h small, the ratio

f(x0 + h)− f(x0)

h
=
a(x0 + h)2 + b− ax20 − b

h
=

2ax0h+ h2

h
= 2ax0 + h

approximates the slope of the line tangent to the parabola at x0. We obtain the
exact value of the slope by letting h tend to 0:

m = lim
h→0

f(x0 + h)− f(x0)

h
= 2ax0 .

Definition 1.1. Let f : A→ B and x0 ∈ A. We say that f is differentiable at x0
if the limit

lim
h→0

f(x0 + h)− f(x0)

h
exists. Further, if f is differentiable at every point of its domain, then we say that
f is differentiable. In this case, the function f ′ : A→ B defined by

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
,

is called the derivative of f .
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Notation . We shall often use the following alternative notations for the derivative:

df

dx
instead of f ′ ,

d2f

dx2
instead of f ′′ ,

dnf

dxn
instead of f (n) .

We will see many other notations for the derivative in the course of your studies.

2. Derivative of the monomial

Let n ∈ N and consider the function f : R→ R defined by

f(x) = xn .

Let x0, h 6= 0 be two real numbers. By using the binomial expansion, we can write

f(x0 + h)− f(x0)

h
=

(x0 + h)n − xn0
h

=
1

h

[(
n

0

)
xn0 +

(
n

1

)
xn−10 h+

(
n

2

)
xn−20 h2 + · · ·+

(
n

n

)
hn − xn0

]
=

(
n

1

)
xn−10 +

(
n

2

)
xn−20 h+ · · ·+

(
n

n

)
hn−1

−−−→
h→0

(
n

1

)
xn−10 = nxn−10 .

Hence
f ′(x) = nxn−1 .

3. Derivative of the square root function

Let f : (0,∞)→ (0, ∞) be defined by

f(x) =
√
x .

Let x0, , h > 0. Then

f(x0 + h)− f(x0)

h
=

√
x0 + h−√x0

h

=

√
x0 + h−√x0

h

[√
x0 + h+

√
x0√

x0 + h+
√
x0

]
=

1

h

(√
x0 + h

)2 − (√x0)2√
x0 + h+

√
x0

=
1

h

x0 + h− x0√
x0 + h+

√
x0

=
1√

x0 + h+
√
x0
−−−→
h→0

1

2
√
x0

.

Hence

f ′(x) =
1

2
√
x
.

With some work, this result can be generalised as follows: for f : (0,∞) → (0,∞)
given by

f(x) = xα , α ∈ R ,
we have

f ′(x) = αxα−1 .
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4. The exponential function

Let f : R→ R be defined by

f(x) = ex

and let x0 ∈ R and h 6= 0. Using the identity

ea+b = eaeb

and last week’s result

lim
h→0

eh − 1

h
= 1 ,

we easily obtain

f(x0 + h)− f(x0)

h
=

ex0+h − ex0

h
= ex0

eh − 1

x
−−−→
h→0

ex0 .

Hence

f ′(x) = ex .

5. The sine and cosine functions

Let f : R→ R be defined by

f(x) = sinx .

We shall use the identity

sin(a+ b) = sin a cos b+ sin b cos a .

Let x0 ∈ R and h 6= 0. Then

f(x0 + h)− f(x0)

h
=

sin(x0 + h)− sin(x0)

h
=

sinx0 cosh+ sinh cosx0 − sinx0
h

= sinx0
cosh− 1

h︸ ︷︷ ︸
A

+ cosx0
sinh

h︸ ︷︷ ︸
B

.

Now

cosh− 1

h
=

cosh− 1

h

cosh+ 1

cosh+ 1
=

1

h

cos2 h− 1

cosh+ 1

= − 1

h

sin2 h

cosh+ 1
= − sinh

h
sinh

1

cosh+ 1
−−−→
h→0

−1× 0× 1

2
= 0 .

Therefore

A −−−→
h→0

0 .

On the other hand, from last week’s lecture,

B −−−→
h→0

cosx0 .

Hence

f ′(x) = cosx .

A similar calculation gives

d

dx
cosx = − sinx .
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6. Some useful results

The following results follow immediately from the theorems or “rules” for limits.

Theorem 6.1. Let f, g : A→ B be differentiable. Then

(1) Sum rule: f + g is differentiable and

(f + g)
′

= f ′ + g′ .

(2) Product rule: fg is differentiable and

(fg)
′

= f ′g + fg′ .

(3) Quotient ule: if, in addition, g never vanishes, then f/g is differentiable
and (

f

g

)′
=
f ′g − fg′

g2
.

Example 6.1. By the product rule with f = g = sinx,

d

dx
sin2 x = cosx sinx+ sinx cosx = 2 sinx cosx .

Example 6.2. By the quotient rule with f = sinx and g = cosx,

d

dx
tanx =

cosx cosx− sinx (− sinx)

cos2 x
=

1

cos2 x
= sec2 x .

7. The chain rule

Definition 7.1. Let u : A→ B and f : B → C. The composition f ◦ u : A→ C
is the function defined by

(f ◦ u) (x) = f (u(x)) .

Theorem 7.1 (Chain rule). Let u : A → B and f : B → C be differentiable.
Then f ◦ u : A→ C is also differentiable and

(f ◦ u)
′
(x) :=

d

dx
f (u(x)) = f ′ (u(x))u′(x) .

Proof. Let x0 ∈ A and h 6= 0 be such that x0 + h ∈ A. Using the trivial identity

u(x0 + h) = u(x0) + h
u(x0 + h)− u(x0)

h
,

we can write

f (u(x0 + h))− f (u(x0))

h
=
f
(
u(x0) + hu(x0+h)−u(x0)

h

)
− f (u(x0))

h

=

[
f
(
u(x0) + hu(x0+h)−u(x0)

h

)
− f (u(x0))

]
u(x0+h)−u(x0)

h

hu(x0+h)−u(x0)
h

.

Set

H := h
u(x0 + h)− u(x0)

h
and note that

lim
h→0

H = lim
h→0

h lim
h→0

u(x0 + h)− u(x0)

h
= 0× u′(x0) = 0 .
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Then, from the above,

f (u(x0 + h))− f (u(x0))

h
=
f (u(x0) +H)− f(u(x0))

H

u(x0 + h)− u(x0)

h
.

Hence

lim
h→0

f (u(x0 + h))− f (u(x0))

h

= lim
H→0

f (u(x0) +H)− f(u(x0))

H
lim
h→0

u(x0 + h)− u(x0)

h

= f ′(u(x0))u′(x0) .

�

Example 7.1 (Implicit differentiation). Take u(x) =
√
x and f(x) = x2. Then,

for x > 0,
f(u(x)) = x .

By the chain rule

1 =
d

dx
x =

d

dx
f(u(x)) = f ′(u(x))u′(x) .

We deduce that

u′(x) =
1

f ′(u(x))
=

1

2u(x)
=

1

2
√
x
.
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