MATH11007 NOTES 3: THE DERIVATIVE

1. MOTIVATION AND DEFINITION

Given a curve of equation
y=flx),
find the equation of the tangent and normal lines at .
(Partial) solution: let yo = f(xo). The equation of the tangent line is
=00 _ oy (tangent)
Tr — X
where m is the slope of the tangent line. The equation of the normal line is
Y—Y
— =1 ormal) .
P /m  (normal)

Example 1.1. Let the curve be the straight line of equation
y=mx+b.

For every xg, the tangent line is the curve itself, and its slope is given by the formula

:f($0+h)—f(xo)
h

where h is an arbitrary number.

Example 1.2. Next, consider the parabola of equation
y=f(z)=ax’+0b.
Let o and h # 0 be two numbers. For h small, the ratio
f(zo+h)— f(zo)  alzo+h)>+b—axi—b  2axoh+ h?

h N h h
approzimates the slope of the line tangent to the parabola at xo. We obtain the
exact value of the slope by letting h tend to 0:

m = Lim f(@o+h) = flxo)
h—0 h

Definition 1.1. Let f: A — B and xg € A. We say that f is differentiable at xq

if the limit L

lim f(zo +h) — f(zo)

h—0 h
exists. Further, if f is differentiable at every point of its domain, then we say that
f is differentiable. In this case, the function f’: A — B defined by

oy e @+ R) = f(2)
f(x).—hmf,

=2axg+h

= 2ax .

h—0
is called the derivative of f.
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Notation . We shall often use the following alternative notations for the derivative:

d
—~  instead of f’,
dx
12
d—xé instead of ",
dn
—f instead of f(.
dz™

We will see many other notations for the derivative in the course of your studies.

2. DERIVATIVE OF THE MONOMIAL
Let n € N and consider the function f : R — R defined by
flz) =a".
Let xg, h # 0 be two real numbers. By using the binomial expansion, we can write

fl@o+h) — flzo)  (zo+h)" —ap

h h

_l n n n n—1 n n—212 n n__ ..n
=7 {(())xo + (1)9&0 h+ (2>x0 h*+-- + <n)h xo}
n n— n n— n n—
= (1)950 1+(2>x0 2h+---+<n)h !

Hence
f'(xz) = na"t.
3. DERIVATIVE OF THE SQUARE ROOT FUNCTION
Let f: (0,00) — (0, c0) be defined by
f(x) = V.
Let xg, ,h > 0. Then

f(x() + h) — f(xo) _ Vo +h— \/%
h

h
Voo T h—E [V TRty ] 1 (Ve th) - (Vi)
- h [\/mwxfo}‘h Voo +h+ io
1 mo+h—z9 1 1
Voot R+ T Voo +h+ 3o b0 2T
Hence .
!/
f(m):m~

With some work, this result can be generalised as follows: for f : (0,00) — (0,00)
given by
flx)y=2%, aeR,

we have
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4. THE EXPONENTIAL FUNCTION

Let f: R — R be defined by

flz) =¢*
and let g € R and h # 0. Using the identity
ea+b _ eaeb
and last week’s result
e —1
lim =1,
h—0

we easily obtain
f(xo+h) = flwo) _ et —e™ et —1

h h T h—0

Hence

5. THE SINE AND COSINE FUNCTIONS
Let f: R — R be defined by
f(z) =sinz.
We shall use the identity
sin(a 4+ b) = sinacosb + sinbcosa .

Let zp € R and h # 0. Then

f(xo+h) — f(wo)  sin(xzo + h) —sin(xg)  sinxzgcosh + sinhcoszy — sinxg

h h h
) cosh —1 sin h
= SIn h —+ Ccos xg h
A B
Now
cosh—1 cosh—1lcosh+1 lcos?h—1
h N h cosh+1 h cosh+1
1 sin?h sinh 1 1
T “hcosh+1  h SIHhCOSh+1 ho0 ><0><§:0.
Therefore
A——0.
h—0

On the other hand, from last week’s lecture,

B —— coszxg.
h—0

Hence
J'(z) =cosz.

A similar calculation gives

—cosx = —sinx.
dx
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6. SOME USEFUL RESULTS
The following results follow immediately from the theorems or “rules” for limits.

Theorem 6.1. Let f, g: A — B be differentiable. Then
(1) Sum rule: f+ g is differentiable and

(f+9) =f+4g"
(2) Product rule: fg is differentiable and

(f9) = f'g+fq".
(3) Quotient ule: if, in addition, g never vanishes, then f/g is differentiable

and )
< ! ) _f'9-1d
g 9?
Example 6.1. By the product rule with f = g =sinx,
o sin? x = coszsinx 4 sinz cosz = 2sinz cos .
Example 6.2. By the quotient rule with f =sinz and g = cosx,

coszcosx —sinz (—sinx) 1 9
= =sec’x.

—tanx = =
dx cos? x cos? x

7. THE CHAIN RULE

Definition 7.1. Let u: A — B and f: B — C. The composition fou: A — C
is the function defined by

(fou)(z) = f(u(x)) .
Theorem 7.1 (Chain rule). Let w : A — B and f : B — C be differentiable.
Then fou: A— C is also differentiable and
d
(fou) (z):= = (@) = [ (u(@) ().
Proof. Let g € A and h # 0 be such that o + h € A. Using the trivial identity

u(xo + h) — u(zg)
h )

u(xo + h) =u(zo) + h

we can write

 (ulao 1) — f ufwe))  F (uleo) + hECRH=E ) — f (u(ag))

h B h
B {f (u(mo) + hiu(xﬁh,z*"(wo)) — f(u(ﬂco))} dzoth)-ulzy)
- hu(fc0+h})L—u(aco) !

Set
u(xo + h) — u(xo)

H =
h h

and note that

lim F — lim A lim 0+ 1) — ulzo)

=0xu =0.
h—0 h—0 h—0 Y (xo)
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Then, from the above,

f(u(zo +h)) = f(u(zo))  f(ulxo) + H) — flu(zo)) u(zo + h) — u(zo)

h H h '
Hence
o £ (0l + 1)) = f (u(w0))
h—0 h
i F 000+ ) = f(uee)) | ulwo+ ) = uleo)
H—-0 H h—0 h
= f'(u(z0))u' (z0) -
O
Example 7.1 (Implicit differentiation). Take u(z) = /= and f(x) = 2. Then,

forx >0,

flu(@)) =z.
By the chain rule

d / /
We deduce that

() = 1 1 1
- (@) 2u(e) 2y
REFERENCES

1. Frank Ayres, Jr. and Elliott Mendelson, Schaum’s Qutline of Calculus, Fourth Edition, Mc-
Graw—Hill, 1999.

2. E. Hairer and G. Wanner, Analysis by its History, Springer-Verlag, New-York, 1996.



