MATH11007 SOLUTION 4: APPLICATIONS OF THE
DERIVATIVE

(1) (a) The equation of the parabola is

2
2z
—n() .

v=(%)
Then y' = 8hx/L? = 4h/L at x = L/2. Hence the chain meets the
tower at an angle w/2 — 6, where tan = 4h/L. This gives an angle of

68°.
(b) We only give a brief outline. Set

L
=h— h — )
f(a) acos 2a—|—a

Then Newton’s method consists of the recurrence

Up41 = Ap — f(an) .
f'(an)
This leads to a ~ 272. The resulting catenary is very near to the
parabola used earlier, and the angle obtained is, after rounding to the
nearest degree, 68°, just as before.

(2) The derivatives are 322 and 4z respectively, so the slopes are the same at
(0,2). The slopes at (2,10) are m; = 12 and mg = 8 respectively. We then
use the formula

tan ¢ = —2 — M2

1+mime

(3) The curves meet when 22 = 9 and y? = 1. The slope of the ellipse at (z,y)
is my = —4x/(9y), and that of the hyperbola is mgo = x/(4y). Then

x

92

and this equals —1 at the points of intersection.

(4)

mimg = —

This vanishes when
n
nr = g a; .
i=1

Since 3" = 2n > 0, this value of z minimises y.
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(5) The equation of the tangent line is y = yo — 2z9(x — xo). It crosses the
horizontal axis at

2 _ .2
a® — xg

Yo
=b:= 4+ =— = +
. 0T gy 10 220

and the vertical axis at
y:h:=y0+2m3:a2+$g.

The area of the triangle is then bh/2. Differentiating with respect to g
and equating to 0, we obtain that the area is minimised when zo = a/v/3.

(6)

-1 ifn=1

0 otherwise

(@) n"5 (b) 15 (¢) (n=1)In2; (d) {

(7) The data needed to sketch the curves is presented in the following tabular

form:

‘ x=0 ‘ odd/even IEIPOO IILH;O ‘ min ‘ max ‘ infl ‘ asympt
(a) 1 even 00 00 +1 0 - -
(b) 0 odd 0 0 -1 1 - -
(c) 5 - 00 00 2 - 0 -
(d) 0 odd 0 0 - - - |y==1
(e) odd —00 00 2 -2 - | y=
(f) | implicitplot (y*y+x*(x-2)=0,%=0..2,y=-1..1);
(g) | implicitplot (y*y=x*x*x,x=0..2,y=-1..1);
(h) | implicitplot (y*y*y=x*x,x=-1..1,y=0..2);
(i) - - —00 00 - - - |y=4=1
(j) | sin6 even 0 0 |+/2-1]o0x/2-1]| — -
(k) | plot(sqrt(1-x)+sqrt (x+2),x=-2..1);
(1) | implicitplot(abs(y)“a +abs(x) a=1,x=-1..1,y=-1..1);

Here, “min” means “local minimum” etc. Note that, before you can use
the Maple command implicitplot, you must issue the command

> with(plots);

(8) (a) Set f(z) =aP —a. Then

o f@) _ ah-a
T @) T pah

(b) Set f(z) =e” —p. Then
(2) _ o —p

Tn41 — Tn = 7f/(xn) eTn



9)

(10)
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If f is even, then, for every x € R, f(—z) = f(z). Differentiate both sides
with respect to z. Using the chain rule for the left-hand side, we obtain

—f'(—x) = f'(=)
and so f’ is odd. Using similar arguments, it is straightforward to show
also that the derivative of an odd function is even.

The perimeter is x+1— Ax+2y. Using xy = 1, we deduce that the function
to minimise is
plz)=x4+1-Xx+2/x.
Differentiating and equating to zero, we find
2 1—A

Tr = m and Yy = T



