
MATH11007 NOTES 4: APPLICATIONS OF THE DERIVATIVE

1. Newton’s method

Let f be a differentiable function and consider the equation

(1.1) f(x) = 0 .

In general, it is not possible to solve this equation exactly, but one can seek to ap-
proximate the solution. Newton’s method starts with a guess, say x0, and constructs
a (hopefully) better guess as follows.

The equation of the tangent to the curve y = f(x) at x0 is

y = f(x0) + (x− x0)f ′(x0) .

The tangent line approximates the curve y = f(x) very well in the neighbourhood
of x0. So the value, say x1, where this tangent line intersects the horizontal axis
should be a better guess for the solution of Equation (1.1). This yields the new
guess

x1 = x0 −
f(x0)

f ′(x0)
.

By iterating, we obtain a sequence {xn}n∈N such that

xn+1 = xn −
f(xn)

f ′(xn)
.

Under certain conditions, the sequence will converge to a zero of f .

Example 1.1. To compute
√

2, we apply Newton’s method to

f(x) = x2 − 2 .

Then

xn+1 = xn −
x2n − 2

2xn
=

1

2

(
xn +

2

xn

)
.

With the guess x0 = 1, we find x1 = 3/2, x2 = 17/12 etc.

2. The angle between two intersecting curves

Suppose that the curves

y = f1(x) and y = f2(x)

intersect at (x0, y0). This happens if and only if

y0 = f1(x0) = f2(x0) .

Let mj be the slope of the tangent line of y = fj(x). Then

θj := arctanmj
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is the angle that the tangent line makes with the horizontal axis; see Figure 1.
There are two angles between the tangent lines at the point of intersection. The
sum of these two angles is π. Let ϕ be the angle such that

0 ≤ ϕ ≤ π/2 .

We call this angle the angle between the curves at the point of intersection. In what
follows, we explain how to calculate ϕ.

Geometrically,

ϕ = θ2 − θ1 or θ1 − θ2 .
Hence

tanϕ = |tan(θ2 − θ1)| =
∣∣∣∣ sin(θ2 − θ1)

cos(θ2 − θ1)

∣∣∣∣ =

∣∣∣∣ sin θ1 cos θ2 − sin θ2 cos θ1
cos θ1 cos θ2 + sin θ1 sin θ2

∣∣∣∣
=

∣∣∣∣cos θ1 cos θ2
cos θ1 cos θ2

tan θ1 − tan θ2
1 + tan θ1 tan θ2

∣∣∣∣ =

∣∣∣∣ m1 −m2

1 +m1m2

∣∣∣∣ .
So we have the formula

(2.1) ϕ = arctan

∣∣∣∣ m1 −m2

1 +m1m2

∣∣∣∣ .

θ1

y = f1(x)

θ2

y = f2(x)

ϕ

Figure 1. Two intersecting curves. The dashed lines are the tan-
gent lines.

Example 2.1. Let f1(x) = 1+(x+1)2 and f2(x) = 1+(x−1)2. The corresponding
curves intersect at x0 = 0. We have

m1 = f ′1(x0) = 2 and m2 = f ′2(x0) = −2 .

The formula (2.1) yields

ϕ = arctan(4/3) = 53.13◦ .
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3. L’Hospital’s rule

Suppose that

lim
x→a

f(x) = lim
x→a

g(x) =


0 or

∞ or

−∞
.

Then the value of the limit

lim
x→a

f(x)

g(x)

is not immediately obvious! Now, suppose that f and g are differentiable. Then
L’Hospital’s rule asserts that

(3.1) lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This is often useful in finding the limit on the left-hand side.

Example 3.1. Let f(x) = sinx and g(x) = x. Then

lim
x→0

f(x) = lim
x→0

g(x) = 0 .

To determine the limit,

lim
x→0

sinx

x
,

we apply L’Hospital’s rule:

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1 .

This agrees with our earlier result, obtained by a different method.

Example 3.2. Let n ∈ {N}, f(x) = xn and g(x) = ex. Then

lim
x→∞

f(x) = lim
x→∞

g(x) =∞ .

To determine the limit,

lim
x→∞

xn

ex
,

we apply L’Hospital’s rule n times

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex
= · · · = lim

x→∞

n!

ex
= 0 .

This shows that the exponential function grows faster than any power.

Let us give some hint of the proof of L’Hospital’s rule in the particular case
a ∈ R and

lim
x→a

f(x) = f(a) = 0 = lim
x→a

g(x) = g(a) .

We then have (very sloppy!)

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)

lim
x→a

[
f(x)− f(a)

x− a
x− a

g(x)− g(a)

]
=

limx→a
f(x)−f(a)

x−a

limx→a
g(x)−g(a)

x−a

=
limx→a f

′(x)

limx→a g′(x)
= lim

x→a

f ′(x)

g′(x)
.
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4. Optimisation and curve sketching

Knowledge of the derivative(s) of a smooth function, say f , is very useful for
sketching its graph. You will no doubt be familiar with the following facts:

(1) Points where f ′ is positive (respectively negative) are points of increase
(respectively decrease) of f .

(2) Points where f ′ vanishes, i.e. critical points of f , are points of local extrema
of f , or points of inflexion of f .

(3) The curve y = f(x) is locally convex (respectively concave) at points where
f ′′ is positive (respectively negative).

Another property (not related to differentiability) which is often useful in sketch-
ing a graph is the following:

Definition 4.1. A function f : R→ R is said to be even if, for every x ∈ R,

f(−x) = f(x) .

It is said to be odd if, for every x ∈ R,

f(−x) = −f(x) .

Example 4.1. The functions defined by the mappings

x 7→ x2 , x 7→ cos(x) , x 7→ |x|

are all even. The functions defined by the mappings

x 7→ x , x 7→ sin(x) , x 7→ x cosx

are all odd. The function defined by the mapping

x 7→ x+ x2

is neither odd nor even.

Rather than discussing curve sketching in the abstract, we illustrate some useful
tricks by means of the particular example

f(x) = sin

(
6

1 + x2

)
.

(1) The function is even. So the graph is symmetric about the verical axis. We
may therefore concentrate on the case x ≥ 0, and then reflect.

(2) We have f(0) = sin 6 < sin(2π) = 0.
(3) We have

lim
x→∞

f(x) = sin 0 = 0

and the limiting value is approached from above.
(4) Does f have zeroes? This requires

6

1 + x2
= nπ

for some natural number n. Only if n = 1 is there a real solution; it is
x =

√
6/π − 1.
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(5) What are the critical points? We compute the derivative by the chain rule:

d

dx
sin

(
6

1 + x2

)
= cos

(
6

1 + x2

)
d

dx

(
6

1 + x2

)
= cos

(
6

1 + x2

)(
−6

(1 + x2)2

)
d

dx

(
1 + x2

)
=
−12x

(1 + x2)2
cos

(
6

1 + x2

)
.

So there are three critical points: in principle, we should compute f ′′ to
determine the nature of each point, but the formula for the second derivative
is too complicated, and it is simpler to examine the sign of f ′ instead.
(a) x = 0. We have f ′(x) < 0 for x small and positive. So x = 0 is a local

maximum.
(b) x =

√
4/π − 1. We have f ′(x) < 0 for x slightly smaller and f ′(x) > 0

fo x slightly larger than this critical point. It is therefore a local
minimum.

(c) x =
√

12/π − 1. A local maximum since the function approaches its
limiting value at ∞ from above.

See Figure 2 for the graph.

Figure 2. The graph of y = sin
(

6
1+x2

)
.
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