
LECTURE 9: FAREWELL TO PYTHON... WELCOME TO
MAPLE!

1. A review of PYTHON’s features

During the past few weeks, we have explored the following aspects of PYTHON:
• Built-in types: integer, long integer, float, complex, boolean, list, se-

quence, string etc.
• Operations on built-in types: +,−, ∗, abs, len, append, etc.
• Loops:
N = 1000
i = 1
q = []
while i <= N

q.append(i*i)
i += 1

• Conditional statements:
if x < y:

min = x
else:

min = y

• Functions:
def fac(n):

if n==0 then:
return 1

else:
return n*fac(n-1)

• Modules: math, etc.
• Classes: Rational, Vector, Polynomial, etc.

With these features, PYTHON is a powerful tool for doing mathematics on a
computer. In particular, the use of modules makes it straightforward to add greater
functionality, e.g. NumPy (numerical algorithms).

2. What about MAPLE?

MAPLE is really designed to be an interactive tool. Nevertheless, it can also be
used as a programming language. It has some of the basic facilities available in
PYTHON: Loops; conditional statements; functions (in the form of “procedures”);
good graphics and some very useful additional modules called “packages”:

• Built-in types: long integer, float (arbitrary precision), complex, rational,
boolean, array, sequence, string etc.

• Operations on built-in types: +,−, ∗, mathematical functions, etc.
• Loops:

1

2 LECTURE 9: FAREWELL TO PYTHON... WELCOME TO MAPLE!

Table 1. Some of the most useful MAPLE packages

Name Description Example
DEtools Differential equations exactsol(ode,y)
LinearAlgebra Linear Algebra GaussianElimination(A)
plots Graphics package polygonplot(p,axes=none)
Statistics Statistics package X := RandomVariable(Uniform[a,b])

N := 1000 :
q := array(1..N) :
for i from 1 to N do

q[i] := i*i :
od :

• Conditional statements:
if x < y then

min := x
else

min := y
fi:

• Functions:
fac := proc(n)

if n=0 then
return 1

else
return n*fac(n-1)

fi :
end proc :

• Packages: See Table 1.
• Classes: None!

The most obvious difference between PYTHON and MAPLE is that the latter
does not support classes. From our point of view, this is not a problem: MAPLE
compensates for the lack of classes by providing so many specialised mathematical
features.

3. An example

To illustrate some of the differences between MAPLE and PYTHON, consider
the problem of deciding whether a given natural number n is a prime. The obvious
method of trial division solves the problem as follows: for every natural number
2 ≤ m ≤

√
n, test whether m is a factor. If a factor is found, then n is composite.

Otherwise, it is prime.
The PYTHON version looks like this:

def isPrime(n):
M = int(n**0.5)
prime = True
m=2
while (prime and m <= M):

LECTURE 9: FAREWELL TO PYTHON... WELCOME TO MAPLE! 3

prime = n%m <> 0
m += 1

return prime

The swiss mathematician L. Euler noticed that the natural number

pn = n2 + n + 41

is prime for every n < 40. We can use this to test our function...
The corresponding MAPLE program would look like this:

isPrime := proc(n)
local m,M,prime :
M := floor(sqrt(n)) :
prime := true :
for m from 2 while (prime and m <= M) do

prime := irem(n,m) <> 0 :
od :
return evalb(prime)
end proc :

The most obvious syntactical differences are

In MAPLE, the assignment operator is :=

In MAPLE, every statement must end either with ; or :

