

MATH11007 SOLUTION 4: APPLICATIONS OF THE DERIVATIVE

(1) (a) The equation of the parabola is

$$y = h \left(\frac{2x}{L} \right)^2.$$

Then $y' = 8hx/L^2 = 4h/L$ at $x = L/2$. Hence the chain meets the tower at an angle $\pi/2 - \theta$, where $\tan \theta = 4h/L$. This gives an angle of 68° .

(b) We only give a brief outline. Set

$$f(a) = h - a \cosh \frac{L}{2a} + a.$$

Then Newton's method consists of the recurrence

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}.$$

This leads to $a \approx 272$. The resulting catenary is very near to the parabola used earlier, and the angle obtained is, after rounding to the nearest degree, 68° , just as before.

(2) The derivatives are $3x^2$ and $4x$ respectively, so the slopes are the same at $(0, 2)$. The slopes at $(2, 10)$ are $m_1 = 12$ and $m_2 = 8$ respectively. We then use the formula

$$\tan \phi = \frac{m_1 - m_2}{1 + m_1 m_2}.$$

(3) The curves meet when $x^2 = 9$ and $y^2 = 1$. The slope of the ellipse at (x, y) is $m_1 = -4x/(9y)$, and that of the hyperbola is $m_2 = x/(4y)$. Then

$$m_1 m_2 = -\frac{x^2}{9y^2}$$

and this equals -1 at the points of intersection.

(4)

$$y' = 2 \sum_{i=1}^n (x - a_i).$$

This vanishes when

$$nx = \sum_{i=1}^n a_i.$$

Since $y'' = 2n > 0$, this value of x minimises y .

(5) The equation of the tangent line is $y = y_0 - 2x_0(x - x_0)$. It crosses the horizontal axis at

$$x = b := x_0 + \frac{y_0}{2x_0} = x_0 + \frac{a^2 - x_0^2}{2x_0}$$

and the vertical axis at

$$y = h := y_0 + 2x_0^2 = a^2 + x_0^2.$$

The area of the triangle is then $bh/2$. Differentiating with respect to x_0 and equating to 0, we obtain that the area is minimised when $x_0 = a/\sqrt{3}$.

(6)

(a) n^n ; (b) 1 ; (c) $(n-1)\ln 2$; (d) $\begin{cases} -1 & \text{if } n=1 \\ 0 & \text{otherwise} \end{cases}$;
 (e) 5 ; (f) 0 .

(7) The data needed to sketch the curves is presented in the following tabular form:

	$x = 0$	odd/even	$\lim_{x \rightarrow -\infty}$	$\lim_{x \rightarrow \infty}$	min	max	infl	asympt
(a)	1	even	∞	∞	± 1	0	—	—
(b)	0	odd	0	0	-1	1	—	—
(c)	5	—	∞	∞	2	—	0	—
(d)	0	odd	0	0	—	—	—	$y = \pm 1$
(e)	—	odd	$-\infty$	∞	2	-2	—	$y = 0$
(f)	<code>implicitplot(y*y+x*(x-2)=0,x=0..2,y=-1..1);</code>							
(g)	<code>implicitplot(y*y=x*x*x,x=0..2,y=-1..1);</code>							
(h)	<code>implicitplot(y*y*y=x*x*x,x=-1..1,y=0..2);</code>							
(i)	—	—	$-\infty$	∞	—	—	—	$y = \pm 1$
(j)	$\sin 6$	even	0	0	$\pm \sqrt{\frac{4}{\pi} - 1}$	$0, \pm \sqrt{\frac{12}{\pi} - 1}$	—	—
(k)	<code>plot(sqrt(1-x)+sqrt(x+2),x=-2..1);</code>							
(l)	<code>implicitplot(abs(y)^a + abs(x)^a=1,x=-1..1,y=-1..1);</code>							

Here, “min” means “local minimum” etc. Note that, before you can use the Maple command `implicitplot`, you must issue the command

`> with(plots);`

(8) (a) Set $f(x) = x^p - a$. Then

$$x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)} = -\frac{x_n^p - a}{p x_n^{p-1}}.$$

(b) Set $f(x) = e^x - p$. Then

$$x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)} = -\frac{e^{x_n} - p}{e^{x_n}}.$$

(9) If f is even, then, for every $x \in \mathbb{R}$, $f(-x) = f(x)$. Differentiate both sides with respect to x . Using the chain rule for the left-hand side, we obtain

$$-f'(-x) = f'(x)$$

and so f' is odd. Using similar arguments, it is straightforward to show also that the derivative of an odd function is even.

(10) The perimeter is $x + 1 - \lambda x + 2y$. Using $xy = 1$, we deduce that the function to minimise is

$$p(x) = x + 1 - \lambda x + 2/x.$$

Differentiating and equating to zero, we find

$$x = \sqrt{\frac{2}{1 - \lambda}} \quad \text{and} \quad y = \sqrt{\frac{1 - \lambda}{2}}.$$