Lecture 11: Basic Maple Programming

1. The numerical solution of equations

Let \(f : [a, b] \rightarrow \mathbb{R} \) be a given function. We consider the problem of finding a solution \(x \in [a, b] \) of the equation

\[
\text{(E)} \quad f(x) = 0.
\]

We shall assume that \(f \) is continuous and that

\[
\text{(C)} \quad f(a)f(b) < 0.
\]

This last condition implies that \(f \) takes both positive and negative values in \([a, b] \). By continuity, \(f \) must also vanish somewhere in the interval (cf. the Intermediate Value Theorem in Analysis). Hence Equation (E) has a solution.

The bisection method for computing a solution defines two sequences \(\{a_n\}_N \) and \(\{b_n\}_N \) by recurrence as follows: start with

\[
a_0 = a \quad \text{and} \quad b_0 = b.
\]

Then, by our earlier assumption,

\[
f(a_0)f(b_0) < 0.
\]

Now let \(n \in \mathbb{N} \) and suppose that

\[
f(a_n)f(b_n) < 0.
\]

This means that \(f(a_n) \) and \(f(b_n) \) have opposite signs. Define

\[
\overline{x} = \frac{a_n + b_n}{2}.
\]

Then there are three possibilities: either

\[
(1.1) \quad f(\overline{x}) = 0
\]

or

\[
(1.2) \quad f(a_n)f(\overline{x}) > 0
\]

or

\[
(1.3) \quad f(a_n)f(\overline{x}) < 0.
\]

In the first case, \(\overline{x} \) is a solution of Equation (E) and the calculation terminates.

In the second case, \(f(\overline{x}) \) has the same sign as \(f(a_n) \), and so we set

\[
a_{n+1} := \overline{x} \quad \text{and} \quad b_{n+1} := b_n.
\]

In the third and final case, \(f(\overline{x}) \) and \(f(a_n) \) have opposite signs, and so we set

\[
a_{n+1} := a_n \quad \text{and} \quad b_{n+1} := \overline{x}.
\]

With \(a_{n+1} \) and \(b_{n+1} \) defined in this way, a moment’s reflection shows that

\[
f(a_{n+1})f(b_{n+1}) < 0.
\]
Hence there is a solution of Equation (E) between \(a_{n+1}\) and \(b_{n+1}\) and

\[
|a_{n+1} - b_{n+1}| = \frac{1}{2} |a_n - b_n|.
\]

In other words, the length of the interval where we know that there is a solution has been reduced by half. Unless the calculation terminates because we have found a solution, we obtain at the \(n\)th iteration, that a solution exists between \(a_n\) and \(b_n\), where

\[
|a_n - b_n| = 2^{-n}(b - a).
\]

One could say that the bisection method finds an additional digit in the binary expansion of the solution with each new iteration.

Example 1.1. We use the bisection method to compute \(\sqrt{2}\). Let \(f: [1, 2] \rightarrow \mathbb{R}\) be defined by

\[
f(x) = x^2 - 2.
\]

The first few iterates, in decimal form, are shown in Table 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
<th>(b_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.375</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>1.375</td>
<td>1.4375</td>
</tr>
<tr>
<td>5</td>
<td>1.40625</td>
<td>1.4375</td>
</tr>
</tbody>
</table>

Table 1. The \(a_n\) and the \(b_n\) found by the bisection method for Example 1.1.

2. **MAPLE Functions and Procedures**

The bisection method is conceptually simple, yet its implementation gives rise to a number of practical issues:

- **if-then-else** statements are necessary.
- A loop is required. How many iterations?
- Exact or floating-point arithmetic?
- How do we arrange so that the implementation works for any (mathematical) function that satisfies Condition (C)?

MAPLE provides various means of implementing the mathematical concept of function. For elementary mathematical functions such as

\[
f(x) = x^2 - 2
\]

the “arrow construction” is simplest:

\[
f := x \rightarrow x^2 - 2:
\]

Then the value of the function at, say, 1 can be obtained by issuing the command

\[
f(1);
\]

The bisection method itself can be implemented as a procedure with the following arguments:

- \(a\), the left endpoint of the initial interval.
- \(b\), the right endpoint of the initial interval.
- \(f\), the function in Equation (E).
- \(N\), the number of iterations to perform.

The procedure modifies \(a\) and \(b\) so that when they are returned \(a = a_N\) and \(b = b_N\).
3. The bisection procedure

\[
\text{bisection} := \text{proc}(a,b,f,N) \ni \text{local } n,x,p,A,B : \\
\text{if } (\text{evalf}(f(a))=0) \text{ then} \\
\quad \text{return } a : \\
\text{elif } (\text{evalf}(f(b))=0) \text{ then} \\
\quad \text{return } b : \\
\text{else} \\
\quad \text{fi} : \\
\text{p} := \text{evalf}(f(a)*f(b)) : \\
\text{if } (p > 0) \text{ then} \\
\quad \text{print ('The sign is the same at both points!') :} \\
\quad \text{return } a,b : \\
\text{else} \\
\quad \text{fi} : \\
\text{A} := a : \\
\text{B} := b : \\
\text{for } n \text{ from 1 to } N \text{ do} \\
\quad x := \text{evalf}(0.5*(A+B)) : \\
\quad p := \text{evalf}(f(x)*f(A)) : \\
\quad \text{if } (p=0) \text{ then} \\
\quad \quad \text{return } x : \\
\quad \text{elif } (p > 0) \text{ then} \\
\quad \quad A := x : \\
\quad \text{else} \\
\quad \quad B := x : \\
\quad \text{fi} : \\
\text{od} : \\
\text{return } A,B : \\
\text{end proc} :
\]