CHAPTER 4

Best approximation

1. Gauss and least squares

Mercury, Venus, Earth, Mars, Jupiter and Saturn were the only planets known
in ancient times. After the invention of the telescope by Galileo in 1609, astronomers
made rapid progress; with improved observational data, Kepler and Newton were
able to formulate their famous laws and thus provided an essentially correct math-
ematical model of the solar system. The German astronomers Titius (1766) and
Bode (1778) remarked an intriguing apparent pattern in the mean distances of the
planets from the sun. Bode’s law relates the distances to a simple number sequence
obtained as follows.

¢ Begin with sequence
0, 3, 6, 12, 24, 48, 96, 192, ...

¢ Add 4 to each number in the sequence and then divide by 10.

It can be seen from Table 4.1 that the resulting sequence is very close to the
distribution of the mean distances of the planets measured in astronomical units.
A seventh planet, Uranus, was discovered in 1781 and, again, its mean distance
agrees well with the mysterious law. Astronomers therefore began to search for a
new planet between the orbits of Mars and Jupiter which would account for the
fifth term in the Titius—Bode sequence.

For many years, Gauss had been pondering on a related problem, namely that
of deducing the orbit of a celestial object from observations of its position “not
embracing a great period of time” and, as is the case in practice, contaminated by
errors. In the preface to his book on planetary motion [5], Gauss writes:

“Some ideas occured to me in the month of September of the year
1801... For just about this time the report of a new planet , discovered
on the first day of January of that year with the telescope at Palermo,
was the subject of universal conversation; and soon afterwards the
observations made by that distinguished astronomer P1AZZ1 from the
above date to the eleventh of February were published. Nowhere in
the annals of astronomy do we meet with so great an opportunity, and

Planet | Mercury Venus Earth Mars Ceres Jupiter Saturn Uranus
Actual 0.39 072 100 152 277 5.20 9.54 19.19
Predicted 04 0.7 1.0 1.6 2.8 5.2 10.0 19.6
TABLE 4.1. Mean distance from the Sun (in astronomical units)
and the prediction from Bode’s law. Ceres and Uranus were found
a few years after the law was formulated.
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a greater one could hardly be imagined, for showing most strikingly
the value of this problem, than in the crisis and urgent necessity,
when all hope of discovering in the heavens this planetary atom,
among innumerable small stars after the lapse of nearly a year, rested
solely upon a sufficiently approximate knowledge of its orbit to be
based upon these very few observations. Could I ever have found
a more seasonable opportunity to test the value of my conceptions,
than now in employing them for the determination of the orbit of
the planet Ceres, which during these forty-one days had described
a geocentric arc of only 3°, and after the lapse of a year must be
looked for in a region of the heavens very remote from that in which
it was last seen? The first application of the method was made in the
month of October, 1801, and the first clear night, when the planet
was sought for! as directed by the numbers deduced from it, restored
the fugitive to observation. Three other new planets, subsequently
discovered, furnished new opportunities for examining and verifying
the efficiency and generality of the method.”

Gauss’ solution proceeded roughly as follows. Firstly, since the path of Ceres must,
by Kepler’s laws, be elliptical, the problem reduces to finding a couple of parameters
in the general equation for an elliptical orbit. For the sake of clarity, let us collect
these unknown parameters into a vector

A= (A1, Az, ooy AR)
and write
R(t,z,\) =0
for the equation of the orbit. Here the variables £ and 2 may be thought of as time
and position respectively. It is assumed that some values

(t17 1,';), (t27 xg)a ey (tN7 1,'7\])

have been obtained by direct observation or measurement. In practice, NV is usually
much larger than k. Set

Rn(\) = R(tn, 25,)), 1<n<N.

R, ()) is called the nth residual. If the data were exact and the orbit model correct,
then there would exist a value of A such that all the residuals vanish, i.e.

V1<n<N, Rn,\)=0.

Unfortunatly, due to errors in measurement, these data are inherently inexact and
so it would be naive to hope that a value for the parameter vector A could be found
that precisely matches it. Instead, one has to be content with parameter values
that minimise, in some sense, the discrepancy between the orbit model (an ellipse)
and the data. Gauss used the quantity

1 N
DAY (4.1)

as a measure of the discrepancy and computed the vector A for which it is smallest.
This is Gauss’ method of least squares.

1By de ZacH, December 7, 1801
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The least squares formulation is particularly simple when the residuals depend
linearly on the parameter \. We shall return to that important special case in §4.
Gauss’ method belongs to a set of techniques that use the important concept of
best approximation.

2. Review of linear algebra
This section recalls some important concepts covered in the Core B syllabus.

DEFINITION 2.1. A real (or complex) vector space V is a set equipped with two
rules, addition and multiplication by a scalar, that satisfy the following axioms:

Addition
Given any two elements z and y of V, the sum of z and y is denoted
z + y. The addition rule has the properties:

e Vz,yeV,z+y=y+zx.

e Vz,y,zeV, (z+y)+z=z+ (y+2).

e 40 € V called the zero vector such that Vz € V, 2 +0 = z.

o Vz €V, Ay € V called the negative of z such that x +y = 0.
Multiplication by a scalar
Given any z € V and XA € R or C, the product of the vector z and the
scalar A is denoted Az. The rule for multiplication by a scalar has
the properties:

e VeV, lz==z.

e VI u€R (or C) and z € V, A(uz) = (A\w)z.

e VApeR(orC) andz €V, (A+ )z = Az + px.

e VAeR (orC) and z,y e V, A(z +y) = Az + \y.

A subspace of a vector space V is a subset that is itself a vector space. In
particular, V and {0} are subspaces of V; we call them the trivial subspaces.

EXAMPLE 2.1. Let d € N. The set R? (or C¢), equipped with the usual opera-
tions of addition and multiplication by a scalar, is a vector space.

e For d =1, there are no nontrivial subspaces.

o For d = 2, the only nonirivial subspaces are, geometrically speaking, straight
lines passing through the origin. For d = 3, they are straight lines passing
through the origin and planes passing through the origin.

EXAMPLE 2.2. The set of all real (or complex) sequences, equipped with the
usual operations of addition and of multiplication by a scalar, is a vector space.
The following are some of the subspaces:

o The set of all bounded sequences.
o The set of all convergent sequences.
o The set of all sequences that converge to 0.

EXAMPLE 2.3. Let A C R. Let V denote the set of all real (or complex) val-
wed functions defined on A. V, equipped with the usual operations of addition of
two functions and multiplication of a function by a scalar, is a vector space. The
following are particular subspaces of V :

o The set of all polynomials defined on A.
o The set of all trigonometric polynomials defined on A.
o The set of all continuous functions defined on A.
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o The set of all differentiable functions defined on A.
o The set of all integrable functions defined on A.

DEFINITION 2.2. Let V' denote a vector space. We say that x € V is a linear
combination of the vectors e, ..., e, € V if there exist scalars z1, ..., Z, such
that

r=2xi€e1+ ...+ Tpey.
Let E C V. We denote by span E the set of all the linear combinations of vectors
in E. We say that the vectors in E are linearly dependent if one vector in F is a
linear combination of other vectors in the set. Otherwise, we say that the vectors
in E are linearly independent. We say that F is a basis for V if

e The vectors in E are linearly independent and

e spanE =V,

The dimension of V is the number of elements in a basis for V.

EXAMPLE 2.4. In spite of the formalism, these concepts are quite practical.

o The dimension of R? is d.

o There is no finite basis for any of the vector spaces in Examples 2.2 and 2.3.
Such spaces are said to be infinite dimensional.

o Let Py denote the space of all polynomials of degree less than N. Any
p € Py can be expressed as

P=po+...+py_12"
where the scalars py, . .., pnv—1 are the coefficients of p. The vectors in the
set {1, ..., N1} are clearly linearly independent. So the set is a basis for

Pn and the dimension of Py is N.

In Numerical Analysis, the idea of approximating vectors in an infinite dimen-
sional space by elements of a finite dimensional subspace is fundamental. We need
a precise mathematical concept for “size” of a vector which generalises the familiar
notion of the absolute value of a number.

DEFINITION 2.3. Let V' be a vector space. The mapping z — ||z|| from V to
R is called a norm on V if the following holds:

e Vz eV, ||z|]| >0 with equality iff z = 0.
e ¥z eV, \€R (or O, |Aal| = Al [lz].
e Vz,yeV, |lz+yll < llzll + lyll- (A inequality)

We call (V, || - ||) a normed space.
EXAMPLE 2.5. Every vector in R¢ can be represented as a d-tuple. Let us write
= (z1,...,2q) €ERY, wherex, ..., zq € R.

The following all define norms on R%:

d 1/p
llzll = (Z |in”> »p2 1.
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EXAMPLE 2.6. Let C[0,1] denote the space of all the continuous functions de-
fined on the closed interval [0,1]. The following are norms on C[0,1]:

1 1/p
lef] = ( / |x(t>|Pdt) p> 1.
0

Il = e |20

3. Best approximation in general normed spaces
Consider the following illustrative problems.

ExXAMPLE 3.1. Given a point z* and a straight line S that passes through the
origin, find the point x on the line that is nearest to x* (see Figure 4.1).

24

S

(a) (b)

FIGURE 4.1. (a) Approximating a point in the plane by a point
on a straight line. (b) Fitting a straight line to a set of scattered
points.

EXAMPLE 3.2. Given a continuous function, find a polynomial that “best” ap-
prozimates it.

EXAMPLE 3.3. Given a set (t,,2%), 1 < n < N, of scattered data points, find
a straight line that best fits it.

In each case,

¢ a function, a point or some data are given;

e an “approximating set” is specified;

¢ the object is to find some element of the approximating set that is “optimally
close”.

In order to give full meaning to the notion of “closeness”, we reformulate each
problem in terms of a vector space in which a norm is used to measure the distance
between vectors. The abstract form of the problem is

Problem (P) Let S be a subspace of the normed space (V.|| - ||).
Given z* € V, find x € S such that

VyesS, llz—z"<lly—-2". (P)
This problem is solvable.
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THEOREM 3.1. If S is finite dimensional, then Problem (P) has a solution.

PROOF. By the triangle inequality, the function
y = [y — 2|
is continuous. Indeed

Hly =2 = llz = 2*[[| < Iy = 2*) = (z = =) = lly — |-

Consider the set
B={yeS: |yl <2[="I}.
This set is closed and bounded. The function y — [y — z*|| therefore attains a
minimum for some z € B. So
VyeB, |z—z*|<ly—=".

Furthermore, if y ¢ B, then

lly — =" > [yl = ll=*|l| = ll=*]] = [|=* = Ol > ||z — ™|
since 0 € B. O

Now that we know that there exists a solution, let us try to find it. We shall
need the

DEeFINITION 3.1. Let V be a vector space equipped with the norm || - ||. For
r >0 and z* € V, the set
fyeV:ly—z*l<r}
is called the ball of radius r centered at x*. This ball is the set of vectors that are
within a distance r of the vector z*.

For example, in R?, the unit balls centered at the origin for the norms || - |2,
|| - |loo and || - ||1 defined respectively by

2 1/2 2
Ilwll2=(leil2>  llelloo = pmax sl and lzlls = fodl,

=1 =1
are shown in Figure 4.2 (a).
EXAMPLE 3.1 (revisited). In this case, V = R? and S = span{a}. Our task
is to minimise the function, call it e : R — R, defined by
e(N) = [|Aa — 27| .

Of the many different norms that can be defined in R?, we shall consider three
“popular” choices. As we shall see, the difficulty of constructing a solution depends
crucially on the particular norm used.
e Consider the choice || - ||2. To minimise e is equivalent to minimising its
square
e’(\) = (Aay —21)% + (Naz — z3)°.
Using standard calculus techniques, we seek a value of A for which the de-
rivative vanishes:
2(Xar —2) a1 +2(Naz —23)az =0. (4.2)
This is a linear equation with a unique solution. We find
zi a1 + x5 as

z=MAa, where A= 5 5
ai +a;
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e Next, consider the choice || - ||co- In this case, though e is continuous, it is
not differentiable. Hence we cannot exploit the recipe that worked so well
for the choice || - || We shall instead resort to a geometric construction.
Consider a tiny ball centered at z*. Gradually increase the radius of that
ball until it touches the straight line. The points of intersection of the ball
and S solve Problem (P). This is illustrated in Figure 4.2 (b). Now, in the
case of the || - ||co norm, the balls actually look like squares and we see that,
if x = Aa solves Problem (P), then it must be at a corner of the smallest
square that touches S. This yields the necessary condition

[Aar — 27| = |Aaz — 23] .
There are two possibilities:

* * * *
A= M B (i) A= ad kel

ap — aq ay + aq
Let us give a numerical example. Figure 4.2 was obtained by setting z* =
(1,1) and a = (1,2). Equation (i) then gives A = 0 and thus [|[Aa — z*|| =
1. On the other hand, Equation (ii) yields A = 2/3 and so |[|[Aa — z*|| =
1/3. Since this value of A gives the smaller distance, we conclude that
z = (4/3,2/3).

e Finally, we consider the choice || - ||; briefly. In this case,

e(A) = [Aa1 — =] + |A a2 — x5

is, again, not differentiable. Geometrically, the balls are diamond shaped.
If z solves Problem (P), then z is a vertex of the smallest diamond that
touches S and so either

i)[Aar — 2| =0 or (i) |Aas —2zi| =0.
1 2

For the particular case where z* = (1,1) and a = (1, 2), it is equation (i)
that yields the optimal value of A, namely A =1/2.

7l S
(a) (b)
FIGURE 4.2. (a) Unit balls for the norms || - ||2, || - [lo @and || - ||1-

(b) Geometric solution of the problem posed in Example 4.1.

To summarise the discussion, we may say that the choice || - ||z leads to the
most straightforward form of the Problem (P); the solution is obtained by solving a
linear problem and it is unique. On the other hand, if one chooses the norm || - [|co,
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one needs to resort to a geometrical approach and systematically test a number of
possible candidates for the minimiser. (In R?, there are d! possibilities to examine.)
The solution is not always unique. Indeed, if the line S were aligned with one of
the axes, then there would be an infinity of “nearest” points. This is due to the
fact that the balls for this choice of norm are not strictly convex. The situation in
the case of the norm || - ||; is analogous.

What is so special about the norm || - ||2? It is a norm associated with an inner
product .

4. Best approximation in euclidean spaces

A euclidean space is a vector space V equipped with an inner product— that
is a mapping (-,-) : V x V — R satislying the following properties: V z,y, z € V
and V X € R,

(=, ¥) = (v, 2), (4.3)
@+y,2)=(z,2) + (v, 2), (4.4)

Az, y) = A(z, ), (4.5)

(z,z) >0 and (z,2)=0 = z=0. (4.6)

EXAMPLE 4.1. R? equipped with the inner product

d
i=1
is a euclidean space.

EXAMPLE 4.2. Let us denote by Cla, b] the space of all the continuous functions
defined on the interval [a,b]. This is a euclidean space when equipped with the inner
product

b
(z,y) = / z(t) y(t) dt.

In euclidean spaces, a norm may be defined very naturally by

llzll = v/ (2, z).-

In order to verify this assertion, we need to show that the triangle inequality holds.
This is easily done by using the Cauchy-Schwarz inequality:

Va,yeV, |(z, y)| < llzll llyll- (4.7)

PrOOF. Since (-, -) is an inner product, we have, Vz, y and V A € R,
0< (- Ay, z—Ay) = (2, 2) —2A (2, 1) + A (¥, 9) -

The right-hand side of this inequality is a quadratic polynomial in A whose graph
lies above the A axis. It follows that its discriminant is less than or equal to zero.
This is precisely (4.7). O
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To x

T1

FIGURE 4.3. z* — z is orthogonal to S.

The triangle inequality follows easily:
2
llz +yll* = llzl* + 2 (z, y) + llylI* < (lell + llyl)” -

So |||l =+/(, ) is indeed a norm for V.
A key feature of euclidean spaces is that the concept of angle, say 8, between
two vectors z and y € V can be given meaning via

(@, y) —f<egg. (4.8)

sl 2

This definition for 8 makes sense because, by virtue of the Cauchy—Schwarz
inequality, the absolute value of the right-hand side does not exceed 1. In R2, this
of course reduces to the familiar concept of angle and it is instructive to reexamine
Example 4.1 with the choice ||- || = || - ||2- Geometrically, we see from Figure 4.2
(b) that that the line S is tangent to the ball at the point . An equivalent way of
expressing this is to say that the vector x — z* is orthogonal to S (see Figure 4.3).
In terms of the inner product,

Vyes, (z—z%y)=0. (4.9)

cos @

Set y = a and £ = Aa to obtain
Ala, a) = (a, z¥).

This is just another way of expressing (4.2)! This geometrical argument is correct
and yields the solution of Problem (P) in any euclidean space.

THEOREM 4.1. Let V be a euclidean space with inner product (-, -) and corre-
sponding norm || - || = /(-, ). If S is finite dimensional, then the solution z € S
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of Problem (P) is unique and is characterised by the condition
Vyes, (z,9)=(@%1y). (4.10)

ProoF. To begin, let us verify that equation (4.10) defines z uniquely. Let
k=dimS

and let
{e1, €3, ...,ex} C S
be a basis for S. We seek

k
r= E )\i €;
=1

such that (4.10) holds. This can be reformulated as a linear system of k equations

for the unknown coefficients A1, Ag, ..., Ag:
k
Z (es, ej) A= (.’IJ*, e]'), 1<j<k. (4.11)

The k x k matrix A is symmetric since A;; = A;; by virtue of (4.3). Furthermore,
it is positive definite. Indeed, Let 0 # p € R* and write y = Zle wie; 7 0. Then
p"Ap=(y,9)>0
by (4.6). Such a matrix is clearly invertible. This proves that z is uniquely defined

by (4.10).
There remains to show that z solves Problem (P) if and only if (4.10) holds.
[=>]: Suppose that z solves Problem (P). Let y € S and consider the function
€ : R — R defined by
E(e) = llz +ey —2*|.
By definition of the norm,
Ele)=(z+ey—2*, 2+ ey —z*)
= |lz — 2| + 2¢e(z — 2*, y) + € ||yl
Since z, y € S and S is a subspace of V, we note that
VeeR, z+ey€eSs.
Now, z solves Problem (P). Therefore, £ has a minimum at € = 0. It follows that
d€
=20 =@-2"y).

y € S is arbitrary. This proves that z satisfies (4.10).
[<=]: Suppose that (4.10) holds. Let y € S. We have y —z € S and so

0

(z—z*,y—2)=0.
Hence
|z —2*|P = (@ —2* 2 -2")=(z—2", 2 -2") +(z - 2",y - 2)
=@-shz-2"+ty-z)=(z-3"y—2") <|lz— ="y — 2
by the Cauchy—Schwarz inequality. After simplification this yields (P). O
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REMARK 4.1. The equations that result from (4.10) when y ranges among the
vectors in a basis for S are called the normal equations.

The proof of Theorem 4.1 is constructive. The solution of Problem (P) can
be calculated by solving the normal equations. All that is needed is to select a

basis {e1, €2, ..., ex} for the subspace S, compute the inner products (e;, €;),
1<, j <k and (z*, e;), 1 <j <k, and solve the linear system
AX=1b

in Equation (4.11).

5. Linear least squares

In this section, we return to the problem considered in Example 3.3: A set of
data points (t,,z}), 1 <n < N, is given and we seek the straight line that best fits
the data. This problem can be recast in the form of Problem (P) as follows. Let
V =RV, equipped with the familiar inner product

N
(z,y) = anyn
n=1

The subspace S consists of the vectors in V of the form

1 i1

1 in
—— ——r

e1 €2

Thus S = span {e;, e2}, K = 2 and the vector A is obtained by solving the 2 x 2
matrix system (4.11) with

N N
N Yon=1tn >on=1%n
./4 == , b =

N N N
Zn:l tn Zn:l t?L Zn:l tn 1»';:

For instance, the line in Figure 4.1(b) best fits the data points
(1,0), (0,1), (2, 1), (4,3), (6,6).

(5 13 (11
A_(13 57)’ b_(50)

and so the equation of the line is

In this case

23 107
.’IJ—)\1+)\2t——1—16+1—16t.

A more general problem of data fitting is the following: We are given data
points (t,, ), 1 < n < N and we conjecture that the data would be represented
well by a function of the form

A1 fl(t) + Ao fg(t) + .4+ A fk(t)
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where the f;’s are known functions of ¢. The object is to find the parameter vector
A that provides the best fit to the data in the sense that the quantity
2
T
5 YoM A+ N frEn) - 7
=t Ru(N)

is minimised. This is the linear version of Gauss’ method of least squares discussed
in §1. It is again a particular case of Problem (P) where V = RV, equipped with
the usual inner product, and the subspace S consists of vectors of the form

fit1) fa(t1) fr(t1)
=X\ : + A2 : +.oo+ X :
fitw) f2(tn) fe(tn)
- N . ,
€1 [} €k
Let E be the N x k matrix with columns ey, eg, ... e;. The matrix 4 may be
written
A=ETE
and the normal equations take the form
ETEX=E"z*. (4.12)

EXAMPLE 5.1. Fit a parabola to the data points used in Figure 4.1(b), i.e
(1,0), (0,1), (2, 1), (4, 3), (6,6).
In this case, the model function is
=M fi(t) + A2 fo(t) + As f5(2),
where fi =1, fo =t and fs = t>. Therefore

1 0 0
1 1 1 1 11 1 1
E=|12 4|, ET=|01 2 4 6
1 4 16 01 4 16 36
1 6 36
and so the normal equations are
5 13 57 11
ETEX=113 57 289 | A= |50 | =ETz*.
57 289 1569 268
The solution is
)\_g _ 509 an )\_369
T a69° P 71876 371876

The corresponding parabola is show in Figure 4.4.

EXAMPLE 5.2. Consider the data points (t,, y5), 1 <n <5, given by
(1, 5.10), (1.25, 5.79), (1.5, 6.53), (1.75, 7.45) and (2, 8.46).

y» increases rapidly with t,. We therefore conjecture that the data can be repre-
sented adequately by a formula of the type

y(t) =be,
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FIGURE 4.4. The parabola that best fits a set of points (¢,,z}),
1<n<N.

where a and b are parameters yet to be determined. This is not a linear model in a
and b. However, after taking logarithms, we obtain

z(t) :=lny@t)=Inb+ a t
A Az

and we can use linear least squares. We have

1 1 In5.10
1 1.25 In5.79
E=1]1 1.50 and z* = |1n6.53
1 1.75 In7.45
1 2 In 8.46

Hence, the normal equations are

5 75\ (M) _ [9.405
75 11.875) \Xo) ~ \14.424) -

This yields A; = 1.12 (equivalently b = 3.06) and Ao = a = 0.51.
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