9 Modes of convergence

9.1 Weak convergence in normed spaces

We recall that the notion of convergence on a normed space X, which we used so far, is the convergence with respect to the norm on X: namely, for a sequence $(x_n)_{n \geq 1}$, we say that $x_n \to x$ if

$$\|x_n - x\| \to 0 \quad \text{as } n \to \infty.$$

However, in many cases, this notion does not capture the full information about behaviour of sequences. Moreover, we recall that according to the Bolzano–Weierstrass Theorem, a bounded sequence in \mathbb{R} has a convergent subsequence. An analogue of this result fails for in infinite dimensional normed spaces if we only deal with convergence with respect to norm.

Example 9.1. Consider the sequence $e_n = (0, \ldots, 0, 1, 0, \ldots)$ in the space ℓ^2. Then for $n \neq m$, $\|e_n - e_m\|_2 = \sqrt{2}$. So that we conclude that the sequence $(e_n)_{n \geq 1}$ is not Cauchy, so it cannot converge, and it even does not contain any convergent subsequence. Nonetheless, in some “weak” sense, we may say that this sequence “converges” to $(0, \ldots, 0, \ldots)$. For instance, for every $x = (x_n)_{n \geq 1} \in \ell^2$,

$$\langle x, e_n \rangle = x_n \to 0.$$

This example motivates the notion of weak convergence which we now introduce.

Definition 9.2. A sequence $(x_n)_{n \geq 1}$ in a normed space X converges weakly to $x \in X$ if for every $f \in X^*$, we have that $f(x_n) \to f(x)$. We write

$$x_n \overset{w}{\to} x.$$

To emphasise the difference with the usual notion of convergence, if (1) hold, we say $(x_n)_{n \geq 1}$ converges in norm or converges strongly.

Returning to Example 9.1, we see that the sequence $(e_n)_{n \geq 1}$ converges weakly, but has no subsequences that converge strongly. Indeed, any $f \in (\ell^2)^*$ is of the form $f(y) = \langle y, x \rangle$ for some $x \in \ell^2$, and $\langle e_n, x \rangle = x_n \to 0$.

Here is another example of a sequence which converges weakly, but not strongly.

Example 9.3. Let X be the space of real-valued continuous functions with the max-norm, and

$$\phi_n(t) = \begin{cases} nt & \text{when } 0 \leq t \leq 1/n, \\ 2 - nt & \text{when } 1/n \leq t \leq 2/n, \\ 0 & \text{when } 2/n \leq t \leq 1. \end{cases}$$

1
We claim that $\phi_n \overset{w}{\to} 0$. Suppose that this is not the case. Then there exists $f \in X^*$ such that $f(\phi_n) \not\to 0$. Passing to a subsequence we may assume that $|f(\phi_n)| \geq \delta$ for some fixed $\delta > 0$, and without loss of generality

$$f(\phi_n) \geq \delta.$$

Moreover, we may assume that the subsequence satisfies $n_{i+1} \geq 2n_i$. Let

$$\psi_N = \sum_{i=1}^{N} \phi_{n_i}$$

We have

$$\psi_N(t) \leq \sum_{i: n_i \leq 1/t} n_it + \sum_{i: 1/t < n_i \leq 2/t} (2 - n_it).$$

Let $k = \max\{i : n_i \leq 1/t\}$. Then for all $i \leq k$,

$$n_i \leq n_k/2^{k-i} \leq 1/t \cdot 1/2^{k-i},$$

and the first sum satisfies

$$\leq \sum_{i \leq k} 1/2^{k-i} \leq 2.$$

To estimate the second sum we observe that because $n_{i+1} \geq 2n_i$, the inequality $1/t < n_i \leq 2/t$ may holds for at most one index i. Hence, the second sum is also bounded by 2. Hence,

$$\|\psi_N\|_{\infty} \leq 4 \quad \text{and} \quad |f(\psi_N)| \leq 4\|f\|.$$

On the other hand,

$$f(\psi_N) = \sum_{i=1}^{N} f(\phi_{n_i}) \geq N\delta \to \infty \quad \text{as} \quad N \to \infty.$$

This gives a contradiction.

Since $\|\phi_n\|_{\infty} = 1$, $\phi_n \not\overset{w}{\to} 0$ strongly.

We derive some basic properties of weak convergence.

Theorem 9.4. 1. If $x_n \to x$, then $x_n \overset{w}{\to} x$.

2. Weak limits are unique.

3. If $(x_n)_{n \geq 1}$ is a weakly convergent sequence, then the sequence of norms $\|x_n\|$ is bounded.
Proof. 1. This follows from the estimate $|f(x_n) - f(x)| \leq \|f\| \|x_n - x\|$ for every $f \in X^*$.

2. Suppose $x_n \xrightarrow{w} x$ and $x_n \xrightarrow{w} y$. Then for every $f \in X^*$, we have $f(x_n) \to f(x)$ and $f(x_n) \to f(y)$. Hence, it follows that $f(x) = f(y)$ for all $f \in X^*$. So that by a corollary of the Hahn–Banach Theorem, $x = y$.

3. We would like to apply the Uniform Boundedness Principle. For this we have to interpret x_n's as maps on a suitable space. We consider the mapping $X \to (X^*)^*$ defined by $x \mapsto g_x$, where $g_x(f) = f(x)$ for any $f \in X^*$. Since $|g_x(f)| = |f(x)| \leq \|x\| \|f\|$, this indeed defines a bounded linear functional on X^* with $\|g_x\| \leq \|x\|$. Moreover, by a corollary of Hahn–Banach Theorem, there exists $f \in X^*$ such that $f(x) = \|x\|$ and $\|f\| = 1$. This implies that

$$\|g_x\| = \sup\{|f(x)| : f \in X^*, \|f\| \leq 1\} \leq \|x\|.$$

Hence, $\|g_x\| = \|x\|$.

For short, put $g_{x_n} := g_n$. Since for every $f \in X^*$, the sequence $f(x_n)$ converges, it is bounded, that is, $|f(x_n)| \leq c_f$ where c_f is some positive constant independent of n. Thus, $|g_n(f)| \leq c_f$ for all $n \in \mathbb{N}$. We recall that the dual space X^* is always a Banach space. The Uniform Boundedness Principle tell us that the sequence g_n is uniformly bounded, meaning $\|g_n\| \leq c$, where $c > 0$ is independent of n. This implies the claim.

The following theorem gives a convenient criterion for weak convergence.

Theorem 9.5. A sequence $(x_n)_{n \geq 1}$ in a normed space X converges weakly to x provided that

(i) $\|x_n\|$ is uniformly bounded,

(ii) For every element f in a dense subset $M \subset X^*$, we have $f(x_n) \to f(x)$.

Proof. According to (i), $\|x_n\| < c$ and $\|x\| < c$ for some fixed $c > 0$.

We would like to show that for any $f \in X^*$, we have $f(x_n) \to f(x)$. Let $\epsilon > 0$ and $\{f_j\} \subset M \subset X^*$ be a sequence with $f_j \to f$ in X^*. We obtain

$$|f(x_n) - f(x)| \leq |f(x_n) - f_j(x_n)| + |f_j(x_n) - f_j(x)| + |f_j(x) - f(x)|.$$ (2)
Since \(f_j \to f \), we can choose \(j \) large enough that
\[
\|f_j - f\| < \frac{\epsilon}{3c}.
\]
Also, since \(f_j(x_n) \to f_j(x) \), there is a number \(N \) such that
\[
|f_j(x_n) - f_j(x)| < \frac{\epsilon}{3}
\]
whenever \(n > N \). We can now bound (2)
\[
|f(x_n) - f(x)| \leq |f(x_n) - f_j(x_n)| + |f_j(x_n) - f_j(x)| + |f_j(x) - f(x)|
\leq \|f - f_j\|\|x_n\| + |f_j(x_n) - f_j(x)| + \|f_j - f\|\|x\|
\leq \frac{\epsilon}{3c}c + \frac{\epsilon}{3} + \frac{\epsilon}{3c}c < \epsilon
\]
whenever \(n > N \). This proves that \(x_n \xrightarrow{w} x \). \(\square \)

Remark 9.6 (weak convergence in Hilbert spaces). If \(X \) is a Hilbert space then the Riesz–Frechét Theorem tells us that a sequence \((x_n)_{n \geq 1} \subset X \) is weakly convergent to \(x \in X \) if and only if \(\langle x_n, z \rangle \to \langle x, z \rangle \) for all \(z \in X \). Theorem 9.5 then tell us that we only need to check that \(\langle x_n, v \rangle \to \langle x, v \rangle \) for elements \(v \) of some basis of \(X \).

9.2 Convergence of sequences of functionals

Now we consider convergence of a sequence of linear functional \(f_n \in X^* \).

Definition 9.7 (weak* convergence). We say that a sequence \((f_n)_{n \geq 1} \) weak* converges to \(f \in X^* \) if for every \(x \in X \) we have that \(f_n(x) \to f(x) \). This is denoted by \(f_n \xrightarrow{w^*} f \).

We note that since the dual space \(X^* \) is also a normed space, it also makes sense to talk about strong and weak convergence in \(X^* \). Namely:

- a sequence \(f_n \in X^* \) converges strongly to \(f \) if \(\|f_n - f\| \to 0 \).
- a sequence \(f_n \in X^* \) converges weakly to \(f \) if for every \(g \in (X^*)^* \), we have \(g(f_n) \to g(f) \).

In general, we have:

- strong convergence \(\Rightarrow \) weak convergence \(\Rightarrow \) weak* convergence
To see that the second arrow is true, we note that every \(x \in X\) defines an element \(g_x \in (X^*)^*\) such that
\[
g_x(f) = f(x).
\]
This defines a map \(X \to (X^*)^*\). We note that in general this map is not surjective and weak\(^*\) convergence does not imply weak convergence.

We illustrate the notion of weak\(^*\) convergence by some examples.

Example 9.8. Let \(X = C[-1, 1]\) be the space of continuous functions, and
\[
\rho_n(t) = \begin{cases}
 n - n^2|t| & \text{when } -1/n \leq t \leq 1/n, \\
 0 & \text{otherwise}.
\end{cases}
\]
We consider the sequence functionals \(f_n : X \to \mathbb{C}\) defined by
\[
f_n(\phi) = \int_{-1}^{1} \phi(t)\rho_n(t)dt, \quad \phi \in C[-1, 1].
\]
We claim that \(f_n\) weak\(^*\) converges to \(f_0\) defined by \(f_0(\phi) = \phi(0)\). Indeed, using that \(\int_{-1}^{1} \rho_n(t)dt = 1\), we obtain
\[
|f_n(\phi) - f_0(\phi)| = \left| \int_{-1}^{1} \phi(t)\rho_n(t)dt - \int_{-1}^{1} \phi(0)\rho_n(t)dt \right| \\
\leq \int_{-1}^{1} |\phi(t) - \phi(0)|\rho_n(t)dt \\
= \int_{-1/n}^{1/n} |\phi(t) - \phi(0)|\rho_n(t)dt \\
\leq \max_{-1/n \leq t \leq 1/n} |\phi(t) - \phi(0)|.
\]
Hence, it follows from continuity of \(\phi\) that \(f_n(\phi) \to f_0(\phi)\). This proves that \(f_n \stackrel{w^*}{\to} f_0\).

Although we will not prove it here, it is the case that \(f_n \not\to f_0\).

Example 9.9. Let \(X = c_0 = \{x = (x_n)_{n \geq 1} \in \ell^\infty : x_n \to 0\}\).

We have met this space in homeworks. We recall that \(c_0^* \simeq \ell^1\). More explicitly, all elements of \(c_0^*\) are of the form
\[
y_g(x) = \sum_{n=1}^{\infty} x_n y_n, \quad x \in c_0
\]
for some \(y \in \ell^1 \). We consider the sequence of linear functionals \(f_n = f_{e_n} \). Then for every \(x \in c_0 \),

\[
 f_n(x) = x_n \to 0.
\]

Hence, \(f_n \overset{w^*}{\to} f \).

We also recall that \((\ell^1)^* \simeq \ell^\infty\), and all elements of \((\ell^1)^*\) are of the form

\[
g_z(y) = \sum_{n=1}^{\infty} y_n z_n, \quad y \in \ell^1
\]

for some \(z \in \ell^\infty \). Since \(g_z(e_n) = z_n \not\to 0 \) in general. The sequence \(f_n \) does not converge weakly to 0.

Example 9.10. If \(H \) is a Hilbert space, the Riesz–Frechét Theorem tells us that \(H^* \simeq H \), and the map \(H \to (H^*)^* \) defined in (3) is an isomorphism. This implies that in Hilbert spaces weak and weak* convergences are the same.

The following result is a direct corollary of the Uniform Boundedness Principle.

Theorem 9.11. If the sequence \((f_n)_{n \geq 1}\) in \(X^* \) is weak* convergent, then the sequence \(\|f_n\| \) is bounded.

The following theorem is analogous to Theorem 9.5. It tell us a way to determine whether a given sequence in \(X^* \) is weak* convergent, without having to check the defining condition on all the elements of \(X \). Its proof also runs in parallel with the proof of Theorem 9.5.

Theorem 9.12. A sequence \((f_n)_{n \geq 1}\) in \(X^* \) is weak* convergent provided that

(i) The sequence \(\|f_n\| \) is bounded.

(ii) The sequence \(f_n(x) \) is Cauchy for every \(x \) in a dense subset \(M \subset X \).

Proof. Fix \(c > 0 \) such that \(\|f_n\| < c \) for all \(n \). Now, let \(x \in X \). We can find a sequence \(x_j \) in \(M \) such that \(x_j \to x \). Let \(\epsilon > 0 \). We will show that we can make \(|f_m(x) - f_n(x)| < \epsilon \) by taking large enough \(m, n \). We carry out the first bound:

\[
 |f_m(x) - f_n(x)| \leq |f_m(x) - f_m(x_j)| + |f_m(x_j) - f_n(x_j)| + |f_n(x_j) - f_n(x)|
\]

\[
\leq \|f_m\|\|x - x_j\| + |f_m(x_j) - f_n(x_j)| + \|f_n\|\|x_j - x\|.
\]
Since $x_j \to x$, we can fix j large enough that $\|x - x_j\| < \frac{\epsilon}{3c}$. Since the sequence $f_n(x_j)$ is Cauchy, there is a number N such that whenever $m, n > N$, we have $|f_m(x_j) - f_n(x_j)| < \frac{\epsilon}{3}$. The above expression is now bounded by

$$< \frac{\epsilon}{3c} + \frac{\epsilon}{3} + \frac{\epsilon}{3c} = \epsilon,$$

which proves that the sequence $f_n(x)$ is indeed Cauchy, and so converges.

We define $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in X$. Since f_n’s are linear, it follows that f is also linear. For every $x \in X$, $|f_n(x)| \leq \|f_n\| \|x\| \leq c\|x\|$. Passing to the limit, we conclude that $|f(x)| \leq \|f\| \|x\| \leq c\|x\|$, so that $\|f\| \leq c$, and $f \in X^*$. We have $f_n \overset{w^*}{\to} f$.

The following theorem is a generalisation of the Bolzano–Weierstrass theorem.

Theorem 9.13 (weak* compactness). Suppose that a normed space X contains a countable dense subset. Then every bounded sequence $f_n \in X^*$ contains a weak* convergent subsequence.

Proof. Let $M = \{x_i\}_{i \geq 1}$ be a countable dense subset of X. Since $(f_n)_{n \geq 1}$ is a bounded sequence, $(f_n(x))_{n \geq 1}$ is also bounded for every $x \in X$. In particular, $(f_n(x_1))_{n \geq 1}$ is bounded, and by the Bolzano–Weierstrass Theorem, there is a subsequence $n_1(k)$ such that $(f_{n_1(k)}(x_1))_{k \geq 1}$ converges. Next, the sequence $(f_{n_1(k)}(x_2))_{k \geq 1}$ is bounded, and again by the Bolzano–Weierstrass Theorem, there is a subsequence $n_2(k)$ of the sequence $n_1(k)$ such that $(f_{n_2(k)}(x_2))_{k \geq 1}$ converges. Continuing this process, we construct subsequences $n_i(k)$ such that $(f_{n_i(k)}(x_i))_{k \geq 1}$ converges for all i. Now consider the sequence $n_k = n_k(k)$. It is a subsequence of each of the sequences $n_i(k)$. In particular, it follows that $(f_{n_k}(x_i))_{k \geq 1}$ converges for all i. Now we can just apply Theorem 9.12 to conclude that $f_{n_k} \overset{w^*}{\to}$ converges.

We note that an analogue of Theorem 9.13 for weakly convergent sequences is false (cf. Example 9.8).

9.3 Convergence of sequences of operators

Now we discuss convergence of bounded sequences of linear operators. There are three different types of convergence that arise naturally.

Definition 9.14. Let X and Y be normed spaces, and $T_n : X \to Y$ and $T : X \to Y$ are bounded linear operators. We say that:

- $T_n \overset{w}{\to} T$ if $\lim_{n \to \infty} \|T_n(x) - T(x)\| = 0$ for all $x \in X$.
- $T_n \overset{w^*}{\to} T$ if $\lim_{n \to \infty} \|T_n^*(x^*) - T^*(x^*)\| = 0$ for all $x^* \in X^*$.
- $T_n \overset{w^*}{\to} T$ if $\lim_{n \to \infty} \|T_n - T\| = 0$.

We say that $T_n \overset{w}{\to} T$ if $(T_n(x))_{n \geq 1}$ converges for all $x \in X$. We say that $T_n \overset{w^*}{\to} T$ if $(T_n^*(x^*))_{n \geq 1}$ converges for all $x^* \in X^*$.
• T_n converges uniformly to T (notation: $T_n \to T$) if

$$\|T_n - T\| \to 0.$$

• T_n converges strongly to T (notation: $T_n \overset{s}{\to} T$) if

$$T_n x \to T x \quad \text{for all } x \in X.$$

• T_n converges weakly to T (notation: $T_n \overset{w}{\to} T$) if

$$f(T_n x) \to f(T x) \quad \text{for all } x \in X \text{ and } f \in Y^*.$$

It is not hard to see that

uniform convergence \Rightarrow strong convergence \Rightarrow weak convergence

However, the converses are not true in general.

We illustrate the notions of convergence by several examples.

Example 9.15. Consider the sequence of operators $T_n : \ell^2 \to \ell^2$ defined by

$$T_n x = (x_{n+1}, x_{n+2}, \ldots), \quad x = (x_n)_{n \geq 1} \in \ell^2.$$

Clearly, $\|T_n x\| \leq \|x\|$, for all x, and for $k > n$, $\|T_n(e_k)\| = \|e_{k-n}\| = 1$. Hence, $\|T_n\| = 1$. In particular, it follows that $T_n \not\to 0$.

On the other hand, for every $x \in \ell^2$,

$$\|T_n x\| = \sqrt{\sum_{k=n+1}^{\infty} |x_k|^2} \to 0.$$

Hence, $T_n \overset{s}{\to} T$.

Example 9.16. Consider the sequence of operators $T_n : \ell^2 \to \ell^2$ defined by

$$T_n x = (0, \ldots, 0, x_1, x_2, \ldots), \quad x = (x_n)_{n \geq 1} \in \ell^2.$$

Then $\|T_n e_1\| = \|e_1\| = 1$. Hence, $T_n \not\overset{w}{\to} T$.

On the other hand, we claim that $T_n \overset{w}{\to} T$. We recall that $(\ell^2)^* \simeq \ell^2$, and every element in $(\ell^2)^*$ is given by

$$x \mapsto \langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k.$$
for some $y = (y_n)_{n \geq 1} \in \ell^2$. For every $x, y \in \ell^2$,

$$|\langle T_n x, y \rangle| = \left| \sum_{k=1}^{\infty} x_k y_{k+n} \right| \leq \sqrt{\sum_{k=1}^{\infty} |x_k|^2} \sqrt{\sum_{k=n+1}^{\infty} |y_k|^2} \to 0.$$

This proves that $T_n \xrightarrow{w} T$.

Example 9.17. Let $X = C_c(\mathbb{R})$ be the space of continuous functions with compact support equipped with the max-norm. We consider the family of operators $T_a : X \to X$ defined by

$$T_a(\phi)(t) = \phi(t + a).$$

It is natural to expect that this family of operators depends continuously on a. Indeed, it follows from uniform continuity that for every $\phi \in X$,

$$\|T_a(\phi) - \phi\|_{\infty} = \max_t |\phi(t + a) - \phi(t)| \to 0$$

as $a \to \infty$. This shows that the map $a \to T_a$ is continuous at $a = 0$ with respect to the strong convergence.

On the other hand, for every fixed $a > 0$, we may consider a function $\phi \in C_c(\mathbb{R})$ such that $\{\phi \neq 0\} \subset [-a/3, a/3]$. Then it is easy to check that

$$\|T_a(\phi) - \phi\|_{\infty} = \|\phi\|_{\infty}.$$

So that $\|T_n - T_0\| = 1$, the map $a \to T_a$ is not continuous at $a = 0$ with respect to the uniform convergence.

We record some important properties of weak convergence.

Theorem 9.18. If $T_n \in B(X, Y)$ is a weakly convergent sequence and X is a Banach space, then the sequence of norms $\|T_n\|$ is bounded.

Proof. If $T_n \xrightarrow{w} T$, then for every $x \in X$, $T_n x \xrightarrow{w} T x$. Then by Theorem 9.4(iii), the sequence $(T_n x)_{n \geq 1}$ is bounded for every $x \in X$. Now the claim of the theorem follows from the Uniform Boundedness Principle.

We also have an analogue of Theorem 9.5:

Theorem 9.19. Let $T_n, T \in B(X, Y)$ where X and Y are normed spaces. The sequence $(T_n)_{n \geq 1}$ converges strongly to T provided that

(i) $\|T_n\|$ is uniformly bounded,

(ii) For every element x in a dense subset $M \subset X$, we have $T x_n \to T x$.

This theorem is proved exactly as Theorem 9.5.