
MATH11007 SHEET 1: BEFORE CALCULUS

Set on Friday, October 12: Questions 3, 5 and 7.

1. The real line; intervals and inequalities (see [1], Chapter 1)

(1) Solve the following inequalities:

(a) − 3 < 4− x < 8 ; (b)
3x− 1

x
< 4 ; (c)

x

x+ 5
< 1 ;

(d)
2x− 1

3x+ 2
> 3 ; (e)

∣∣∣∣3x− 1

x

∣∣∣∣ > 4 ; (f)

∣∣∣∣ x

x+ 5

∣∣∣∣ ≤ 2 .

(2) Solve the following:

(a) |3x− 4| = 3 ; (b) |x+ 5| = 2 ; (c) |2x− 3| = |3x− 2| ;
(d) |x+ 2| = |x+ 3| ; (e) |x+ 2| = 4x− 1 ; (f) |x− 1| < |3x+ 1| ;

(g) |3x+ 4| < |2x− 1| .

2. Polynomials and roots (see [1], Chapter 6)

(3) Solve the following:

(a) |x2 − 2| < 1 ; (b) |x2 − 2| < 3 .

(4) Let p and q be two polynomials given respectively by

p(x) = x3 − x2 + x− 1 and q(x) = x4 + x2 + 3 .

Write down the following polynomials:

(a) p+ q ; (b) p− q ; (c) pq .

What is the maximal domain of the function y = p(x)/q(x)?

(5) Which of the following are correct definitions of functions? Draw the graphs
of those that are.

(a) f(x) =

{
(x− 1)2 for x ≤ 0

1− x2 for x ≥ 0
; (b) f(x) =

{
x2 for x ≤ 0

1− x2 for x ≥ 0
;

(c) f(x) =
x

1− x2
for x ≥ 0 ; (d) f(x) =

x

1− x2
for x > 1 .
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(6) After Euler (1749); see [2], p.14. Given B, C and D, solve the equation

f(x) := x4 +Bx2 + Cx+D = 0

Help: Show that

f(x) = (x2 + ux+ α)(x2 − ux+ β)

for some numbers u, α and β.

3. Trigonemetric functions (see [1], Chapter 16)

(7) Evaluate the following “by hand”:

(a) tan(7π/4) ; (b) sec2(π/5)− tan2(π/5) ; (c) csc(19π/6) ;

(d) cos2(π/8)− sin2(π/8) .

(8) For n ∈ N, define

Tn(x) := cos (n arccosx) .

(a) Show that T0 and T1 are polynomials of degree 0 and 1 respectively.
(b) Show that

Tn+1(x) + Tn−1(x) = 2xTn(x) .

Deduce that Tn is a polynomial of degree n. These polynomials are
called the Chebyshev polynomials.

(c) Find the roots of Tn.

(9) After al-Kāshi (1429); see [2], p.47. By using regular polygons and the
half-angle formula, it is possible to obtain expressions for the sine of the
angles π/5, π/3 and π/60 in terms of square roots. Let x = sin(π/180).
Show that

−4x3 + 3x = sin(π/60) .

(10) You are given that

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

for every θ. Let θ =
√
x := π/6. Then

√
3

2
− 1 = − x

2!
+
x2

4!
− x3

6!
+ · · · .

By truncating the series on the right after one, two and three terms, find
approximations of π.
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