
MATH11007 NOTES 6: MORE INTEGRATION

1. Integration by parts

Just as the chain rule for differentiation underlies the technique of substitution,
so does the product rule for differentiation underly the technique of integration by
parts.

Let u and v be two differentiable functions on some common domain. The
product rule for differentiation (see Notes 3) asserts that

d

dx
[u(x)v(x)] = u(x)

dv

dx
(x) + v(x)

du

dx
(x) .

So the product uv is a primitive of the function on the right-hand side of the above
equality. Using the notation introduced previously (see Notes 5), we can write this
as

u(x)v(x) =

∫ [
u(x)

dv

dx
(x) + v(x)

du

dx
(x)

]
dx .

After re-arrangement, this gives the familiar “integration by parts” formula:

(1.1)

∫
u(x)

dv

dx
(x) dx = u(x)v(x)−

∫
v(x)

du

dx
(x) dx .

Example 1.1. Find a primitive of xe−x. We use Equation (1.1) with u(x) = x
and v(x) = −e−x. This yields∫

xe−x dx = −xe−x +

∫
e−x dx = −(1 + x)e−x .

Example 1.2. Compute

an :=

∫ π/2

0

sinn xdx , n ∈ N .

Solution: By definition,

a0 =

∫ π/2

0

dx =
π

2

and

a1 =

∫ π/2

0

sinxdx = − cosx
∣∣∣π/2
0

= 1 .
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Then, for n ≥ 0,

an+2 =

∫ π/2

0

sinn+2 xdx =

∫ π/2

0

u︷ ︸︸ ︷
sinn+1 x sinx︸︷︷︸

v′

dx

= − sinn+1 x cosx
∣∣∣π/2
0

+(n+ 1)

∫ π/2

0

sinn x cosx cosxdx

= 0 + (n+ 1)

∫ π/2

0

sinn x
[
1− sin2 x

]
dx = (n+ 1) (an − an+2) .

After re-arranging, we find

an+2 =
n+ 1

n+ 2
an .

Hence

a2 =
1

2
a0 =

π

4
, a3 =

2

3
a1 =

2

3
, etc.

2. Improper integrals

Definition 2.1. A non-empty set S ⊆ R is said to be bounded if there exists c ∈ R
such that

∀ x ∈ S , |x| ≤ c .
A function f : A→ B ⊆ R is said to be bounded if the set

{f(x) : x ∈ A}
(i.e. the range of the function) is a bounded set. A set or a function that is not
bounded is said to be unbounded.

Example 2.1. The sets N and (1,∞) are unbounded. The sets [−1, 1] and (0, 106)
are bounded. The function f : R→ R defined by

f(x) = sinx

is bounded. The function g : [1, 2]→ R defined by

g(x) =
1

x

is bounded, but if we change its domain to (0, 2] it becomes unbounded.

Improper integrals are of two basic kinds:

(1) The integrand is continuous but the interval of integration is infinite. For
example, ∫ ∞

0

e−x dx and

∫ ∞
0

dx

1 + x2

are of this kind.
(2) The interval of integration is finite but the function is unbounded in the

interval. For example∫ 1

0

dx√
x

and

∫ 1

−1

dx

x2 − 1

are of this kind.

We begin by considering integrals of the first kind.
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Definition 2.2. Suppose that, for every b > a, the function f : [a,∞) → R is
continuous in the interval [a, b]. Then∫ ∞

a

f(x) dx := lim
b→∞

∫ b

a

f(x) dx .

If the limit on the right exists, we say that the improper integral (on the left) is
convergent; otherwise, we say that it is divergent.

Example 2.2. Determine whether the improper integral∫ ∞
0

e−x dx

is convergent or divergent.
Solution: Let b > 0. We have∫ b

0

e−x dx = −e−x
∣∣∣b
0
= 1− e−b −−−→

b→∞
1 .

Hence the integral is convergent. Its value is 1.

Example 2.3. Determine whether the improper integral∫ ∞
0

dx

1 + x2

is convergent or divergent.
Solution: Let b > 0. We have∫ b

0

dx

1 + x2
= arctanx

∣∣∣b
0
= arctan b −−−→

b→∞

π

2
.

Hence the integral is convergent. Its value is π/2.

Example 2.4. Determine whether the improper integral∫ ∞
0

dx

1 + cos2 x+ x4

is convergent or divergent. This example illustrates the fact that it is not necessary
to compute the value of the integral in order to obtain the answer.

Solution: Let b > 1. We have∫ b

0

dx

1 + cos2 x+ x4
≤
∫ b

0

dx

1 + x4

since cos2 x ≥ 0. Now∫ b

0

dx

1 + x4
=

∫ 1

0

dx

1 + x4
+

∫ b

1

dx

1 + x4

≤
∫ 1

0

dx

1 + 0
+

∫ b

1

dx

0 + x4
= 1 +

−1

3
x−3

∣∣∣b
1

=
4

3
+

1

3b3
−−−→
b→∞

4

3
.

This shows that, for every b > 1,∫ b

0

dx

1 + cos2 x+ x4
≤ 2

3
.
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So the improper integral is convergent, even though we do not know how to compute
its value.

Next, we consider the second kind of improper integral.

Definition 2.3. Let a < b and suppose that, for every ε > 0, the unbounded
function f : (a, b]→ R is continuous in [a+ ε, b]. Then∫ b

a

f(x) dx := lim
ε→0+

∫ b

a+ε

f(x) dx .

If the limit exists, we say that the integral is convergent; otherwise, we say that it
is divergent.

Example 2.5. Let 0 < α 6= 1 and consider∫ 1

0

dx

xα
.

This integral is improper because the integrand is unbounded. Let ε > 0. Then∫ 1

ε

dx

xα
=
x1−α

1− α

∣∣∣1
ε
=

1− ε1−α

1− α
−−−−→
ε→0+

{
1

1−α if 0 < α < 1

∞ if α > 1
.

So the integral is convergent if α < 1 and divergent if α > 1. What happens when
α = 1?

Example 2.6. Consider ∫ 1

0

e−x√
x

dx .

Let ε > 0. Then∫ 1

ε

e−x√
x

dx ≤
∫ 1

ε

1√
x

dx = 2
√
x
∣∣∣1
ε
= 2

(
1−
√
ε
)
−−−−→
ε→0+

2 .

So the integral is convergent.

Example 2.7. Consider ∫ ∞
0

dx√
x
.

This integral is a hybrid of the two kinds. We write it as∫ 1

0

dx√
x

+

∫ ∞
1

dx√
x
.

The first integral is improper but convergent. The second is also improper. Let
b > 1. Then ∫ b

1

dx√
x

= 2
√
x
∣∣∣b
1
= 2

(√
b− 1

)
−−−→
b→∞

∞ .

We conclude that the integral is divergent.
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3. Taylor series

Let f be a “nice” function in the neighbourhood of x = a. The following state-
ment is trivially true:

f is a primitive of f ′ .

We can write this in the form

(3.1) f(x) = f(a) +

∫ x

a

f ′(t) dt .

Consider the integral on the right. Set

u(t) = f ′(t) and v(t) = t− x .
Then

f(x) = f(a) +

∫ x

a

u(t)v′(t) dt = f(a) + u(t)v(t)
∣∣∣x
a
−
∫ x

a

v(t)u′(t) dt

= f(a) + (t− x)f ′(t)
∣∣∣x
a
−
∫ x

a

(t− x)f ′′(t) dt .

That is:

(3.2) f(x) = f(a) + (x− a)f ′(a)−
∫ x

a

(t− x)f ′′(t) dt .

We repeat this with the new integral on the right, i.e. we set

u(t) = f ′′(t) and v(t) =
1

2
(t− x)2 .

Then

f(x) = f(a) + (x− a)f ′(a)−
∫ x

a

u(t)v′(t) dt

= f(a) + (x− a)f ′(a)− u(t)v(t)
∣∣∣x
a
+

∫ x

a

v(t)u′(t) dt

= f(a) + (x− a)f ′(a)− 1

2
(t− x)2f ′′(t)

∣∣∣x
a
+

∫ x

a

1

2
(t− x)2f ′′′(t) dt .

Hence

(3.3) f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) +

∫ x

a

1

2
(t− x)2f ′′′(t) dt .

Continuing in this way, we find

(3.4) f(x) = Tn(x) +Rn(x)

where

(3.5) Tn(x) = f(a) + (x− a)f ′(a) + · · ·+ 1

n!
(x− a)nf (n)(a)

and

(3.6) Rn(x) =

∫ x

a

1

n!
(x− t)nf (n+1)(t) dt .

Some terminology:

• a is called the point of expansion.
• Tn is called the Taylor polynomial (of degree ≤ n) of f when a is the point

of expansion.
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• Rn is called the remainder.

Example 3.1. Let f(x) = ex and a = 0. Then, for every j ∈ N,

f (j)(x) = ex .

So

Tn(x) =

n∑
j=0

1

j!
xj

and

Rn(x) =

∫ x

0

1

n!
(x− t)n et dt .

One possible use of Equation (3.4) is the following: for x close to a, one expects
the remainder Rn(x) to be small. Hence the (possibly complicated) function f
should be well approximated by the (simple) polynomial Tn in the neighbourhood
of the point of expansion.

More daring is the following idea: let x be fixed. If the remainder Rn(x) vanishes
in the limit as n→∞, then

(3.7) f(x) = lim
n→∞

Tn(x) =

∞∑
j=0

1

j!
(x− a)jf (j)(a) .

The series on the right is called the Taylor series of f when a is the point of
expansion. Note that existence of the series is only guaranteed if f has derivatives
of every order at a.

Example 3.2. Let f(x) = ex and a = 0. For simplicity, suppose that x > 0. Then

|Rn(x)| =
∣∣∣∣∫ x

0

1

n!
(x− t)n et dt

∣∣∣∣ ≤ ∫ x

0

1

n!
|x− t|n et dt

≤
∫ x

0

1

n!
xn ex dt =

xn+1

n!
ex −−−−→

n→∞
0 .

We deduce that

ex =

∞∑
j=0

xj

j!
.

From Euler’s formula

eiθ = cos θ + i sin θ

we deduce

cosx =

∞∑
j=0

(−1)j
x2j

(2j)!
and sinx =

∞∑
j=1

(−1)j−1
x2j−1

(2j − 1)!

Example 3.3. Let f(x) = 1/(1 + x2) and a = 0. Then

f ′(x) =
−2x

(1 + x2)2
, f ′′(x) =

−2

(1 + x2)2
+

(2x)2

(1 + x2)3

and so on. We have

T2n(x) =

n∑
j=0

(−1)jx2j .
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The series
∞∑
j=0

(−1)jx2j

converges to f(x) for |x| < 1 but diverges for |x| > 1.
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