
MATH11007 SOLUTION 2: LIMITS

(1)

(a) − 3 ; (b) 2 ; (c)
1

8
; (d) 0 ; (e)

1

4
; (f) 0 ;

(g)
x2 + 5x+ 4

x2 + 4x+ 3
=

(x+ 4)(x+ 1)

(x+ 3)(x+ 1)
=

x+ 4

x+ 3
−−−−→
x→−1

3

2
;

(h)
1

6
; (i) 0 ; (j) ∞ ; (k) 4x3 ;

(l)
x− 2√

x2 + 5− 3
=

x− 2√
x2 + 5− 3

√
x2 + 5 + 3√
x2 + 5 + 3

=
x− 2

x2 − 4

(√
x2 + 5 + 3

)
=

√
x2 + 5 + 3

x+ 2
−−−→
x→2

3

2
.

(2)

(a) − 8

3
; (b) − ∞ ; (c) 15 ; (d) ∞ ; (e) ∞ ; (f) ∞ .

(3) (a) √
x+ 3

2x− 5
=

√
x
√

1 + 3/x

x(2− 5/x)
=

1√
x

1 + 3/x

2− 5/x
.

So

lim
x→∞

√
x+ 3

2x− 5
=

(
lim
x→∞

1√
x

)(
lim
x→∞

1 + 3/x

2− 5/x

)
(

lim
x→∞

1√
x

)
limx→∞(1 + 3/x)

limx→∞(2− 5/x)
= 0 · 1

2
= 0 .

(b) For x > 0,

2
√
x2 + 6

6 + x
=

2x
√
1 + 2/x2

x(1 + 6/x)
= 2

√
1 + 2/x2

1 + 6/x
−−−−→
x→∞

2 .

(c) 0.
(d)

ex − e−x

ex + e−x
=

ex

ex
1− e−2x

1 + e−2x
=

1− e−2x

1 + e−2x
−−−−→
x→∞

1− 0

1 + 0
= 1 .

(e)

ex − e−x

ex + e−x
=

e−x

e−x
e2x − 1

e2x + 1
=

e2x − 1

e2x + 1
−−−−−→
x→−∞

0− 1

0 + 1
= −1 .
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(f) No limit.
(g) The limit is 0: ∣∣∣cosx

x

∣∣∣ ≤ 1

|x|
−−−−→
x→∞

0 .

(h) No limit.
(i) The limit is 0: For x > 0,∣∣∣∣ sinx√x

∣∣∣∣ ≤ 1√
x
−−−−→
x→∞

0 .

(j)

lim
x→0

sinx√
x

= lim
x→0

(√
x
sinx

x

)
=
(
lim
x→0

√
x
)(

lim
x→0

sinx

x

)
= 0 · 1 = 0 .

(4) (a)
e2+h − e2

h
= e2

eh − 1

h
−−−→
h→0

e2 · 1 .

(b)

cos(a+ h)− cos a

h
=

cos a cosh− sin a sinh− cos a

h

= cos a
cosh− 1

h
− sin a

sinh

h
= cos a

cos2 h− 1

h(cosh+ 1)
− sin a

sinh

h

=
sinh

h

[
−cos a sinh

cosh+ 1
− sin a

]
−−−→
h→0

1 ·
[
−cos a · 0

1 + 1
− sin a

]
= − sin a .

(c)

sin(a+ h)− sin a

h
=

sin a cosh+ sinh cos a− sin a

h
= sin a

cosh− 1

h
+

sinh

h
cos a

= − sin a
sinh

h

sinh

cosh+ 1
+

sinh

h
cos a −−−→

h→0
− sin a · 1 · 0

1 + 1
+ 1 · cos a = cos a .

(d)
√
1 + h− 1

h
=

√
1 + h− 1

h

√
1 + h+ 1√
1 + h+ 1

=
1 + h− 1

h

1√
1 + h+ 1

−−−→
h→0

1· 1

1 + 1
=

1

2
.

(e) For h small enough

|1 + h| − |1|
h

=
(1 + h)− 1

h
= 1 −−−→

h→0
1 .

(f) For h small enough

| − 1 + h| − | − 1|
h

=
−(−1 + h)− (−(−1))

h
= −1 −−−→

h→0
−1 .

(g)

1

h

[
sin(a+ h)

cos(a+ h)
− sin a

cos a

]
=

sin(a+ h) cos a− sin a cos(a+ h)

h cos(a+ h) cos a

=
sin(a+ h− a)

h cos(a+ h) cos a
=

sinh

h

1

cos(a+ h) cos a
−−−→
h→0

1 · 1

cos a · cos a
= sec2 a .
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(h)

sin2(a+ h)− sin2 a

h
=

sin(a+ h)− sin a

h
[sin(a+ h) + sin a]

−−−→
h→0

cos a · [sin a+ sin a] = 2 sin a cos a .

(5) (a) Use the Maple commands
> f := x -> piecewise(x<0,x+1,x>=0,x);

> plot(f(x),x=-2..2);

(b)
lim

x→0−
f(x) = 1 and lim

x→0+
f(x) = 0 .

(c) No; it is disconuous at x = 0.


