HW3, Bayesian Modelling B 2016/17

Jonathan Rougier School of Mathematics University of Bristol UK

In the homeworks, questions with marks are officially 'exam-style', although you can expect any homework question to appear as an exam question, unless it is explicitly 'not examinable'.

Hand in Q2 and Q4.

(a) Consider the prior distribution σ² ~ Gamma(0.001, 0.001), where the two parameters are the shape and rate parameters, respectively. Show that under this distribution, log σ² has an approximately uniform distribution on R. [10 marks] (In an exam you would be given the PDF of a Gamma distribution.)

Answer. The Gamma distribution for σ^2 has kernel

$$f_{\sigma^2}(s^2) \propto (s^2)^{\alpha - 1} \cdot e^{-\beta s^2}, \quad s^2 > 0,$$

where α is the shape parameter and β is the rate parameter, so $(\alpha, \beta) = (0.001, 0.001)$ gives a kernel which is approximately $(s^2)^{-1}$ on $(0, \infty)$.

Let $U = \log \sigma^2$, or $u = \log s^2$ in terms of arguments. According to the Transformation formula,

$$f_U(u) = f_{\sigma^2}(s^2) \cdot \left| \frac{\mathrm{d}s^2}{\mathrm{d}u} \right| \propto \frac{1}{e^u} \cdot e^u = 1.$$

Hence $\log \sigma^2$ is approximately uniform on \mathbb{R} .

- (b) Show that the following two statements are equivalent:
 - i. $p(x, y) \propto \mathbb{1}(x \in \mathcal{X} \land y \in \mathcal{Y}).$
 - ii. $X \perp \!\!\!\perp Y$ and X and Y are marginally uniformly distributed.

[5 marks]

Answer.

(i) implies (ii). $\mathbb{1}(x \in \mathcal{X} \land y \in \mathcal{Y}) = \mathbb{1}(x \in \mathcal{X}) \cdot \mathbb{1}(y \in \mathcal{Y})$, and hence $p(x, y) \propto g(x) \cdot h(y)$, which is equivalent to $X \perp \mathcal{Y}$. Marginalizing out X shows that $p(y) \propto \mathbb{1}(y \in \mathcal{Y})$, hence Y is marginally uniform. The same argument works for X.

(ii) implies (i). Same argument in reverse:

$$p(x, y) \propto \mathbb{1}(x \in \mathfrak{X}) \cdot \mathbb{1}(y \in \mathfrak{Y}) \quad \text{by hypothesis}$$
$$= \mathbb{1}(x \in \mathfrak{X} \land y \in \mathfrak{Y}).$$

Pause for thought: (i) is a 'rectangular' distribution. It is what we often specify at the bottom of a hierarchical model, for example

$$\mu \sim N(0, 1000^2)$$

 $\sigma^2 \sim Ga(0.001, 0.001),$

which is approximately rectangular in $(\mu, \log \sigma^2)$.

2. Consider the following joint distribution for $X = (X_1, \ldots, X_5)$:

$$p(x) = p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3) \cdot p(x_4 \mid x_1, x_3) \cdot p(x_5 \mid x_3).$$

(a) Draw the DAG of f_X .

Answer.

When drawing a DAG, try to be consistent in ordering the vertices on the page. You can see that I tend to go up-and-to-the-right in my vertices. It makes it a lot easier to see what is going on. Remember that a DAG is always drawn with respect to a specific ordering of the random quantities.

(b) Draw the CIG of f_X .

Answer.

which has gained an edge between X_1 and X_3 because both X_1 and X_3 are 'parents' of X_4 .

(c) Answer True or False to the following statements:

i. $X_2 \perp \perp X_3, X_4 \mid X_1$ ii. $X_1 \perp \perp X_2 \mid X_3, X_4$ iii. $X_5 \perp \perp X_1, X_4 \mid X_3$ iv. $X_4 \perp \perp X_1, X_2 \mid X_3, X_5$

For each statement, state whether or not you could provide an answer directly from the DAG (i.e. without constructing the CIG).

Answer.

- i. True. Not inferrable from the DAG, because $2 < \{3, 4\}$.
- ii. False. Not inferrable from the DAG, because $1 < \{2, 3, 4\}$.
- iii. True. Inferrable from the DAG. We have $X_5 \perp \perp X_1, X_2, X_4 \mid X_3$, and this implies $X_5 \perp \perp X_1, X_4 \mid X_3$.
- iv. False. Not inferrable from the DAG, because 4 < 5.
- (d) Draw the DAG of (X_2, X_3, X_4, X_5) , i.e. after marginalizing over X_1 .

Answer. Here is the long answer, using algebra. X_1 is going to be marginalized over, so we need the factorization of $p(x_2, x_3, x_4, x_5)$. For X_2 we just have $p(x_2)$. For X_3 :

$$p(x_3 | x_2) = \frac{p(x_2, x_3)}{p(x_2)}$$

= $\frac{\sum_{x_1} p(x_1, x_2, x_3)}{\sum_{x_1} p(x_1, x_2)}$
= $\frac{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_3)}{\sum_{x_1} p(x_1) p(x_2 | x_1)}$
= $\frac{p(x_3) \sum_{x_1} p(x_1) p(x_2 | x_1)}{\sum_{x_1} p(x_1) p(x_2 | x_1)}$
= $p(x_3).$

which depends on x_3 but not on x_2 . For X_4 ,

$$p(x_4 | x_2, x_3) = \frac{p(x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\sum_{x_1} p(x_1, x_2, x_3, x_4)}{\sum_{x_1} p(x_1, x_2, x_3)}$$

$$= \frac{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_3) p(x_4 | x_1, x_3)}{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_3)}$$

$$= \frac{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_4 | x_1, x_3)}{\sum_{x_1} p(x_1) p(x_2 | x_1)}$$

which depends on (x_2, x_3) . For X_5 ,

$$p(x_5 | x_2, x_3, x_4) = \frac{p(x_2, x_3, x_4, x_5)}{p(x_2, x_3, x_4)}$$

= $\frac{\sum_{x_1} p(x_1, x_2, x_3, x_4, x_5)}{\sum_{x_1} p(x_1, x_2, x_3, x_4)}$
= $\frac{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_3) p(x_4 | x_1, x_3) p(x_5 | x_3)}{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_3) p(x_4 | x_1, x_3)}$
= $\frac{p(x_5 | x_3) \sum_{x_1} p(x_1) p(x_2 | x_1) p(x_4 | x_1, x_3)}{\sum_{x_1} p(x_1) p(x_2 | x_1) p(x_4 | x_1, x_3)}$
= $p(x_5 | x_3)$

which depends on x_3 but not on (x_2, x_4) . Hence

$$p(x_2, x_3, x_4, x_5) = p(x_2) p(x_3) p(x_4 | x_2, x_3) p(x_5 | x_3),$$

The DAG has gained an edge from X_2 to X_4 because X_2 and X_4 are both 'children' of X_1 in the full distribution.

3. (a) Let $X = (X_1, \ldots, X_m)$. Give definitions for the DAG of f_X and the CIG of f_X . State and prove the Moralization Theorem. [15 marks]

Answer.

For each *i* let $pa_i \subset \{1, \ldots, i-1\}$ be the index set for which

$$X_i \perp \perp X_{\overline{\mathrm{pa}}_i} \mid X_{\mathrm{pa}_i}$$

in f_X , where \overline{pa}_i is the complement of pa_i in $\{1, \ldots, i-1\}$; pa_i and \overline{pa}_i may be empty sets. A DAG is a directed graph with vertices $\{X\}$, in which there is an edge from X_i to X_j exactly when $i \in pa_j$.

For each i let $ne_i \in \{1, \ldots, m\} \setminus i$ be the index set for which

$$X_i \perp \perp X_{\overline{\mathrm{ne}}_i} \mid X_{\mathrm{ne}_i}$$

in f_X , where \overline{ne}_i is the complement of ne_i in $\{1, \ldots, m\} \setminus i$; ne_i and \overline{ne}_i may be empty sets. A CIG is an undirected graph with vertices $\{X\}$ in which there is an edge from X_i to X_i exactly when $i \in ne_i$.

The Moralization theorem states: to convert a DAG into a CIG,

- i. Insert an edge between every pair of vertices which share a child.
- ii. Replace all directed edges with undirected edges.

The proof is in the handout.

(b) State the Hammersley-Clifford Theorem, and explain its role in interpeting the CIG. [10 marks]

Answer. The HC theorem states (subject to a positivity condition, see below) that $X_A \perp \!\!\!\perp X_B | X_C$ if and only if every path on the CIG from X_A to X_C passes through X_B . It allows us to use the CIG to read off all possible conditional independence statements.

The positivity condition cannot be lifted. If supp X_A is the support of X_A in f_{X_A} , i.e. the set $\{x_A : f_{X_A}(x_A) > 0\}$, then the positivity condition is

$$\operatorname{supp} X = \prod_{i=1}^{m} \operatorname{supp} X_i,$$

or, to put it crudely, that the support of X is 'rectangular'. It rules out deterministic relationships between elements of X (why?).

or

4. Consider the 'old-fashioned' regression model

$$Y_i = \alpha + \beta X_i + \epsilon_i, \qquad i = 1, \dots, n,$$

where $\epsilon \stackrel{\text{iid}}{\sim} \text{Normal}(0, \sigma^2)$.

- (a) Write this model as a DAG, using a plate. Hint: α , β , and σ^2 are parameters but ϵ is not. [5 marks]
- (b) Generalize this DAG so that each case gets its own (α_i, β_i) , where the α 's and β 's are each exchangeable. [5 marks]

Answer. For (a) and (b):

(c) Make explicit choices for the marginal and conditional distributions in the DAG, and identify the restriction that forces the generalized model to behave like the old-fashioned one. [5 marks]

Answer. I'll write the model in extensive form:

$$\begin{split} Y_{i} \mid \alpha_{i}, \beta_{i}, \sigma^{2} \sim \mathrm{N}(\alpha_{i} + \beta_{i} X_{i}, \sigma^{2}) & i = 1, \dots, n \\ \alpha_{i} \mid \mu_{A}, \tau_{A}^{2} \sim \mathrm{N}(\mu_{A}, \tau_{A}^{2}) & i = 1, \dots, n \\ \beta_{i} \mid \mu_{B}, \tau_{B}^{2} \sim \mathrm{N}(\mu_{B}, \tau_{B}^{2}) & i = 1, \dots, n \\ \mu_{A} \sim \mathrm{N}(0, 1000^{2}) & \\ \mu_{B} \sim \mathrm{N}(0, 1000^{2}) & \\ \tau_{A}^{2} \sim \mathrm{Ga}(0.001, 0.001) & \\ \tau_{B}^{2} \sim \mathrm{Ga}(0.001, 0.001) \end{split}$$

where $\Theta_A = (\mu_A, \tau_A^2)$ and similarly for Θ_B . The restrictions are $\tau_A^2 \to 0$ and $\tau_B^2 \to 0$, which would force each α_i to the same unknown value μ_A , and each β_i to the same unknown value μ_B .