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This is a self-contained introduction to Markov Chain Monte Carlo
(MCMC), a sampling method for estimating expectations which
has revolutionized the practice of Bayesian inference. There are
now many books on MCMC: I like Robert and Casella (2004) for its
wider scope, although I’m now a bit behind the times. For insight,
I recommend Besag et al. (1995) and Besag (2004). Grimmett and
Stirzaker (2001, ch. 6) is an excellent one-chapter summary of
Markov chains, consistent with that book’s uniformly high standard
of clarity and insight; I will give more detailed references to their
ch. 6 below.

Warning! This is an introduction to the mathematics of MCMC.
The practice of MCMC is a large and rapidly-evolving subject.
Brooks et al. (2011) would be a good place to start.

Reminder: properties of expectation.

1. Monotonicity: if X ≥ 0, then E(X) ≥ 0.

2. Linearity: E(aX + bY) = a E(X) + b E(Y).

3. Convexity: minX ≤ E(X) ≤ maxX.

4. Triangle inequality: |E(X)| ≤ E{|X|}.

5. Indicator property: E(1X=x | A) = Pr(X = x | A).

6. Law of Total Probability (LTP): if {Bi} is a partition, then

Pr(A) = ∑ i Pr(A | Bi) · Pr(Bi).

7. Law of Iterated Expectation (LIE):

E[g(X, Y)] = E[E{g(X, Y) | X}].

8. Taking Out What is Known (TOWK):

E{g(X) · h(X, Y) | X} = g(X) · E{h(X, Y) | X}.

9. Double Whammy:

E[g(X) · h(X, Y)] = E[g(X) · E{h(X, Y) | X}].

10. Markov’s inequality: if X ≥ 0, then Pr(X ≥ a) ≤ E(X)/a.
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3.1 Markov chains

Let X := (X0, X1, . . . ) be a sequence of random quantities with
common realm X, where |X| = r, for some finite r. For Markov
chains, it is common to refer to X as the state-space of X. I will write

X :=
�

1, . . . , r
�

without loss of generality. X is a Markov chain exactly when

Xt+1 ⊥⊥ X0:(t−1) | Xt for all t = 0, 1, . . . , (3.1)

where X i:j := (Xi, . . . , Xj) for i ≤ j and ∅ otherwise. That is, Xt+1

is conditionally independent of the ‘past’ given the ‘present’. Using
the equivalent representations of conditional independence given in
Section 2.4, X is a Markov chain if and only if

Pr(Xt+1 = j | X0 = x0, . . . , Xt = i) = Pr(Xt+1 = j | Xt = i). (3.2)

As a DAG,
X0 �� X1 �� X2 �� · · · (3.3)

In the case where these probabilities are invariant to t, the
Markov chain is termed homogeneous. This is the case we are in-
terested in. As |X| is finite, the transition probabilities of a homoge-
neous Markov chain can be packaged into an r × r matrix

P :=




p11 . . . p1r
...

. . .
...

pr1 . . . prr


 where pij := Pr(Xt+1 = j | Xt = i),

the same for all t. In other words, pij is the probability of going
from i to j in one step. By construction, pij ≥ 0 and P 1 = 1,
where 1 is an r-vector of ones. These are the defining properties of
a stochastic matrix, although I will use the term ‘transition matrix’,
which is common for Markov chains.

Let pij(1) := pij, and let pij(n) represent the probability of going
from i to j in exactly n steps. Then

pij(2) = p(X2 = j | X0 = i)

= ∑ k Pr(X2 = j | X1 = k, X0 = i) · Pr(X1 = k | X0 = i)

= ∑ k Pr(X2 = j | X1 = k) · Pr(X1 = k | X0 = i) by (3.1)

= ∑ k pkj · pik = ∑
k

pik · pkj = [P2]ij.

By iterating this result we get pij(n) = [Pn]ij. Now let µi(t) := Pr(Xt = i),
and µ(t) :=

�
µ1(t), . . . , µr(t)

�
. µ(t) is a point in the (r − 1)-

dimensional simplex,

Sr−1 :=
�

x ∈ Rr : xi ≥ 0, ∑ i xi = 1
�

. (3.4)

Then

µj(n) = Pr(Xn = j)

= ∑ i Pr(Xn = j | X0 = i) · Pr(X0 = i) by the LTP

= ∑ i pij(n) · µi(0),
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or, in matrix terms,
µ(n)T = µ(0)T Pn.

In other words, the n-step ahead probability distribution can be
computed directly from the current probability distribution and the
n-th power of the transition matrix.

Homogeneous Markov chains have many fascinating properties,
but I am going to be very selective. P is termed irreducible if it is
possible to get from every i to every j in a finite number of steps;
i.e. if for every i, j there is an n for which pij(n) > 0 (this n possibly
depending on i, j). In P, state i is termed aperiodic if Xt = i can
happen at irregular times. P is termed aperiodic if all of its states are
aperiodic.1 If pij > 0 then P is necessarily irreducible and aperiodic. 1 In an irreducible P, the existence of a

single aperiodic state implies that P is
aperiodic.

The following is a standard result from Markov chain theory; see
Grimmett and Stirzaker (2001, sec. 6.6) or Whittle (2000, ch. 9).

Theorem 3.1. Let P be the transition matrix for a homogeneous Markov
chain with a finite state-space. If P is irreducible and aperiodic then there
exists a unique probability vector π satisfying πT P = πT.

These conditions are required for uniqueness, but not for exis-
tence. Brouwer’s Fixed Point Theorem can be used to show that
every P has a π satisfying the above property.2 For π �→ PTπ is 2 Brouwer’s FPT states that if

f : X → X is continuous and X is a
convex and compact subset of Eu-
clidean space, then f has a fixed point
x0 satisfying x0 = f (x0). It is trivial
to prove when X ⊂ R (a diagram
suffices), but much harder to prove for
X ⊂ Rr .

a continuous map from Sr−1 to Sr−1, and therefore it must have a
fixed point satisfying π = PTπ, or πT = πT P.

The probability vector π is termed the stationary distribution of P,
because

πT Pn = πT PPn−1 = πT Pn−1 = · · · = πT,

with P0 = I. In other words, if the distribution of Xt is equal to π,
then the distribution of Xt+n is equal to π for all n > 0.

3.2 Convergence of Cesàro averages

If X is a sequence of random quantities with a common state-space
X, and g : X → R is a specified function, the Cesàro average of�

g(Xt); t ≥ 1
�

is defined as

1
n

n

∑
t=1

g(Xt). (3.5)

The crucial question for MCMC applications concerns the large-
n behaviour of the Cesàro averages when X is a homogeneous
Markov chain. In particular, do they converge as n → ∞ and, if so,
what do they converge to?3 3 I am reliably informed that ‘Chezaro’

is the right pronounciation.This question requires us to be precise about the meaning of
‘convergence’ when dealing with random quantities. There are
several different types, but I will focus on convergence in mean
square. Here is the general definition; if the state-space is finite the
first condition is always satisfied.

Definition 3.1 (Convergence in mean square). A sequence X1, X2, . . .
converges in mean square to X exactly when E(|Xn|2) < ∞ for all n
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and
lim

n→∞
E
�
(Xn − X)2� = 0.

This is written Xn
m.s.−−−→ X.

Convergence in mean square is a strong form of convergence: it
implies convergence in probability.4 See Grimmett and Stirzaker 4 Easily proved using Markov’s in-

equality.(2001, ch. 7) for more details about different types of convergence.
In this section I provide a self-contained proof for a fundamental

property of Markov chains, which is that if X0, X1, . . . is a homoge-
neous Markov chain with transition matrix P, and if P is irreducible
and aperiodic, then for any initial distribution π0,

1
n

n

∑
t=1

g(Xt)
m.s.−−−→ E{g(X); π}

where E{· ; π} is the expectation under the stationary distribution
X ∼ π.5 This means that if x0, x1, . . . , xn is a realisation of X0:n, 5 In the case where the state-space is

non-finite, this result would only hold
if the expectation was well-defined;
e.g. if g was a bounded continuous
function.

then the Cesàro average
1
n

n

∑
t=1

g(xt)

is a good estimate of E{g(X); π} when n is sufficiently large. To
anticipate the next section, if we can simulate a Markov chain with
our target distribution as its stationary distribution, then we can
use the Cesàro averages of that simulation to approximate any
expectations of interest.

As usual, I will concentrate on the case where the state-space is
finite. There are three key results, of which this is the first.

Theorem 3.2. Let P be the transition matrix for a homogeneous Markov
chain with a finite state-space. If P is irreducible and aperiodic with
stationary distribution π then there exists a λ ∈ (0, 1) and a positive
constant c for which

|pij(n)− πj| ≤ λn · c (3.6)

for all i, j; if all elements of P are positive, then c = 1.

Proof. This proof has two parts. First, I prove the special case where
all the elements of P are strictly positive; then I generalize to the
case where some of the elements of P may be zero.6 6 I wish I could claim some credit

for this beautiful proof, but it was
sketched for me by Prof. Balint Toth.
My original proof was much clunkier
and used Perron’s theorem.

So suppose that pij > 0. Define Π := 1πT, and note that

PΠ = ΠP = Π2 = Π. (†)

Because all elements of P are positive, there is an α ∈ (0, 1) for
which P − αΠ ≥ 0, where the relation A ≥ 0 indicates that aij ≥ 0
for all i, j. Now define

Q :=
1

1 − α
(P − αΠ),

and note that Q ≥ 0 and Q1 = 1, so that Q is a transition matrix.
Also note that

QΠ = ΠQ = Π. (‡)
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Rearrange to give P = (1 − α)Q + αΠ, from which

Pn =
�
(1 − α)Q + αΠ

�n

= (1 − α)nQn +
n

∑
i=1

�
n
i

�
(1 − α)n−iαi · Π

= (1 − α)nQn +
�
1 − (1 − α)n� Π.

In the second line the n-th power is expressed using the Binomial
expansion, and all of the product terms in G and Π simplify to
Π according to (†) and (‡). The third line recognises that because
α ∈ (0, 1) these are the probabilities of the Binomial(n, α) distri-
bution. Finally, write |A| for the matrix with entries |aij|. Then
subtracting Π from both sides gives

|Pn − Π| = (1 − α)n|Qn − Π| ≤ (1 − α)n 11T,

because Qn and Π are both transition matrices. Taking the (i, j)-th
element shows that |pij(n)− πj| ≤ λn, where λ := (1 − α) ∈ (0, 1).
This proves that c = 1 in (3.6) in the special case where all of the
elements of P are positive.

Now for the more general case. Because P is aperiodic, there is
an n0 for which all the elements of Pn0 are positive.7 Let α̃ and �Q 7 If P is aperiodic then for each i, j

there is an nij for which pij(n) > 0
for all n ≥ nij. The n0 in this proof is
n0 := max{nij}.

be the α and Q for Pn0 , following the same route as before. Write
Pn = Pkn0+m where k := �n/n0� and m ∈ {0, 1, . . . , n0 − 1}. Then
(remembering that ΠP = Π),

Pn − Π =
�
Pn0

�kPm − ΠPm

=
�
(1 − α̃)k �Qk +

�
1 − (1 − α̃)k�Π

�
Pm − ΠPm

= (1 − α̃)k( �Qk − Π)Pm,

following the same route as before. So

|Pn − Π| ≤ (1 − α̃)k| �Qk − Π||Pm|
≤ (1 − α̃)k

= (1 − α̃)

�
n

n0

�

≤ (1 − α̃)
n−1
n0

=
�
(1 − α̃)

1
n0

�n
· c

where c := (1 − α̃)−1/n0 ≥ 1. This proves the result in (3.6), with
λ := (1 − α̃)1/n0 ∈ (0, 1).

The second stage is to prove that the proportion of time X
spends in state j converges in mean square to the probability of
the stationary distribution for state j.

I will use the Big O notation to simplify the proof; see Knuth
(1973, sec. 1.2.11.1). If f and g are two functions with argument
n ∈ N, then we write f (n) = O

�
g(n)

�
exactly when there exists an

n0 and c such that | f (n)| ≤ c|g(n)| for all n ≥ n0. So f (n) = O(n)
indicates that for n large enough, | f (n)| is at most linear in n, and
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f (n) = O(1) indicates that for n large enough, f (n) is bounded; all
constants are O(1). Some obvious properties, used below, are that
O(n) + O(n) = O(n), O(1)× O(n) = O(n), and n−2 O(n) = O(n−1).

Theorem 3.3. Under the conditions given in Theorem 3.2,

1
n

n

∑
t=1
1Xt=j

m.s.−−−→ πj,

for all j.

Proof. Fix j. Then
�

1
n

n

∑
t=1
1Xt=j − πj

�2

=

�
1
n

n

∑
t=1

(1Xt=j − πj)

�2

=
1
n2

�
n

∑
t=1

(1Xt=j − πj)
2 + 2

n

∑
t=1

n

∑
s=t+1

(1Xt=j − πj) · (1Xs=j − πj)

�
,

after multiplying out. Hence

E





�
1
n

n

∑
t=1
1Xt=j − πj

�2




=
1
n2

n

∑
t=1

E
�
(1Xt=j − πj)

2�

� �� �
=: v1(n)

+
2
n2

n

∑
t=1

n

∑
s=t+1

E
�
(1Xt=j − πj) · (1Xs=j − πj)

�

� �� �
=: v2(n)

,

by Linearity. We need to show that the value of the expectation
goes to zero as n → ∞. As the value is bounded above by

1
n2

�
v1(n) + 2|v2(n)|

�
,

the rest of the proof consists in showing that v1(n) = O(n) and
|v2(n)| = O(n). For then the value of the expectation is bounded
above by

1
n2

�
O(n) + O(n)

�
=

1
n2 O(n) = O

�
1
n

�
,

which goes to zero as n → ∞, as required.
For v1(n), E{(1Xt=j − πj)

2} = O(1) by Convexity, and therefore
the sum of n of these expectations is O(n), as required.

The behaviour of v2(n) is more interesting. For an individual
term,

E
�
(1Xt=j − πj) · (1Xs=j − πj)

�

= E
�
(1Xt=j − πj) · E(1Xs=j − πj | Xt)

�
Double Whammy

= E
�
(1Xt=j − πj) · (pXt ,j(s − t)− πj)

�
, (†)

where the last line uses

E(1Xs=j − πj | Xt = i) = E(1Xs=j | Xt = i)− πj Linearity

= Pr(Xs = j | Xt = i)− πj Indicator property

= pij(s − t)− πj.
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Hence

|v2(n)| ≤ ∑ t ∑ s>t |E
�
(1Xt=j − πj) · (1Xs=j − πj)

�
|

= ∑ t ∑ s>t |E
�
(1Xt=j − πj) · (pXt ,j(i − t)− πj)

�
| from (†)

≤ ∑ t ∑ s>t E
�
|1Xt=j − πj| · |pXt ,j(i − t)− πj)|

�
Triangle inequality

≤ ∑ t ∑ s>t E
�
|1Xt=j − πj| · λs−t · c

�
Theorem 3.2 and Monotonicity

= ∑ t ∑ s>t O(1) · λs−t,

the last step because c · E
�
|1Xt=j − πj|

�
= O(1). Now lay out a

tableau in t and s to identify all of the λs−t terms in the double
sum:

t = 1 t = 2 t = 3 . . . t = n
s = 1
s = 2 λ1

s = 3 λ2 λ1

s = 4 λ3 λ2 λ1

...
...

...
...

. . .
s = n λn−1 λn−2 λn−3 . . .

For each column, the sum is less than 1/(1 − λ), a positive constant
not depending on n. There are n columns altogether, and thus

|v2(n)| ≤ ∑ t ∑ s>t O(1) · λs−t = O(1) · O(n) = O(n),

as needed to be shown.

Theorem 3.3 supplies the required result for the final stage;
happily this one is straightforward.

Theorem 3.4 (Mean square convergence of Cesàro averages). Under
the conditions given in Theorem 3.2,

1
n

n

∑
t=1

g(Xt)
m.s.−−−→ E{g(X); π},

for all g.

Proof. It is helpful to write

g(x) =
r

∑
j=1

gj · 1x=j, and E{g(X); π} =
r

∑
j=1

gj · πj, (†)

writing gj for g(j). Then

1
n ∑ t g(Xt)− E{g(X); π}

=
1
n ∑ t

�
g(Xt)− E{g(X); π}

�

=
1
n ∑ t ∑ j gj ·

�
1Xt=j − πj

�
from (†)

= ∑ j gj ·
1
n ∑ t

�
1Xt=j − πj

�

= ∑ j gj ·
�

1
n ∑ t 1Xt=j − πj

�
.
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Squaring this and using the Cauchy-Schwarz Inequality gives

�
1
n ∑ t g(Xt)− E{g(X); π}

�2
≤ ∑ j g2

j · ∑ j

�
1
n ∑ t 1Xt=j − πj

�2
.

The result then follows, on taking expectations, by Monotonicity,
Linearity, and Theorem 3.3.

There is one final point to make, so as not to give a misleading
impression. Theorem 3.2 has geometric convergence to the station-
ary distribution, which is rapid. Generalizations of this result to a
wider class of irreducible and aperiodic Markov chains (i.e. those
with non-finite state-spaces) will not necessarily achieve the same
rapid convergence.

3.3 The Metropolis-Hastings (MH) algorithm

Section 3.2 proved that Cesàro averages of irredicible and aperiodic
Markov chains with finite state-spaces converge to the expectation
under the stationary distribution. So our task, if we want to com-
pute expectations with respect to some target distribution π, is to
construct an appropriate Markov chain with our target distribution
as its stationary distribution. I will continue to assume that the
state-space is finite.

First, restrict attention to a particular type of Markov chain. Let
µ be a probability distribution on X. µ satisfies detailed balance with
respect to P exactly when

µiPij = µjPji for all i, j ∈ 1, . . . , r, (3.7)

where r = |X|. This is r2 separate conditions, although r of these,
when i = j, are automatically satisfied. These conditions are not
hard to understand: with respect to µ, the probability that Xt is in
i and then moves to j is the same as the probability that Xt is in j
and then moves to i, for all i and j. For this reason, P is said to be
reversible with respect to µ.

If µ satisfies detailed balance with respect to P then it is straight-
forward to check that µ is a stationary distribution for P:

∑ i µiPij = ∑ i µjPji = µj ∑ i Pji = µj,

i.e. µT P = µT. Grimmett and Stirzaker (2001, sec. 6.5) provide a very
clear analogy to understand the relationship between the stationary
distribution and reversibility.

If P is irredicible and aperiodic, ensuring that a stationary dis-
tribution exists and is unique, then a distribution which satisfies
detailed balance with respect to P is the unique stationary distribu-
tion of P. So the objective is to take our target distribution π and
construct an irreducible and aperiodic Markov chain with transition
matrix P, for which π satisfies detailed balance with respect to P.

Surprisingly, not only is this possible, but it is easy, using the
Metropolis-Hastings (MH) algorithm. The target distribution is π.
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The MH algorithm requires a proposal distribution

h(i → j) := Pr( �X = j | Xt = i), (3.8a)

which is invariant to t; �X is a ‘temporary’ random quantity with the
same state-space as Xt. The MH algorithm for the transition matrix
P(i → j) := Pij is made up of two parts:

1. Letting i = Xt, sample �X = j with probabilities h(i → j).

2. Set

Xt+1 =





�X with probability a(i → j)

Xt with probability 1 − a(i → j),
(3.8b)

where

a(i → j) := min
�

1,
πj · h(j → i)
πi · h(i → j)

�
. (3.8c)

Eq. (3.8c) shows why the MH algorithm is so useful in Bayesian
conditionalization. Bayesian statisticians would like to compute
expectations with respect to the conditional distribution p(θ, x | yobs)

i.e., this is their target distribution (see Chapter 1 and Chapter 2).
Using the definition of conditional probability,

p(θ, x | yobs) =
p(θ, x, yobs)

p(yobs)
∝ p(θ, x, yobs). (3.9)

The dropped constant, p(yobs)−1, is intractable, because computing
it involves marginalizing over (Θ, X). Happily, in the MH algorithm
the target distribution only enters as a ratio πj/πi, which means
that all multiplicative constants in the target distribution cancel. The
modern revolution in Bayesian statistics is largely down to the fact that
the MH algorithm side-steps the intractable normlizing constant in the
conditional distribution.

It is straightforward to see that the MH algorithm constructs
a homogeneous Markov chain: the probability distribution for
Xt+1 depends only on the value of Xt, and not on the value of any
previous X value, or on the value of t. Any sensible choice for h
ought to ensure that P(i → j) is irreducible and aperiodic. So the
only thing to be checked is the following.

Theorem 3.5 (Metropolis-Hastings). The target distribution π satisfies
detailed balance with respect to the transition matrix implicitly defined in
(3.8).

Proof. The transition matrix P is defined implicitly, but it is straight-
forward to see that

P(i → j) =





h(i → j) · a(i → j) j �= i

1 − ∑ k �=i h(i → k) · a(i → k) j = i.

Now consider the detailed balance relation. We have to show that

πi · P(i → j) = πj · P(j → i) for all i, j.
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This automatically holds when j = i. In the case where j �= i,

πi · P(i → j) = πi · h(i → j) · a(i → j)

= πi · h(i → j) · min
�

1,
πj · h(j → i)
πi · h(i → j)

�

= min
�

πi · h(i → j), πj · h(j → i)
�

= πj · h(j → i) · min

�
πi · h(i → j)
πj · h(j → i)

, 1

�

= πj · h(j → i) · a(j → i)

= πj · P(j → i).

The nature of the MH algorithm is this: we get to choose the
proposal distribution h at our convenience. We must choose some-
thing which is easy to simulate from and also for which is is easy
to evaluate the probability h(i → j). Then we ‘compensate’ for our
choice of h by a particular form for a to induce a transition matrix P.
This form for a combines our proposal h and our target distribution
π in such a way that π is the unique stationary distribution of P.

The great generality of the MH algorithm, which gives us almost
a ‘free choice’ for h, is both its strength and its weakness. Among
the uncountable number of possibilities for h, most will be very
poor choices, in the sense that π(0), π(1), . . . will converge very
slowly to the target π. In the terms of Theorem 3.2, they will have
λ ≈ 1, and c � 1. But by a careful choice of h, we can try to
construct a Markov chain with λ � 1 and c ≈ 1.

Some common special cases of h have names. If h is sym-
metric, then the Metropolis-Hastings algorithm is simply the
Metropolis algorithm. The advantage of a symmetric h is that
h(j → i)/h(i → j) = 1, and so h never has to be evaluated in
computing the acceptance probability. The Metropolis algorithm
gives a simple insight into how the acceptance probability works.
If the target density at the proposed value j is no lower than the
currrent value i, then the proposal is always accepted. But if the
target density is lower, then the proposal is accepted with probabil-
ity πj/πi. So the chain always goes ‘up-hill’, but sometimes goes
’down-hill’.8 One popular symmetric h is to make the distribution 8 There is a close relationship between

the Metropolis algorithm and optimiza-
tion by simulated annealing; see Besag
(2004).

of the increment | �X − Xt| symmetric about 0. This is the random
walk Metropolis algorithm, discussed further in ??.

If h is invariant to i, then the MH algorithm is an independence
sampler. The proposals may be independent, but the evolution of
the chain is not, because the acceptance of each proposal depends
on the current state of the chain. This makes the independence
sampler fundamentally different from simple Monte Carlo methods
like rejection sampling and importance sampling.

* * *

There are some clever tunes we can play with the MH algorithm,
which follow from the following basic result. The proof is straight-
forward and is omitted.
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Theorem 3.6. Let P and P� be transition matrices on the same state-space
X, and let α ∈ [0, 1]. Then

A := αP + (1 − α)P� and B := PP�

are both transition matrices on X. Furthermore, if π is a stationary
distribution of both P and P�, then it is a stationary distribution of both A
and B.

This is a very useful result because the MH algorithm provides a
simple way to construct lots of different transition matrices on the
same state-space, all with the same unique stationary distribution.
Transition matrix A represents a scheme in which P is chosen with
probability α, and P� is chosen with probability 1 − α. Transition
matrix B represents a scheme in which first P is used, then P� is
used. These results extend immediately to any finite set of transi-
tion matrices, provided that A is a convex combination in which the
weights are non-negative and sum to one.

3.4 Gibbs sampling as a special case of MH

Section 3.3 noted that there are a lot of bad choices for the pro-
posal distribution h. Gibbs sampling is a special case of the MH
algorithm in which the choice for h is determined entirely by the
target distribution π, in such a way that the acceptance probability
a(i → j) is always 1. Gibbs sampling applies whenever the ran-
dom quantity of interest is a vector. It was in preparation for this
development that I switched from Pij to P(i → j) in the previous
section.

Let the state space be X and, for simplicity, let X = X×X�, with
just two elements. In keeping with the previous notation I will use
i and j to index X, and i� and j� to index X�. In this notation, the
target distribution is

πii� := Pr(X = i, X� = i�),

and the transition matrix of the Markov chain is

P(ii� → jj�) := Pr(Xt+1 = j, X�
t+1 = j� | Xt = i, X�

t = i�).

In the MH algorithm, (3.8), the proposal distribution is now
h(ii� → jj�), and the acceptance probability is a(ii� → jj�).

The Gibbs proposal updates one element of X = [X, X�]. This
element is selected in some way (described further below); suppose
that the first element is selected. The Gibbs proposal is defined
using the target distribution π, as

h(ii� → jj�) =





Pr(X = j | X� = i�; π) j� = i�

0 otherwise
(3.10)

where

Pr(X = j | X� = i�; π) =
Pr(X = j, X� = i�; π)

Pr(X� = i�; π)
=

πji�

∑ k πki�
.
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In other words, using the target distribution, sample the proposed
value for X conditional on the current value of X�, and do not
change X�. So the Gibbs sampler removes completely the ‘free
choice’ of the proposal distribution h that is part of the general MH
algorithm. Here is the key result.

Theorem 3.7 (Gibbs sampling). Under the Gibbs proposal in (3.10), the
MH algorithm in (3.8) has acceptance probability 1.

Proof. As it is impossible for the proposed value of X� to be differ-
ent from the current value, only the value of a(ii� → ji�) matters.
Then

a(ii� → ji�) = min
�

1,
πji�

πii�
· h(ji� → ii�)

h(ii� → ji�)

�

= min

�
1,

πji�

πii�
· πii�

�
∑ k πki�

πji�
�

∑ k πki�

�

= min
�

1, 1
�
= 1.

Inspection of the Gibbs proposal and the proof of Theorem 3.7
shows that the result extends immediately to the case where
X = [X1, X2], a partition into two subsets with one or more ele-
ments each, and the whole of X1 is updated using the conditional
distribution of X1 given X2 as the proposal, and leaving X2 un-
changed.

One Gibbs proposal on its own cannot satisfy the convergence
result in Theorem 3.4, because if X2 is never updated, then the
Markov chain on X is not irreducible. But Theorem 3.6 shows that
a set of Gibbs samplers which between them cover the whole of
X will work: they will each target π and together they will be
irreducible (barring pathological choices for π).

As Theorem 3.6 suggests, there are two different schemes for a
fixed partition of X into two or more groups, say X = [X1, . . . , Xk].
In scheme A, termed random scan, an element of the partition is
chosen at random at each time-step, usually using uniform prob-
abilities. In scheme B, termed sequential scan, the elements of the
partition are updated sequentially. Sequential scan is the ‘classic’
Gibbs sampler; when statisticians refer to ‘the Gibbs sampler’, they
usually mean Gibbs proposals applied sequentially to the elements
of a partition of X. Sequential scan is not homogeneous for the
update of X j alone, because the transition matrix depends on j,
i.e. it is Pj for updating X j. But sequential scan is homogeneous
taking the k updates as k mini-steps for the full transition matrix
P = Pk · · · P1.

Here is one full step of Gibbs sampling under sequential scan,
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starting with x = (x1, . . . , xm) and conditioning on Y = yobs:

1. Sample x�1 ∼ p(x1 | x2:m, yobs)

2. Sample x�2 ∼ p(x2 | x�1, x3:m, yobs)

3. Sample x�3 ∼ p(x3 | x�1:2, x4:m, yobs)

...

m. Sample x�m ∼ p(xm | x�1:(m−1), yobs)

to give the new value x� = (x�1, . . . , x�m). In this case the elements
of X are processed singly, and there are m mini-steps: first X1 is
updated, then X2, and so on. The distributions

p(xi | x−i, y) = p(xi | x1:(i−1), x(i+1):m, y)

are the ‘full conditional distributions’ of p(x, y), introduced in
Section 2.7. As mentioned above, X can also be updated in blocks.

* * *

Suppose want to target p(θ, x | yobs). If p(θ, x, y) is available in
symbolic form, it is possible to infer the symbolic forms of the full
conditional distributions required for the Gibbs sampler. If these
are familiar distributions, then the Gibbs proposals can be made
using standard and highly efficient simulation algorithms. When
we construct hierarchical models using ‘off-the-shelf’ distributions—
Normal, Poisson, Gamma, Binomial, and so on—the full condi-
tionals are often other off-the-shelf distributions. For unfamiliar
distributions, a different type of proposal is needed. One possibility
is a 1D slice sampler, see Neal (2003).

This approach has been exploited in several different software
packages, typically based on the BUGS modelling language, which
is used to express p(θ, x, y) symbolically; see Lunn et al. (2009,
2013) for details. My preference is to use JAGS to do the simula-
tion (Plummer, 2003, 2016). Software such as JAGS comes close
to the holy grail of fully-automatic conditional sampling, given
only the symbolic form of the joint distribution p(θ, x, y) and the
observations yobs. Gibbs-sampling methods like JAGS work well
for joint distributions expressed hierarchically. But they struggle
with other kinds of joint distribution, such as those involving large
spatial fields, which are often not expressed hierarchically (see, e.g.,
Cressie and Wikle, 2011).

3.5 Practical issues

The convergence of Cesàro averages theorem (Theorem 3.4) promises
only asymptotic convergence of expectations (in mean square). We
do not have an infinite amount of time and so we must plan for
imperfect convergence. The two issues are:


