
MATH11007 SHEET 6: MORE INTEGRATION

Set on Monday, November 16: Qs 1, 3 and 8.

(1) Compute the following integrals.

(a)

∫ ln 3

0

cosh(2u) du ; (b)

∫ 1

0

dx

9− x2
; (c)

∫
s
√

2− sds ;

(d)

∫
x2e2x dx ; (e)

∫ 1

0

ξ sinh ξ dξ ; (f)

∫
cos3 θ sin2 θ dθ ;

(g)

∫ π
2

0

cosϕ

1 + sin2 ϕ
dϕ ; (h)

∫ −2
−6

dy

y2 + 8y + 20
; (i)

∫ 1

0

dp

2− 3
√
p

;

(j)

∫
dx

x(x2 + 1)
; (k)

∫
dx

x(x2 − 1)
; (l)

∫
dx

x(x+ 1)2
.

(2) Let

an =

∫ π
2

0

cosn θ dθ , n ∈ N .

(a) Compute a0 and a1.
(b) Use integration by parts to express an+2 in terms of an.
(c) Deduce a formula for an when n is even, and another formula when n

is odd.

(3) Explain why the following integrals are improper and, in each case, deter-
mine whether the integral is convergent or divergent.

(a)

∫ ∞
0

dx

1 + x2
; (b)

∫ ∞
1

x

1 + x2
dx ; (c)

∫ π
2

0

secx dx ;

(d)

∫ 2

0

dx

x
3
2

; (e)

∫ ∞
0

dx√
x(1 + x)

; (f)

∫ ∞
0

sin2 x

1 + x2
dx .

(4) Let

an =

∫ ∞
0

xn e−x dx , n ∈ N .

(a) Show that

an+1 = (n+ 1)an .

(b) Deduce that

an = n! .
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(5) Let a, b > 0. By differentiating with respect to a, compute∫ ∞
0

e−bx − e−ax

x
dx .

(6) For each of the following functions, find the Taylor polynomial T3 when
x = 0 is the point of expansion.

(a) sin(2x) ; (b) ln(1− x) ; (c) e−x/2 .

(7) Find the Taylor polynomial Tn of f when x = a is the point of expansion
and
(a)

f(x) = ex sinx , a = 0 , n = 3

(b)

f(x) =
1
3
√
x
, a = 8 , n = 2

(c)

f(x) = sinx , a =
π

6
, n = 3

(8) (a) Let n ∈ N and, for k = 0, 1, . . . , n, set

ak =

∫ 1

0

xn (lnx)
k

dx .

Show that

ak =
(−1)kk!

(n+ 1)k+1
.

(b) Following Johann Bernoulli (1697), prove that∫ 1

0

xx dx = 1− 1

22
+

1

33
− 1

44
+ · · · .

Help: Write xx = ex ln x and use Taylor’s series for the exponential
function.

(9) Find the Taylor series of

F (x) =

∫ x

0

f(t) dt

where f(t) is

(a)
1√

1 + t3
; (b)

1

1 + t3
; (c) ln cos t .

and the point of expansion is 0. Can you find a simple expression for F?
Try Maple.


