
MATH11007 SOLUTION 4: APPLICATIONS OF THE

DERIVATIVE

(1) (a) The equation of the parabola is

y = h

(
2x

L

)2

.

Then y′ = 8hx/L2 = 4h/L at x = L/2. Hence the chain meets the
tower at an angle π/2− θ, where tan θ = 4h/L. This gives an angle of
68◦.

(b) We only give a brief outline. Set

f(a) = h− a cosh
L

2a
+ a .

Then Newton’s method consists of the recurrence

an+1 = an −
f(an)

f ′(an)
.

This leads to a ≈ 272. The resulting catenary is very near to the
parabola used earlier, and the angle obtained is, after rounding to the
nearest degree, 68◦, just as before.

(2) The derivatives are 3x2 and 4x respectively, so the slopes are the same at
(0, 2). The slopes at (2, 10) are m1 = 12 and m2 = 8 respectively. We then
use the formula

tanφ =
m1 −m2

1 +m1m2
.

(3) The curves meet when x2 = 9 and y2 = 1. The slope of the ellipse at (x, y)
is m1 = −4x/(9y), and that of the hyperbola is m2 = x/(4y). Then

m1m2 = − x2

9y2

and this equals −1 at the points of intersection.

(4)

y′ = 2

n∑
i=1

(x− ai) .

This vanishes when

nx =

n∑
i=1

ai .

Since y′′ = 2n > 0, this value of x minimises y.
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(5) The equation of the tangent line is y = y0 − 2x0(x − x0). It crosses the
horizontal axis at

x = b := x0 +
y0

2x0
= x0 +

a2 − x20
2x0

and the vertical axis at

y = h := y0 + 2x20 = a2 + x20 .

The area of the triangle is then bh/2. Differentiating with respect to x0
and equating to 0, we obtain that the area is minimised when x0 = a/

√
3.

(6)

(a) nn ; (b) 1 ; (c) (n− 1) ln 2 ; (d)

{
−1 if n = 1

0 otherwise
;

(e) 5 ; (f) 0 .

(7) The data needed to sketch the curves is presented in the following tabular
form:

x = 0 odd/even lim
x→−∞

lim
x→∞

min max infl asympt

(a) 1 even ∞ ∞ ±1 0 – –
(b) 0 odd 0 0 −1 1 – –
(c) 5 – ∞ ∞ 2 – 0 –
(d) 0 odd 0 0 – – – y = ±1
(e) – odd −∞ ∞ 2 −2 – y = 0
(f) implicitplot(y*y+x*(x-2)=0,x=0..2,y=-1..1);

(g) implicitplot(y*y=x*x*x,x=0..2,y=-1..1);

(h) implicitplot(y*y*y=x*x,x=-1..1,y=0..2);

(i) – – −∞ ∞ – – – y = ±1
(j) sin 6 even 0 0 ±

√
4
π

− 1 0, ±
√

12
π

− 1 – –
(k) plot(sqrt(1-x)+sqrt(x+2),x=-2..1);

(l) implicitplot(abs(y)ˆa +abs(x)ˆa=1,x=-1..1,y=-1..1);

Here, “min” means “local minimum” etc. Note that, before you can use
the Maple command implicitplot, you must issue the command

> with(plots);

(8) (a) Set f(x) = xp − a. Then

xn+1 − xn = − f(xn)

f ′(xn)
= −x

p
n − a
p xp−1n

.

(b) Set f(x) = ex − p. Then

xn+1 − xn = − f(xn)

f ′(xn)
= −exn − p

exn
.
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(9) If f is even, then, for every x ∈ R, f(−x) = f(x). Differentiate both sides
with respect to x. Using the chain rule for the left-hand side, we obtain

−f ′(−x) = f ′(x)

and so f ′ is odd. Using similar arguments, it is straightforward to show
also that the derivative of an odd function is even.

(10) The perimeter is x+1−λx+2y. Using xy = 1, we deduce that the function
to minimise is

p(x) = x+ 1− λx+ 2/x .

Differentiating and equating to zero, we find

x =

√
2

1− λ
and y =

√
1− λ

2
.


