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In the homeworks, questions with marks are officially ‘exam-style’, although you can ex-

pect any homework question to appear as an exam question, unless it is explicitly ‘not

examinable’.

Hand in Q4 and Q5 to be marked. Try the others now or later!

1. Here are some questions about the probability calculus. They test your ability to

do mathematics; that is, to present logical and compelling arguments, which combine

clarity of expression with elegance and absence of superfluity. Just do a couple of these,

to check that you can. I am taking it for granted that you know the propositional

calculus (also known as ‘zeroth order logic’). If not, you might find the wikipedia page

https://en.wikipedia.org/wiki/Propositional_calculus helpful.

Let A,A1, A2, . . . , B be a set of propositions.

(a) State the three axioms of probability. Distinguish between ‘finite’ and ‘countable’

additivity, and show that the latter implies the former.

Answer.

i. Pr(A) ≥ 0.

ii. If A is certainly true, then Pr(A) = 1.

iii. If A and B are mutually exclusive, then Pr(A ∨B) = Pr(A) + Pr(B).

The final axiom extends by induction to: if A1, . . . , An are mutually exclusive, then

Pr(A1 ∨ · · · ∨ An) = Pr(A1) + · · · + Pr(An); see below. This is finite additivity. A

stronger axiom is: if A1, A2, . . . are mutually exclusive, then Pr(A1∨A2∨· · · ) = Pr(A1)+

Pr(A2) + · · · . This is countable additivity. It implies finite additivity if we take An+1 =

An+2 = · · · = FALSE, because if {A1, . . . , An} are mutually exclusive, then {A1, A2, · · · }
are mutually exclusive, and

Pr(A1 ∨ · · · ∨An) = Pr(A1 ∨ · · · ∨An ∨ FALSE)

= Pr(A1 ∨ · · · ∨An ∨An+1 ∨ · · · )

= Pr(A1) + · · ·+ Pr(An) + Pr(An+1) + · · · by countable additivity

= Pr(A1) + · · ·+ Pr(An),

because Pr(An+1) = Pr(An+2) = · · · = Pr(FALSE) = 0, as shown below.

(b) Prove each of the following:
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i. Pr(¬A) = 1− Pr(A).

Answer. A and ¬A are mutually exclusive, and A ∨ ¬A = TRUE. Hence

1 = Pr(A ∨ ¬A) = Pr(A) + Pr(¬A),

from which the result follows. Note that if A = FALSE, then Pr(¬A) = 1 and

Pr(A) = 0.

ii. If {A1, . . . , An} are mutually exclusive, then

Pr(A1 ∨ · · · ∨An) =
n∑
i=1

Pr(Ai).

Answer. ‘∨’ is commutative, and hence

A1 ∨ · · · ∨An = A1 ∨ (A2 ∨ · · · ∨An) = A1 ∨A−1,

say. If {A1, . . . , An} are mutually exclusive, thenA1 andA−1 are mutually exclusive,

and so Pr(A1 ∨ · · · ∨An) = Pr(A1) + Pr(A−1). The result then follows, by applying

the same argument to A−1.

iii. If A→ B, then Pr(A) ≤ Pr(B).

Answer. If A→ B, then B = A∨ (B ∧¬A). A and B ∧¬A are mutally exclusive,

and therefore

Pr(B) = Pr(A) + Pr(B ∧ ¬A) ≥ Pr(A),

as required.

iv. If Pr(A) = 0, then Pr(A ∧B) = 0.

Answer. Follows from Frechét’s inequality.

v. Pr(A ∧B) ≤ min{Pr(A),Pr(B)}. This is known as Fréchet’s inequality.

Answer. As (A ∧ B) → A, so Pr(A ∧ B) ≤ Pr(A). Likewise, (A ∧ B) → B, so

Pr(A ∧B) ≤ Pr(B), as required.

2. Let C be a proposition. Prove that if Pr(C) > 0, then Pr(· |C) obeys the three axioms

of probability (finite additivity suffices). [10 marks]

Answer. It is always true that

Pr(A ∧ C) = Pr(A | C) · Pr(C).

If Pr(C) > 0, then

Pr(A | C) =
Pr(A ∧ C)

Pr(C)
.

It follows that Pr(A | C) ≥ 0, which is axiom i. If A = TRUE, then A ∧ C = C, and

Pr(TRUE | C) = Pr(A | C) = Pr(C)/Pr(C) = 1,
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which is axiom ii. If A = A1 ∨A2, where A1 and A2 are mutually exclusive, then

Pr(A1 ∨A2 | C) =
Pr{(A1 ∨A2) ∧ C}

Pr(C)

=
Pr{(A1 ∧ C) ∨ (A2 ∧ C)}

Pr(C)

=
Pr(A1 ∧ C) + Pr(A2 ∧ C)

Pr(C)

= Pr(A1 | C) + Pr(A2 | C)

using that ‘∧’ is distributive over ‘∨’, and that A1 ∧ C and A2 ∧ C are mutually exclusive.

This is axiom iii.

3. Let X,Y, Z be collections of random quantities.

(a) Prove that X ⊥⊥ Y | Z if and only if:

p(x, y | z) = g(x, z) · h(y, z)

for some g, h, whenever p(z) > 0. [10 marks]

Answer. Take as given throughout that p(z) > 0.

‘Only if’ follows from the equivalence between X ⊥⊥ Y |Z and p(x, y |z) = p(x|z)·p(y |z),
where in this case g(x, z) = p(x | z) and h(y, z) = p(y | z).

‘If’ is slightly trickier. We assume that

p(x, y | z) = g(x, z) · h(y, z) (†)

for some g, h. Note that

1 =
∑

x

∑
y

p(x, y | z) =
∑

x

∑
y
g(x, z) · h(y, z) =

∑
x
g(x, z) ·

∑
y
h(y, z).

Hence, starting from (†),

p(x, y | z) = g(x, z) · h(y, z) ·
∑

x
g(x, z) ·

∑
y
h(y, z), (‡)

after multiplying by 1. But also note that

p(x | z) =
∑

y
p(x, y | z) = g(x, z)

∑
y
h(y, z),

and similarly for p(y | z). Substituting both of these results into (‡) gives

p(x, y | z) = p(x | z) · p(y | z),

which is equivalent to X ⊥⊥ Y | Z.

(b) Express the statement after the colon in the previous question using predicate

logic (i.e., with ∃ and ∀ quantifiers). [5 marks]

Answer.

∃g ∃h∀x ∀y ∀z
{

[p(z) = 0] ∨ [p(x, y | z) = g(x, z) · h(y, z)]
}
.
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4. Prove that

�X | Y ⇐⇒ fX|Y (x | y) =
m∏
i=1

fXi|Y (xi | y).

[10 marks]

Answer. Let X = (X1, . . . , Xm). �X | Y exactly when XA ⊥⊥ XB | Y for every disjoint A

and B. For simplicity, write the righthand expression as p(x | y) =
∏m
i=1 p(xi | y).

‘Only if’. Use the Telescope theorem to write

p(x | y) = p(x1 | y)

m∏
i=2

p(xi | x1:(i−1), y).

But if �X | Y , then Xi ⊥⊥ X1:(i−1) | Y , setting A = {i} and B = {1, . . . i− 1}. Hence

p(x | y) = p(x1 | y)

m∏
i=2

p(xi | y),

as required.

‘If’. Let A and B be arbitrary disjoint sets, and set C = {1, . . . ,m} \ {A ∪ B}. Then

p(x | y) = p(xA, xB , xC | y), and

p(xA, xB | y) =
∑
xC

p(xA, xB , xC | y)

=
∑
xC

∏
i∈A

p(xi | y) ·
∏
j∈B

p(xj | y) ·
∏
k∈C

p(xk | y)

=
∏
i∈A

p(xi | y) ·
∏
j∈B

p(xj | y).

This has the form

p(xA, xB | y) = g(xA, y) · h(xB , y)

which is equivalent to XA ⊥⊥ XB | Y , as required (see Q3).

Note: in the question I should have added “If p(y) > 0, then . . . ”.

5. Let X = (X1, . . . , Xm). The PMF fX is exchangeable exactly when

p(x1, . . . , xm) = p(xπ1 , . . . , xπm)

whenever (π1, . . . , πm) is a permutation of (1, . . . ,m).

(a) Show that if fX is exchangeable, then fXA
is exchangeable, where XA is any

subset of X. [10 marks]

Answer. Let X = (X1, . . . , Xm), and set A = (1, . . . , k), without loss of generality, with

B = (k+1, . . . ,m). Let π′ be an arbitrary permutation of A, so that (π′, B) is a permuta-

tion of (1, . . . ,m). Then by exchangeability, p(xA, xB) = p(xπ′ , xB). Marginalizing over

all but the first k arguments gives p(xA) = π(xπ′), showing that fXA
is exchangeable.
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(b) Show that if X is conditionally IID given Θ, then X is exchangeable. [10 marks]

Answer. If X is conditionally IID given Θ, then �X |Θ and fXi|Θ = fX1|Θ. Hence, by

the previous result (Q4),

p(x | θ) =

m∏
i=1

fX1|Θ(xi | θ).

From the definition of conditional probability,

p(θ, x) = p(θ) p(x | θ) = p(θ)

m∏
i=1

fX1(xi | θ).

Now marginalize over Θ to give

p(x) =

∫
Ω

p(θ) p(x | θ) dθ =

∫
Ω

p(θ)

m∏
i=1

fX1
(xi | θ) dθ.

This is a symmetric function of x, and therefore X is exchangeable.

(c) Explain why exchangeability can be interpreted as ‘similar but not identiti-

cal’. [10 marks]

Answer. The essence of exchangeability is that the labels, i = 1, . . . ,m do not matter.

So while it is not the case that Xi and Xj are identical, it is the case that marginal

distributions of Xi and Xj are identical, and in this sense Xi and Xj are similar. So

thus we have ‘similar but not identical’. This argument can be extended to consider

pairs, triples, and all tuples; for example, the marginal distribution of any pair of X’s is

identical. So ‘similar’ in the context of exchangeability is very strong. If you believe that

X is exchangeable, and you are offered a sample of size n, then you will be indifferent

about the sample that you get.
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