
40

with other kinds of joint distribution, such as those involving large
spatial fields, which are often not expressed hierarchically (see, e.g.,
Cressie and Wikle, 2011).

3.5 Practical issues

The convergence of Cesàro averages theorem (Theorem 3.4) promises
only asymptotic convergence of expectations (in mean square). We
do not have an infinite amount of time and so we must plan for
imperfect convergence. The two issues are:

1. At what n0 has our Markov chain ‘forgotten’ its starting distribu-
tion, in which all probability is concentrated on a single element
of X? We can drop the first n0 elements from our sequence.

2. If we stop at time n, how can we quantify the accuracy in our
Cesàro average estimate of E{g(X); π}? By monitoring this value
for increasing n, we can aim for a particular level of accuracy.

Both of these questions are under active development, and so
it is sensible to augment the suggestions in this section with some
more up-to-date reading.

3.5.1 Assessing convergence

We want to compute the expectation of g(X) with respect to target
distribution X ∼ π, and we have arranged for x0, X1, X2, . . . to be
a sequence from a Markov chain with stationary distribution π

satisfying the Ergodic Theorem, so that if Ḡn := n−1 ∑n
i=1 g(Xi),

then
Ḡn

m.s.−−−→ E{g(X); π}.

If we let n → ∞ then what happens at the start of the chain does
not matter to Ḡn: it gets ‘rubbed out’ by what happens later on.
But if n is stubbornly finite, as it must be in practice, then what
happens at the start of the chain can still matter to the behaviour of
Ḡn.

At the start of the sequence we supplied the initial value X0 = x0,
which is a degenerate probability distribution entirely concentrated
on one element of X, if this point is chosen deterministically (e.g.,
a prior mode). The n-step transition probabilities will converge to
the stationary distribution geometrically, according to Theorem 3.2,
but this does not mean that they will converge almost immediately
for every possible starting point. So in practice we can improve the
performance of Ḡn for finite n by discarding the first part of the
sequence, for which the n-step transition probabilities have not yet
converged. This first ‘discardable’ part is termed burn-in.

There are some simple heuristics for burn-in, such as ‘discard the
first 10% of your simulations’. However, it is much better to have
a more adaptive method which is sensitive to the expectation(s)
that are to be estimated. The method given here is due to Brooks



41

and Gelman (1998, sec. 3), and also described in Lunn et al. (2013,
sec. 4.4.2).

Simulate m independent sequences each of length n, with start-
ing points (x0 values) which are well-dispersed relative to the target
distribution (see below). Consider any scalar summary, g : X → R.
From each sequence, compute the width between the 10th and 90th
percentiles from the second half of each sequence.9 Denote these 9 These percentiles appear in Brooks

and Gelman (1998, p. 443).widths w1, . . . , wm, and denote their arithmetic mean w̄. Now repeat
this process for the merged values from the second halves of all m
sequences, to compute one value, denoted b.

If the sequences have converged after n/2 iterations, then w̄
and b will both be estimating the same thing, namely the true
width of the 80% equitailed credible region of g(X). In this case
the ratio b/w̄ will be approximately 1. But if the sequences have
not converged, then w̄ will be an under-estimate, and b will be an
over-estimate, if the starting points are well-dispersed relative to the
target distribution. In this case the ratio b/w̄ will be larger than 1.
So values of b/w̄ larger than, say, 1.05, indicate that more than n/2
iterations are required for convergence.10 10 The threshold 1.05 appears in Lunn

et al. (2013, p. 75).This approach can be applied just to the functions of interest, or
it can be applied to each of the components of x in turn, or perhaps
just to a few of the more difficult ones. For safety, we would want
all of the ratios to be no larger than, say, 1.05.

Well dispersed starting points can be tricky to achieve, without
some knowledge of the properties of the target distribution. For
Bayesian inference, though, we can use points sampled indepen-
dently from the prior distribution, which is usually straightforward.
If the prior distribution has a very flat distribution for the hyper-
parameters (see Section 2.6), then it is possible that the simulation
algorithm for the Markov chain targeting the posterior distribution
will perform badly for x0 values sampled from the prior distribu-
tion. In this case, another option is to condition the prior distribu-
tion on a small fraction of the observations (to concentrate it a little),
and use MCMC to sample the starting points from this distribution.

If the sequences have not converged, then all m of the sequences
need to be simulated further (say another 2n iterations each) and
then the test needs to be applied again, and so on. Otherwise,
the first n0 = n/2 iterations of each sequence are burn-in, and
discarded. One or more of the sequences can be simulated further
to increase the total number of available iterations above mn/2, if
more iterations are required (see Section 3.5.3).

3.5.2 Monte Carlo standard errors

We now assume that burn-in has been discarded.
As above, specify g : X → R and let

Ḡn :=
1
n

n

∑
i=1

g(Xi). (3.11)



42

The variance of Ḡn is

Var(Ḡn) =
1
n2

�
n

∑
i=1

Var{g(Xi)}+ 2
n−1

∑
i=1

n

∑
j=2

Cov{g(Xi), g(Xj)}
�

,

where all variances and covariances are taken with respect to the
target distribition π. This satisfies

n Var{Ḡn} −→ σ2
g , (3.12)

for some finite constant σ2
g , using similar arguments to Section 3.2,

in the proof of Theorem 3.3. Therefore, if we estimate σ2
g from the

simulated sequence, then we can use

seg,n := σg
�√

n (3.13)

as an estimate of the standard error of Ḡn, termed the Monte Carlo
Standard Error (MCSE). As usual (applying a Central Limit theo-
rem),

ḡn ± 2 seg,n

is approximately a 95% confidence interval for E{g(X); π}. If we
estimate this interval for our n and it is too wide, then we simulate
the sequence further. For example, if the interval is double what we
can tolerate, then we need to increase n to 4n, which means doing
3n additional iterations.

To estimate σ2
g , consider the arithmetic mean of a sample of size

a. If we divide the total sample of size n into q batches of size a,
then for each batch we have

Ḡa,j :=
1
a

aj

∑
i=a(j−1)+1

g(Xi) j = 1, . . . , q.

Each of these values has variance approximately σ2
g /a from (3.12),

and if a is large enough that the values are approximately uncorre-
lated, then we can estimate their common variance as

σ2
g

a
≈ 1

q − 1

q

∑
j=1

(ḡa,j − ḡn)
2,

where ḡa,j is the arithmetic mean from the jth batch of size a, and
ḡn is the arithmetic mean of the entire sample of size n. The q − 1 in
the denominator rather than q is the usual conservative adjustment
to give an unbiased estimator. Hence

σ2
g ≈ a

q − 1

q

∑
j=1

(ḡa,j − ḡn)
2. (3.14)

The suggestion is to set a = �√n�.11 This approach to estimating σ2
g

11 Appears in Lunn et al. (2013, p. 78).

is known as batch means.



43

3.5.3 One long sequence or several short ones?

If you have a fixed budget of CPU cycles, then you can spend them
on simulating one long sequence of length mn, or on m indepen-
dent sequences of length n.

If you are not going to check for convergence, then one long
sequence is much more efficient, because you have to discard burn-
in at the start of each sequence. So following a rule such as ’discard
the first 10% of your sequence and hope for the best’ you would
do one long sequence, which will give you an estimate based on
a total of 0.9mn iterations. But of course you run the risk of non-
convergence, and your sequence may have a high autocorrelation,
which means that the standard error is large, and may well be
poorly estimated because your batches are correlated.

It is much safer, then, to do m independent sequences of length
n. This way you can assess convergence, and find the n0 which
determines burn-in. Now your estimate will be based on m(n − n0)

iterations, which may be less than 0.9mn iterations, but the good
news is that the sequences will be independent, which means that
your standard error will typically be smaller, and better estimated.


