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In the homeworks, questions with marks are officially ‘exam-style’, although you can ex-

pect any homework question to appear as an exam question, unless it is explicitly ‘not

examinable’.

Hand in Q2 and Q4.

1. (a) Consider the prior distribution σ2 ∼ Gamma(0.001, 0.001), where the two pa-

rameters are the shape and rate parameters, respectively. Show that under this

distribution, log σ2 has an approximately uniform distribution on R. [10 marks]

(In an exam you would be given the PDF of a Gamma distribution.)

Answer. The Gamma distribution for σ2 has kernel

fσ2(s2) ∝ (s2)α−1 · e−βs
2

, s2 > 0,

where α is the shape parameter and β is the rate parameter, so (α, β) = (0.001, 0.001)

gives a kernel which is approximately (s2)−1 on (0,∞).

Let U = log σ2, or u = log s2 in terms of arguments. According to the Transformation

formula,

fU (u) = fσ2(s2) ·
∣∣∣∣ds2du

∣∣∣∣ ∝ 1

eu
· eu = 1.

Hence log σ2 is approximately uniform on R.

(b) Show that the following two statements are equivalent:

i. p(x, y) ∝ 1(x ∈ X ∧ y ∈ Y).

ii. X ⊥⊥ Y and X and Y are marginally uniformly distributed.

[5 marks]

Answer.

(i) implies (ii). 1(x ∈ X ∧ y ∈ Y) = 1(x ∈ X) · 1(y ∈ Y), and hence p(x, y) ∝ g(x) · h(y),

which is equivalent to X ⊥⊥ Y . Marginalizing out X shows that p(y) ∝ 1(y ∈ Y), hence

Y is marginally uniform. The same argument works for X.

(ii) implies (i). Same argument in reverse:

p(x, y) ∝ 1(x ∈ X) · 1(y ∈ Y) by hypothesis

= 1(x ∈ X ∧ y ∈ Y).
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Pause for thought: (i) is a ‘rectangular’ distribution. It is what we often specify at the

bottom of a hierarchical model, for example

µ ∼ N(0, 10002)

σ2 ∼ Ga(0.001, 0.001),

which is approximately rectangular in (µ, log σ2).

2. Consider the following joint distribution for X = (X1, . . . , X5):

p(x) = p(x1) · p(x2 | x1) · p(x3) · p(x4 | x1, x3) · p(x5 | x3).

(a) Draw the DAG of fX .

Answer.

X5

X2 X3

OO

// X4

X1

OO 66

When drawing a DAG, try to be consistent in ordering the vertices on the page. You

can see that I tend to go up-and-to-the-right in my vertices. It makes it a lot easier to

see what is going on. Remember that a DAG is always drawn with respect to a specific

ordering of the random quantities.

(b) Draw the CIG of fX .

Answer.

X5

X2 X3 X4

X1

which has gained an edge between X1 and X3 because both X1 and X3 are ‘parents’ of

X4.

(c) Answer True or False to the following statements:

i. X2 ⊥⊥ X3, X4 |X1

ii. X1 ⊥⊥ X2 |X3, X4

iii. X5 ⊥⊥ X1, X4 |X3

iv. X4 ⊥⊥ X1, X2 |X3, X5

For each statement, state whether or not you could provide an answer directly

from the DAG (i.e. without constructing the CIG).

Answer.
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i. True. Not inferrable from the DAG, because 2 < {3, 4}.
ii. False. Not inferrable from the DAG, because 1 < {2, 3, 4}.
iii. True. Inferrable from the DAG. We have X5 ⊥⊥ X1, X2, X4 |X3, and this implies

X5 ⊥⊥ X1, X4 |X3.

iv. False. Not inferrable from the DAG, because 4 < 5.

(d) Draw the DAG of (X2, X3, X4, X5), i.e. after marginalizing over X1.

Answer. Here is the long answer, using algebra. X1 is going to be marginalized over,

so we need the factorization of p(x2, x3, x4, x5). For X2 we just have p(x2). For X3:

p(x3 | x2) =
p(x2, x3)

p(x2)

=

∑
x1

p(x1, x2, x3)∑
x1

p(x1, x2)

=

∑
x1

p(x1) p(x2 | x1) p(x3)∑
x1

p(x1) p(x2 | x1)

=
p(x3)

∑
x1

p(x1) p(x2 | x1)∑
x1

p(x1) p(x2 | x1)

= p(x3).

which depends on x3 but not on x2. For X4,

p(x4 | x2, x3) =
p(x2, x3, x4)

p(x2, x3)

=

∑
x1

p(x1, x2, x3, x4)∑
x1

p(x1, x2, x3)

=

∑
x1

p(x1) p(x2 | x1) p(x3) p(x4 | x1, x3)∑
x1

p(x1) p(x2 | x1) p(x3)

=

∑
x1

p(x1) p(x2 | x1) p(x4 | x1, x3)∑
x1

p(x1) p(x2 | x1)

which depends on (x2, x3). For X5,

p(x5 | x2, x3, x4) =
p(x2, x3, x4, x5)

p(x2, x3, x4)

=

∑
x1

p(x1, x2, x3, x4, x5)∑
x1

p(x1, x2, x3, x4)

=

∑
x1

p(x1) p(x2 | x1) p(x3) p(x4 | x1, x3) p(x5 | x3)∑
x1

p(x1) p(x2 | x1) p(x3) p(x4 | x1, x3)

=
p(x5 | x3)

∑
x1

p(x1) p(x2 | x1) p(x4 | x1, x3)∑
x1

p(x1) p(x2 | x1) p(x4 | x1, x3)

= p(x5 | x3)

which depends on x3 but not on (x2, x4). Hence

p(x2, x3, x4, x5) = p(x2) p(x3) p(x4 | x2, x3) p(x5 | x3),
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or

X5

X2 66X3

OO

// X4

The DAG has gained an edge from X2 to X4 because X2 and X4 are both ‘children’ of

X1 in the full distribution.

3. (a) Let X = (X1, . . . , Xm). Give definitions for the DAG of fX and the CIG of fX .

State and prove the Moralization Theorem. [15 marks]

Answer.

For each i let pai ⊂ {1, . . . , i− 1} be the index set for which

Xi ⊥⊥ Xpai |Xpai

in fX , where pai is the complement of pai in {1, . . . , i− 1}; pai and pai may be empty

sets. A DAG is a directed graph with vertices {X}, in which there is an edge from Xi

to Xj exactly when i ∈ paj .

For each i let nei ∈ {1, . . . ,m} \ i be the index set for which

Xi ⊥⊥ Xnei |Xnei

in fX , where nei is the complement of nei in {1, . . . ,m} \ i; nei and nei may be empty

sets. A CIG is an undirected graph with vertices {X} in which there is an edge from Xi

to Xj exactly when i ∈ nej .

The Moralization theorem states: to convert a DAG into a CIG,

i. Insert an edge between every pair of vertices which share a child.

ii. Replace all directed edges with undirected edges.

The proof is in the handout.

(b) State the Hammersley-Clifford Theorem, and explain its role in interpeting the

CIG. [10 marks]

Answer. The HC theorem states (subject to a positivity condition, see below) that

XA ⊥⊥ XB |XC if and only if every path on the CIG from XA to XC passes through XB .

It allows us to use the CIG to read off all possible conditional independence statements.

The positivity condition cannot be lifted. If suppXA is the support of XA in fXA
, i.e.

the set {xA : fXA
(xA) > 0}, then the positivity condition is

suppX =

m∏
i=1

suppXi,

or, to put it crudely, that the support of X is ‘rectangular’. It rules out deterministic

relationships between elements of X (why?).
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4. Consider the ‘old-fashioned’ regression model

Yi = α+ β Xi + εi, i = 1, . . . , n,

where ε
iid∼ Normal(0, σ2).

(a) Write this model as a DAG, using a plate. Hint: α, β, and σ2 are parameters

but ε is not. [5 marks]

(b) Generalize this DAG so that each case gets its own (αi, βi), where the α’s and

β’s are each exchangeable. [5 marks]

Answer. For (a) and (b):

(c) Make explicit choices for the marginal and conditional distributions in the DAG,

and identify the restriction that forces the generalized model to behave like the

old-fashioned one. [5 marks]

Answer. I’ll write the model in extensive form:

Yi | αi, βi, σ2 ∼ N(αi + βiXi, σ
2) i = 1, . . . , n

αi | µA, τ2A ∼ N(µA, τ
2
A) i = 1, . . . , n

βi | µB , τ2B ∼ N(µB , τ
2
B) i = 1, . . . , n

µA ∼ N(0, 10002)

µB ∼ N(0, 10002)

τ2A ∼ Ga(0.001, 0.001)

τ2B ∼ Ga(0.001, 0.001)
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where ΘA = (µA, τ
2
A) and similarly for ΘB . The restrictions are τ2A → 0 and τ2B → 0,

which would force each αi to the same unknown value µA, and each βi to the same

unknown value µB .
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