
MATH11007 SOLUTION 1: BEFORE CALCULUS

(1) x ∈
(a) (−4, 7).
(b) (−∞,−1) ∪ (0,∞).
(c) (−5,∞).
(d) (−1,−2/3).
(e) (−1, 0) ∪ (0, 1/7).
(f) (−∞,−10] ∪ [−10/3,∞).

(2) x ∈
(a) {1/3, 7/3}.
(b) {−7,−3}.
(c) {−1, 1}.
(d) {−5/2}.
(e) {1}.
(f) (−∞,−1) ∪ (0,∞).
(g) (−5,−3/5).

(3) x ∈
(a) (−

√
3,−1) ∪ (1,

√
3)

(b) (−
√

5,
√

5)

(4) The maximal domain of p/q is R.
(a) (p+ q)(x) = x4 + x3 + x+ 2
(b) (p− q)(x) = −x4 + x3 − 2x2 + x− 4
(c) pq(x) = x7 − x6 + 2x5 − 2x4 + 4x3 − 4x2 + 3x− 3

(5) • OK. Use the commands
> f := x -> piecewise(x<0,(x-1)^2,x>=0,1-x^2);

> plot(f(x),x);

• No good; ambiguity at x = 0.
• No good; undefined at x = 1.
• OK. Use the commands
> f := x -> x/(x^2-1);

> plot(f(x),x=1..infinity);

(6) The hint yields the following equations for u, α and β:

α+ β − u2 = B , u(β − α) = C and αβ = D .

The first and second equations can be written as

β + α = B + u2 and β − α =
C

u
.
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So we can express α and β in terms of u:

2α = B + u2 − C

u
and 2β = B + u2 +

C

u
.

Then, multiplying these two equations and using αβ = D, we find that u2

solves the cubic equation

z3 + 2Bz2 + (B2 − 4D)z − C2 = 0 .

So we have reduced the solution of the original quartic equation to that of
a cubic equation (for which we have a “handy” formula).

(7)

(a) − 1 ; (b) 1 ; (c) − 2 ; (d) 1/
√

2 .

(8) We set θ = arccosx.
(a) T0(x) = cos(0 · θ) = 1 and T1(x) = cos(1 · θ) = x.
(b) We have

Tn+1(x) + Tn−1(x) = cos([n+ 1]θ) + cos([n− 1]θ)

= cos(nθ) cos(θ)− sin(nθ) sin θ + cos(nθ) cos(θ) + sin(nθ) sin θ

= 2 cos(nθ) cos θ = 2Tn(x)x .

By (a), for n = 0 and n = 1, Tn is a polynomial of degree n. Make the
induction hypothesis. Then, by (b),

Tn+1(x) = 2xTn(x)− Tn−1(x)

and so Tn+1 is a polynomial of degree n+ 1.
(c) The roots are{

cos
(

[2k − 1]
π

2n

)
: k = 1 , . . . , n

}
.

(9) Let θ = π/180 and x = sin θ. Then

sin(π/60) = sin(3θ) = sin θ cos(2θ) + sin(2θ) cos θ

= sin θ
{

cos2 θ − sin2 θ + 2 cos2 θ
}

= sin θ
{

3 cos2 θ − sin2 θ
}

= sin θ
{

3− 4 sin2 θ
}

= 3x− 4x3 .

(10) Truncating after one term, we obtain

x = 2−
√

3 . Hence π ≈ 6

√
2−
√

3 = 3.1058 . . . .

After two terms:

x2 − 12x+ 24− 12
√

3 = 0 . Hence π ≈ 3.14193 . . . .

After three terms:

x3 − 30x2 + 360x+ 360
√

3− 720 = 0 . Hence π ≈ 3.1415909 . . . .


