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In the homeworks, questions with marks are officially ‘exam-style’, although you can ex-

pect any homework question to appear as an exam question, unless it is explicitly ‘not

examinable’.

Hand in Q1–Q4.

1. Let Xi be the number of eruptions of volcano i during time interval (ti, today], mea-

sured in years, for i = 1, . . . ,m. Let each volcano have its own eruption rate λi (units

of /yr) and model the eruption rates as exchangeable. Write down the DAG for

this model, using Θ for the hyperparameters (hint: use a plate). Write the extensive

form of the model, making sensible choices for Θ, and the marginal and conditional

distributions. [10 marks]

Answer. Here is the DAG (I did not use Θ but wrote it for the actual model below):

I will let Θ = (α, β).

Xi | λ ∼ Pois(λi · (today− ti)) i = 1, . . . ,m

λi | α, β ∼ Gam(α, β) i = 1, . . . ,m

α ∼ Gam(0.001, 0.001)

β ∼ Gam(0.001, 0.001)
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2. Write down the contents of the Volcanoes.bug file, and the command in rjags used to

initialise the model in R, based on observations in the vectors xobs and times, and

the value today = 2016. Specify four chains. [10 marks]

Answer.

#### write out to Volcanoes.bug

cat("

#### Volcanoes model

model {

for (i in 1:m) {

X[i] ~ dpois(lambda[i] * (today - times[i]))

lambda[i] ~ dgamm(alpha, beta)

}

alpha ~ dgamm(0.001, 0.001)

beta ~ dgamm(0.001, 0.001)

}

", file = "Volcanoes.bug")

#### here is the jags model

mydata <- list(X = xobs, m = length(xobs), times = times, today = 2016)

myvolc <- jags.model("Volcanoes.bug", data = mydata, n.chains = 4)

3. Explain how Gibbs sampling is used in this model, to estimate expectations condi-

tional on X = xobs. [10 marks]

Answer. We are given xobs, and so our target distribution is

p(α, β, λ1:m | xobs) ∝ p(α, β, λ1:m, x
obs)

= p(α) p(β)

m∏
i=1

p(λi | α, β) ·
m∏
i=1

p(xobsi | λi),

where we have explicit choices for each of the marginal and conditional distributions. Gibbs

sampling cycles through the full conditionals of the m + 2 random quantities. Hence, for

current value (αt, βt, λ1:m,t) one full iteration of the Gibbs sampler is

(a) Sample a new value for α:

αt+1 ∼ p(α | βt, λ1:m,t, xobs)

∝ p(α, βt, λ1:m,t, x
obs)

∝ p(α)

m∏
i=1

p(λit | α, βt),

after dropping multiplicative constants that do not depend on α.
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(b) Sample a new value for β:

βt+1 ∼ p(β | αt+1, λ1:m,t, x
obs)

∝ p(αt+1, β, λ1:m,t, x
obs)

∝ p(β)

m∏
i=1

p(λit | αt+1, β),

after dropping multiplicative constants that do not depend on β.

(c) Sample a new value for λ1:

λ1,t+1 ∼ p(λ1 | αt+1, βt+1, λ2:m,t, x
obs)

∝ p(αt+1, βt+1, λ1, λ2:m,t, x
obs)

∝ p(λ1 | αt+1, βt+1) p(xobs1 | λ1),

after dropping multiplicative constants that do not depend on λ1.

(d) Same for λ2:m:

λi,t+1 ∼ p(λi | αt+1, βt+1) p(xobsi | λi), i = 2, . . . ,m.

This gives us a new value (αt+1, βt+1, λ1:m,t+1).

After going through these steps for thousands of iterations, and checking convergence, the

resulting sample is used to estimate expectations using Cesàro averages, which converge in

mean square to the true expectations under the target distribtution p(· | xobs), according to

the Ergodic Theorem.

4. For each unobserved random quantity in your model, write down the kernel of the full

conditional distribution, conditional on X = xobs, and identify those full conditionals

which have recognisable distributions. [10 marks]

(In an exam, you would be given an explicit extensive form for the model, but in this

case there is only one sensible choice.)

Answer. Using the same steps as above:

(a)

p(α | β, λ1:m, xobs) ∝ p(α)
m∏
i=1

p(λi | α, β)

∝ α0.001−1e−0.001α ·
m∏
i=1

λα−1
i e−βλi

∝ α0.001−1e−0.001α(λ1 × · · · × λm)α

= α0.001−1(e−0.001 × λ1 × · · · × λm)α

which is not a recognisable distribution.
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(b)

p(β | α, λ1:m, xobs) ∝ p(β) ·
m∏
i=1

p(λi | α, β)

∝ β0.001−1e−0.001β ·
m∏
i=1

λα−1
i e−βλi

∝ β0.001−1e−0.001β ·
m∏
i=1

e−βλi

= β0.001−1e−(0.001+λ1+···+λm)β ,

which is the kernel of a Ga(0.001, 0.001 + λ1 + · · ·+ λm) distribution.

(c)

p(λ1 | α, β, λ2:m, xobs) ∝ p(λ1 | α, β) p(xobs1 | λ1)

∝ (λ1)α−1e−βλ1 · e−d1λ1
(d1λ1)x

obs
1

(xobs1 )!

∝ (λ1)α+x
obs
1 −1e−(β+d1)λ1 ,

where d1 = today− t1. This is the kernel of a Ga(α+ xobs1 , β + d1) distribution.

(d) Same for λ2:m.

So m+1 of the full conditionals have Gamma distributions, but that of α has an unrecognisable

distribution.

5. (Not examinable) Investigate how JAGS deals with full conditionals which do not

have recognisable distributions.

Answer. If you dig around in the manual you will find that JAGS uses slice sampling, see

https://en.wikipedia.org/wiki/Slice_sampling.
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