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In the homeworks, questions with marks are officially ‘exam-style’, although you can ex-

pect any homework question to appear as an exam question, unless it is explicitly ‘not

examinable’.

Nothing to hand in, since the unit finishes today (3 Mar). The answers will be put on

the unit webpage next Fri.

1. Have a really good look at Homework 5, to make sure you can follow all the steps of

creating a statistical model and Gibbs-sampling its conditional distribution.

2. Show that the set of distributions which satisfy detailed balance with respect to P is

a strict subset of the set of stationary distributions of P . [10 marks]

Answer. µ satisfies detailed balance with respect to P exactly when

µiPij = µjPji for all i, j.

µ is a stationary distribution of P exactly when∑
i
µiPij = µj for all j.

Every µ which satisfies detailed balance is a stationary distribution:∑
i
µiPij =

∑
i
µjPji by detailed balance

= µj

∑
i
Pji

= µj

because the rows of P sum to 1.

To show that the converse does not hold, we must find a P and a µ for which µ is a stationary

distribution, but does not satisfy detailed balance. The obvious place to look is periodic P ’s.

Let

P =

0 1 0

0 0 1

1 0 0

 .

Then µ = (1/3, 1/3, 1/3) is a stationary distribution. However, µ1P12 = 1/3 but µ2P21 = 0,

and so detailed balance is not satisfied.

3. I was browsing a meta-analysis on the efficacy and safety of statin treatment (see

doi:10.1093/qjmed/hcq165), which included the following passage:
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(a) Explain how the authors assessed the convergence of their MCMC sampler. [15 marks]

Answer. We are told that the authors used the Gelman-Rubin approach. Almost

certainly they mean they inspected the gelman.diag(rsam) and gelman.plot(rsam)

diagnostics, where rsam is the output from an MCMC sampler, as a coda object. These

diagnostics require multiple chains, but we are not told how many they used. We are

also told that convergence was assessed based on trace plots and time series plots. There

seems to be some confusion about how these authors assessed convergence! The com-

mand traceplot(rsam) would produce time series plots, but perhaps they mean they

looked at the autocovariance functions for each quantity? We don’t know.

Let’s assume that they used gelman.diag(rsam). In this case they estimate a scalar

uncertainty measure for each random quantity in two ways. First, by averaging the

results from assessments made separately on multiple chains; call this w̄. Secondly, by

pooling all the chains together, call this b. If the initial values for the chains are widely

dispersed relative to the target (the posterior distribution), then w̄ will underestimate

the uncertainty, and b will overestimate it, and hence b/w̄ will exceed 1. Once the chain

has converged, the ratio will be 1. So gelman.diag(rsam) computes the ratio b/w̄, and

also the upper bound on a 95% confidence interval for it, so that we can assess whether

the ratio is at or above 1, for the number of iterations we have done. gelman.plot(rsam)

does the same thing, except for longer and longer subchains, so that we can see from a

plot when the ratio b/w̄ first ‘touches down’ at 1.

(b) Explain how the authors assessed the accuracy of their MCMC estimates. [10 marks]

Answer. They computed the Monte Carlo Standard Error (MCSE) for each random

quantity. There are a number of ways of doing this: I like batch means, using the

batchSE(rsam) command. One long simulation is divided into q batches of length a,

each one large enough that the sample mean from the batches are—one hopes!—mutually

independent. Then these sample means are combined together as independent estimates

of the true expectation, to give a measure of uncertainty, which takes account of the
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number of batches. This approach can be applied to a single chain, but we get a much

better estimate from multiple independent chains, because in this case estimates from

independent chains are definitely mutually independent.

The authors satisfied themselves that the MCSE was less than 5% of the sample standard

deviation for each random quantity. This is a common rule of thumb.

(c) Identify the information not given in this text which you would need to replicate

their assessment of convergence and of the accuracy of their estimates. [10 marks]

Answer. See above. I would want to know how many chains they used for both

parts. I like at least 8 for assessing convergence, and at least 4 for computing the MC-

SEs. I would want to see the diagnostics for convergence, say the figure produced by

gelman.plot(rsam) for each random quantity. I would also want to see summary(rsam)

which has the sample standard deviation and also the MCSE for the estimated expec-

tation for each random quantity.

4. (Not examinable) Study the handout on convergence diagnostics, and create an R

function brooks.diag which implements this test. You may find it helpful to look at

the first few lines of gelman.diag in the coda package in R. Insert your brooks.diag

function into your Rats.R script, to test the convergence of the sampler.

Answer. Here is my function.

#### Other Brooks & Gelman diagnostic

## from Brooks & Gelman (1998), sec 3; also Lunn et al (2013), The

## BUGS book, sec 4.4.2.

brooks.diag <- function(x, level = 0.8) {

x <- as.mcmc.list(x)

if (nchain(x) < 2)

stop("You need at least two chains")

if (level <= 0 || level >= 1)

stop("\’level\’ should lie between 0 and 1")

alpha <- 1 - level

probs <- c(alpha/2, 1 - alpha/2)

## apply diagnostics to second half of chain

x <- window(x, start = end(x)/2 + 1)

x <- lapply(x, as.matrix)

## each chain in turn

widths <- sapply(x, function(y) {

ci <- apply(y, 2, quantile, probs = probs)

ci[2, ] - ci[1, ]

})

wbar <- rowMeans(widths)

## all chains together
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y <- do.call("rbind", x)

ci <- apply(y, 2, quantile, probs = probs)

b <- ci[2, ] - ci[1, ]

b / wbar

}
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