Lecture 1

Some problems in number theory.

1. **Counting integral solutions.**

Consider a system of polynomial equations:

\[X = \{ f_1(x_1, \ldots, x_d) = \ldots = f_n(x_1, \ldots, x_d) = 0 \}, \]

\[f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_d] \]

Let \(N_T(X) = \# \{ x \in \mathbb{Z}^d : \max |x_i| \leq T \} \).

Conj (Chambert-Loir, Tschinkel)

For a "general class" of \(X \),

\[N_T(X) \sim c \cdot T^a (\log T)^b \text{ as } T \to \infty, \]

for \(c > 0, a \in \mathbb{Q}^+, b \in \mathbb{N}_0 \).

\((a, b)\) are determined explicitly by geometry of \(X/\mathbb{Q} \).

II. Oppenheim Conj (1929)

\[\mathbb{Q}(x_1, \ldots, x_d) = \mathbb{Q}(a_{ij} x_i x_j, a_{ij} \in \mathbb{R}) \]

Assume that:

- \(d \geq 3 \),
- \(\mathbb{Q} \) is nondegenerate (\(\det(a_{ij}) \neq 0 \)),
- \(\mathbb{Q} \) is indefinite (\(\mathbb{Q}(\mathbb{R}^d) = \mathbb{R} \)),
- \(\mathbb{Q} \) is irrational (\(\mathbb{Q} \neq \alpha \cdot \mathbb{Q}_0 \) where \(\mathbb{Q}_0 \) has rational coefficients).

Then \(\mathbb{Q}(\mathbb{Z}^d) \) is dense in \(\mathbb{R} \).

Proved by Margulis in 1987.
Ex. \(\{ x^2 + y^2 - \sqrt{2} z^2 : x, y, z \in \mathbb{Z} \} \) is dense in \(\mathbb{R} \).

III. Littlewood Conjecture (1930)

For every \(\alpha, \beta \in \mathbb{R} \),

\[
\liminf_{n \to \infty} n \cdot d(n\alpha, \mathbb{Z}) \cdot d(n\beta, \mathbb{Z}) = 0
\]

Still Open?

IV. Diophantine approximation

Given \(x \in \mathbb{R}^d \), how well can we approximate \(x \) by rational vectors: \(x \sim \frac{p}{q} \).

Fix \(\psi : \mathbb{R}^+ \to \mathbb{R}^+ \).

The vector \(x \) is called \(\psi \)-approximable if

\[
\| x - \frac{p}{q} \| \leq \frac{\psi(q)}{q^\delta}
\]

has infinitely many solutions.

Thm. (Rhinchen - Geoshep)

"Typical" \(x \in \mathbb{R}^d \) are \(\psi \)-approximable

\[
\sum_{\ell=1}^{\infty} \psi(\ell)^d = \infty
\]

ex. For "typical" \(x \),

\[
\| x - \frac{p}{q} \| \leq q^{-1/2} \text{ has inf. many solutions,}
\]
but \(\| x - \frac{p}{q} \| < \frac{\epsilon}{q^{1 + \frac{1}{d}}} \), \(\epsilon > 0 \), only finitely many.

Def.

1) \(x \in \mathbb{R}^d \) is **badly approximable** if

\[
\exists \epsilon > 0: \forall p \in \mathbb{Z}^d \forall q \in \mathbb{N}, \quad \| x - \frac{p}{q} \| > \frac{\epsilon}{q^{1 + \frac{1}{d}}}.
\]

2) \(x \in \mathbb{R}^d \) is **well approximable** if for some \(\epsilon > 0 \),

\[
\| x - \frac{p}{q} \| \leq \frac{\epsilon}{q^{1 + \frac{1}{d} + \epsilon}}
\]

has infinitely many solutions.

\[\rightarrow\] The set of badly approximable vectors is a complicated fractal set.

\[\rightarrow\] "Typical" vectors in \(\mathbb{R}^d \) are not well approximable.

Conj. (Sprindzuk; 1980)

If \(X \) is a "curved" surface in \(\mathbb{R}^d \) then "typical" \(x \in X \)

is not well approximable.

Introduction to dynamical systems.

A dynamical system consists of a space \(X \), and a transformation \(T: X \rightarrow X \).

\[T^0 \cdot T^1 \cdot T^2 \ldots \]

Orbit: \(\{ x, T^0 x, T^1 x, \ldots \} \)

Basic problem: Understand distribution of orbits:
given $A \subset X$,
$\#\{i=0...N: \text{T}^i x \in A\} \overset{N \to \infty}{\to \infty}$

Two Examples:

$X = S' = \{ z \in \mathbb{C}: |z|=1 \}$.

1) Rotation:

$T_\alpha: S' \to S': z \mapsto e^{2\pi i \alpha} z$

2) Doubling:

$D_2: S' \to S': z \mapsto z^2$.

Def. T is called mixing if $\forall \psi_1, \psi_2: X \to \mathbb{C}$

$$\int_X \psi_1(T^n x) \psi_2(x) \, dx \to (\int_X \psi_1(x) \, dx) (\int_X \psi_2(x) \, dx) \quad (n \to \infty)$$

(compare with notion of independence in Probability: observables $\psi_1 \circ T^n$ and ψ_2 become asymptotically independent)

Prop. The doubling map $D_2: S' \to S'$ is mixing.

Fourier analysis:

First, consider $\psi_1(z) = z^n$, $\psi_2(z) = z^m$ - characters.

Recall that $\int_{S'} z^n \, dz = \begin{cases} 0, & n \neq 0, \\ 1, & n = 0. \end{cases}$

$$\int_{S'} \psi_1(D_2^n z) \psi_2(z) \, dz = \int_{S'} z^{2n_1 + n_2} \, dz = \begin{cases} 1, & n_1 = n_2 = 0, \\ 0, & n_1 \neq 0 \text{ or } n_2 \neq 0 \text{ and } n >> 0. \end{cases}$$
Hence, \[\int_{S^1} (\varphi \circ T^n) \, d\mu \rightarrow (\int_{S^1} \varphi \, d\mu)^n \] for sufficiently large n.

Next, any continuous function on S^1 can be approximated by linear combinations of characters.

Prop. Let $x \in \mathbb{R}$. Then for every $x \in S^1$, interval $A \subset S^1$

\[
\frac{\#\{ i = 0, \ldots, N : T^n x \in A \}}{N+1} \rightarrow |A|.
\]

(in particular, every orbit is dense.)

We need to show that \(\frac{1}{N+1} \sum_{n=0}^N \chi_A (T^n x) \rightarrow \int_{S^1} \varphi \)

where \(\chi_A \) is the characteristic function of \(A \).

Approximate \(\chi_A \) by linear combinations of characters...

Then we need to show that

\[
\frac{1}{N+1} \sum_{n=0}^N \varphi (T^n x) \rightarrow \int_{S^1} \varphi
\]

for \(\varphi (z) = z^m \). For \(m \neq 0 \),

\[
\frac{1}{N+1} \sum_{n=0}^N (e^{2\pi i m x})^n = \frac{x^m}{N+1} \sum_{n=0}^N (e^{2\pi i m x})^n
\]

\[
= \frac{x^m}{N+1} \cdot \frac{(e^{2\pi i m x})^{N+1} - 1}{e^{2\pi i m x} - 1} \rightarrow 0,
\]

since \(e^{2\pi i m x} \neq 1 \).

\(\rightarrow \) "Typical" orbits of the doubling map \(D_2 \)

are dense in \(S^1 \), but there are many complicated orbits.
Theorem (Furstenberg) Let p, q be primes, and $z \in \mathbb{Z}^d$. Then
\[\{ P^m R^n z : m, n \geq 0 \} = S' \]
This property is related to the Littlewood Cayley space of lattices.

A lattice in \mathbb{R}^d is a subgroup \(L = \mathbb{Z} v_1 + \ldots + \mathbb{Z} v_d \) for a basis\(\{ v_i \} \) of \mathbb{R}^d.

Let \(\mathcal{L}_d = \{ \text{set of all lattices in } \mathbb{R}^d \} \).
\(\mathcal{B}_d = \{ \text{set of all bases} \} = \{ (v_1, \ldots, v_d) \in \mathbb{R}^d : \det(v_1, \ldots, v_d) \neq 0 \} \)
\((v_1, \ldots, v_d) \sim (v'_1, \ldots, v'_d) \) if \(\mathbb{Z} v_1 + \ldots + \mathbb{Z} v_d = \mathbb{Z} v'_1 + \ldots + \mathbb{Z} v'_d \).

Then \(\mathcal{L}_d \cong \mathcal{B}_d / \sim \).

\(G = \text{GL}_d(\mathbb{R}) = \{ g \in \text{Mat}_d(\mathbb{R}) : \det(g) \neq 0 \} \).
The group G acts on \mathcal{B}_d and \mathcal{L}_d:
\(\{ v_i \} \xmapsto{g} \{ v_i g \} \).
Note that G acts transitively on \mathcal{Bd} and \mathcal{Ld}. Let \{e_i\} be the standard basis.

If $g \cdot \{e_i\} = \{e_i\}$, then $g = \text{id}$, so that

$$\mathcal{Bd} \sim G\text{ld}(\mathbb{R}).$$

If $g \cdot (\mathbb{Z}e_1 + \ldots + \mathbb{Z}e_d) = \mathbb{Z}e_1 + \ldots + \mathbb{Z}e_d$, then

$g \in \text{Mat}_d(\mathbb{Z})$ and $g^{-1} \in \text{Mat}_d(\mathbb{Z})$

equivalently, $g \in \text{Mat}_d(\mathbb{Z})$ and $\det(g) = \pm 1$.

Converse also holds.

Hence, $\text{Stab}_G(\mathbb{Z}e_1 + \ldots + \mathbb{Z}e_d) = \{g \in \text{Mat}_d(\mathbb{Z}) : \det(g) = \pm 1\}$

and $\mathcal{Ld} \sim G\text{ld}(\mathbb{Z}) \setminus G\text{ld}(\mathbb{R})$.

The space \mathcal{Ld} is equipped with natural topology and (finite, invariant) measure.

Measure

A measure μ on X is a map $\mu : \{\text{subsets of } X\} \to [0, \infty)$ such that:

1) $\mu(\emptyset) = 0$

2) $\mu\left(\bigcup_{i \geq 1} A_i \right) = \sum_{i \geq 1} \mu(A_i)$ for every $A_i \in X$ such that $A_i \cap A_j = \emptyset$ for $i \neq j$.

In general, it is impossible to define μ on all subsets of X consistently, but only on a "large"
family of subsets (called measurable subsets).

Alternatively, one can think of \(\mu \) as

\[\mu : \{ \text{ functions } \} \rightarrow C. \]

ex. Lebesgue measure \(\lambda : \{ \text{ measurable subsets } \} \rightarrow \mathbb{R}^+ \cup \{0\} \)

\[\lambda \left(\bigcap_{i=1}^{d} (a_i, b_i) \right) = \prod_{i=1}^{d} (b_i - a_i). \]

Invariant measure on \(GL_d(\mathbb{R}) \) (Haar measure)

Thm

\[G = GL_d(\mathbb{R}). \text{ The measure } \mu \text{ defined by} \]

\[\int_{G} f(g) \cdot \left(\prod_{i=1}^{d} dg_{ij} \right) \quad \text{det}(g)^{d-1} \]

is invariant under left/right multiplication.

(That is, \(\int_{G} f(gh) \mu(g) = \int_{G} f(g) \mu(g) \).

For \(g \in G \), the map \(h \mapsto gh = g \)

defines a differential transformation of \(\text{Mat}(\mathbb{R}) \)

with \(\text{Jac}(h \mapsto gh) = \text{det}(g)^{d-1}. \) Hence,

\[\int_{G} f(g) \cdot \left(\prod_{i=1}^{d} dg_{ij} \right) \quad \text{det}(g)^{d-1} \]

\[= \int_{G} f(gh) \cdot \text{Jac}(h \mapsto gh) \cdot \left(\prod_{i=1}^{d} dh_{ij} \right) \quad \text{det}(gh)^{d-1} \]

\[= \int_{G} f(gh) \cdot \left(\prod_{i=1}^{d} dh_{ij} \right) \quad \text{det}(h)^{d-1}. \]

\[\rightarrow \text{Invariant measures exist on every loc. compact group. Moreover, such measure is unique up to a scalar multiple.} \]