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In the homeworks, questions with marks are officially ‘exam-style’, although you can ex-

pect any homework question to appear as an exam question, unless it is explicitly ‘not

examinable’.

Hand in Q2, Q3, and Q6.

1. Prove that convergence in mean square implies convergence in probability. [10 marks]

Answer. Xn converges in probability to X exactly when Pr(|Xn −X|)→ 0. X converges in

mean square to X exactly when E{(Xn −X)2} → 0. Hence

Pr(|Xn −X| < ε) = 1− Pr(|Xn −X| ≥ ε)

= 1− Pr{(Xn −X)2 ≥ ε2}

≥ 1− E{(Xn −X)2}
ε2

by Markov’s inequality

→ 1 if Xn
m.s.−−−−→ X

for all ε > 0, as required.

2. State Brouwer’s Fixed Point Theorem, and prove it, using a diagram, in the 1D case.

Prove that every transition matrix P has at least one fixed point. [10 marks]

Answer. Brouwer’s FPT states that if X is a closed bounded (i.e. compact) convex subset of

Euclidean space, and f : X→ X is a continuous function, then there is at least one x0 ∈ X for

which x0 = f(x0). Here is the diagram.

1



Let P be a d × d transition matrix, and let X = {x ∈ Rd : xi ≥ 0,
∑

i xi = 1}. First, check

that X is a convex subset of Rd. Let x, y ∈ X, α ∈ [0, 1], and define z := αx+ (1−α)y. Then

zi ≥ 0, and

zT1 = [αxT + (1− α)yT ]1 = αxT1 + (1− α)yT1 = α+ (1− α) = 1,

showing that
∑

i zi = 1, and the z ∈ X, as required.

Now define f : x 7→ P Tx. It is easy to check that f is a continuous function (no need to do

this!). Now show that f(X) ⊂ X. Let y = f(x) = P Tx, for x ∈ X. First, P ≥ 0 and x ≥ 0,

and so yi ≥ 0. Second,

1Ty = 1T (P Tx) = (P1)Tx = 1Tx = 1

and so
∑

i yi = 1. Hence y ∈ X. So f is continuous and f : X→ X, satisfying the conditions

of the FPT. Thus there exists an x0 satisfying x0 = P Tx0, or xT
0 = xT

0P , which defines x0 as

a stationary distribution for P .

3. Suppose that X0, X1, . . . are IID. What does the transition matrix look like? What

is the stationary distribution? Is it unique? [10 marks]

Answer. In this case pij , the probability of moving from i to j, is the same for all i. Hence

P = 1µT for some probability vector µ. Suppose that π is any stationary distribution. Then

πT = πTP = πT (1µT ) = (πT1)µT = µT .

So π = µ is the unique stationary distribution.

4. Let P and Q be transition matrices with a common stationary distribution π.

(a) Prove that if 0 ≤ α ≤ 1, then R = αP +(1−α)Q also has stationary distribution

π. Explain how sampling from R can be implemented in practice. [10 marks]

Answer. We start by checking that R is indeed a transition matrix as claimed. Clearly

rij ≥ 0, and also

R1 = [αP + (1− α)Q]1 = αP1 + (1− α)Q1 = α1 + (1− α)1 = 1.
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Now we show that πTR = πT :

πTR = πT [αP + (1− α)Q] = απTP + (1− α)πTQ = απT + (1− α)πT = πT ,

as required.

Imagine tossing a coin Y with outcomes {h, t}, where Pr(Y = h) = α, and the tosses

are independent of each other and of the chain. Suppose that at each step we toss this

coin, and select transition matrix P for Y = h, and Q for Y = t. Then

Pr(Xt+1 = j |Xt = i) =
∑

y∈{h,t}

Pr(Xt+1 = j |Xt = i, Y = y) · Pr(Y = y) by the LTP

= pij · α+ qij · (1− α) = rij ,

where LTP is the Law of Total Probability. So R represents a random choice between

P and Q.

(b) Prove that R = PQ also has stationary distribution π. Explain how sampling

from R can be implemented in practice. [10 marks]

Answer. Again, we start by checking that R is indeed a transition matrix as claimed.

Clearly rij ≥ 0, and also

R1 = (PQ)1 = P (Q1) = P1 = 1,

as required. Now we show that πTR = πT :

πTR = πT (PQ) = (πTP )Q = πTQ = πT ,

as required.

Imagine first moving the chain according to P , and then moving the chain according to

Q. In this case, the two-step transition probabilities are

Pr(Xt+2 = j |Xt = i) =
∑
k

Pr(Xt+2 = j |Xt = i,Xt+1 = k) · Pr(Xt+1 = k |Xt = i) LTP

=
∑
k

Pr(Xt+2 = j |Xt+1 = k) · Pr(Xt+1 = k |Xt = i)

=
∑
k

qkj · pik = (PQ)ij = Rij .

So R represents a two-step Markov chain where the first move is according to P , and

the second according to Q.

5. Suppose that a transition matrix P can be written in terms of two smaller transition

matrices P1 and P2 as

P =

(
P1 0

0 P2

)
.

Show that P is not irreducible, and that it has multiple stationary distributions. [10 marks]

Answer. P is irreducible if it is possible to get from any i to any j in a finite number of

steps. However, in this case it is impossible for a chain that starts in the first block to visit the
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second, and impossible for a chain that starts in the second block to visit the first. Therefore

P is not irreducible.

Let µ1 and µ2 be stationary distributions of P1 and P2. Let πT = [αµT
1 , (1 − α)µT

2 ] for some

α ∈ [0, 1]. Note that πi ≥ 0 and

πT1 = [αµT

1 , (1− α)µT

2 ]1 = αµT

111 + (1− α)µT

212 = α+ (1− α) = 1.

Hence π is a probability vector. Now compute

πTP = [αµT

1 , (1− α)µT

2 ]

(
P1 0

0 P2

)
=
(
αµT

1P1 (1− α)µT
2P2

)
= [αµT

1 , (1− α)µT

2 ] = πT .

Hence π is a stationary distribution for P . However, the value α was arbitrary, and hence

there are an uncountable number of stationary distributions for P , one for each element of

α ∈ [0, 1].

6. Consider the transition matrix

P =


0 1 0 0

0 0 0.5 0.5

0 0 0 1

1 0 0 0

 .

How would you demonstrate that this matrix is irreducible and aperiodic? How could

you approximate its unique stationary distribution using R? [10 marks]

Answer. A sufficient condition for P to be irreducible and aperiodic is pij(n) > 0 for all ij

for some n, where pij(n) is the probability of moving from i to j in exactly n steps. But as

pij(n) = [Pn]ij , we can check for this by computing large powers of P . Here is some R code

which you can paste in:

P <- matrix(c(

0, 1, 0, 0,

0, 0, 0.5, 0.5,

0, 0, 0, 1,

1, 0, 0, 0), byrow = TRUE, nrow = 4)

Q <- diag(1, 4) # Id matrix

for (i in 1:100)

Q <- P %*% Q # Q = P^100

print(all(Q > 0)) # TRUE

If you inspect Q you will see:

> Q

[,1] [,2] [,3] [,4]

[1,] 0.2857144 0.2857157 0.1428568 0.2857131

[2,] 0.2857131 0.2857144 0.1428579 0.2857146

[3,] 0.2857135 0.2857128 0.1428580 0.2857157

[4,] 0.2857157 0.2857135 0.1428564 0.2857144
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which looks a lot like P 100 = Q ≈ 1 (2, 2, 1, 2)/7. We should not be surprised because we have

proved that |pij(n)− πj | ≤ λn · c for some λ ∈ (0, 1). Thus all the rows of Pn are converging

to the same unique stationary distribution; in this case, the distribution πT = (2, 2, 1, 2)/7.

So the crude way to find π is just to raise P to a very large power, and use the first (or any)

row.
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