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2.1 Introduction

A statistical model for a set of random quantities X is a family of
probability distributions for X, usually represented, by me, as

�
X, Ω, fX

�

where X is the realm of X, Ω is the parameter space, and fX is a
set of probability mass functions (PMFs) indexed by θ ∈ Ω. This
is the ‘old school’ definition of a statistical model, which is still
the prevailing definition in the Frequentist approach to inference,
and also in the ‘neo-Bayesian’ approach to inference, in which the
statistical model is augmented with a prior distribution π.

The modern Bayesian approach has a different concept of a
statistical model, but which, confusingly, retains the same notation
and terminology. In the modern Bayesian approach a statistical
model for X is a single probability distribution, but expressed for
(Θ, X) rather than just X, where Θ are additional random variables
whose presence simplifies the expression of the joint distribution
fΘ,X. The modern Bayesian approach is consistent with the neo-
Bayesian approach, if we write

fΘ,X(θ, x) = π(θ) · fX(x; θ).

The innovation in the modern Bayesian approach is that it tran-
scends the rigid distinction between random quantities and parame-
ters that is the starting-point for the Frequentist and Neo-Bayesian
approaches, with a much more liberal interpretation of ‘parameter’.
Here is the basic maxim of the modern Bayesian approach:

Definition 2.1 (Maxim of statistical modelling). Obtain the desired
marginal distribution fX by introducing additional random vari-
ables Θ, specifying the joint distribution fΘ,X using simplifications
from conditional independence, and then marginalizing over Θ.

This maxim only works because of the simplifying properties
of conditional independence assumptions; otherwise it would
be harder to specify fΘ,X than fX. So the basic guidance when
considering what Θ to introduce is whether these Θ can reason-
ably induce lots of conditional independence, as discussed below.
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Furthermore, this maxim requires that we can marginalize over
possibly large collections of random variables. Thirty years ago this
was not possible, but improvements in computer power and in com-
puting algorithms have changed that. In particular, Markov Chain
Monte Carlo (MCMC) has ‘solved’ the problem of marginalization
for many of the common statistical models.

2.2 Notation

It is not usual to have a whole section on notation, but representing
modern statistical models is a thorny topic.

In general, X is a collection of random quantities, and Θ is a
collection of random variables. I write ‘random variables’ because
I want to maintain the notion that X are operationally defined.
But Θ are introduced by us, at our convenience, and may not
be operationally defined; hence they need a different name. For
convenience I will treat X, the realm of X, as finite and Ω, the realm
of Θ, as uncountable. This is also the realistic case. But it means
that probability statements are complicated, because X = x can
have a non-zero probability, but Θ = θ cannot. I come back to this
below.

Let X = (X1, . . . , Xm) be a collection of m random quantities. If
A = (a1, . . . , ak) where the aj are distinct elements in {1, . . . , m},
then XA := (Xa1 , . . . , Xak ). It is convenient to write Xi:j when
A = (i, . . . , j). Exactly the same conventions apply to X and to x.

Let fX be a PMF of X, i.e.

fX(x) = Pr(X1 = x1 ∧ · · · ∧ Xm = xm),

and ‘∧’ denotes ‘and’.1 Then the marginal PMF of XA (i.e. marginal- 1 This is the standard symbol for
conjunction, from the propositional
calculus.

izing over XB) is

fXA(xA) = ∑
xB∈XB

fX(xA, xB)

where B is the complement of A in {1, . . . , m}, and there is no
ambiguity about how to combine xA and xB into an element of X;
hence we just write ‘xA, xB’ as the argument to fX .

There is a more parsimonious notation for a PMF, in which the
identity of the random quantities is inferred from the arguments,
taking advantage of the convention that xA is a arbitrary value in
XA, the realm of XA. Thus we write

p(xA) := fXA(xA). (2.1)

Less ink usually means more clarity, so I will use this convention
wherever I can.

The attraction of the ‘p’ notation is that is can be extended to Θ,
partly concealing the difficulty that the realm of Θ, denoted Ω, is
uncountable. By convention, if Ω is uncountable, then

p(θ) := Pr{Θ ∈ [θ, θ + dθ)} = π(θ) · dθ, (2.2)
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the second equality following in the case where Θ is treated as abso-
lutely continuous, for which uncertainty about Θ is represented by
a probability density function (PDF), denoted π. Therefore we can
write hybrid probabilities such as p(θ, x) and these will follow the
usual rules of the probability calculus. For example,

p(θ, x) = Pr{Θ ∈ [θ, θ + dθ) ∧ X = x}
= Pr{Θ ∈ [θ, θ + dθ)} · Pr{X = x | Θ ∈ [θ, θ + dθ)}
= p(θ) · p(x | θ).

Here I have used the defining property of a conditional probability,
which will be explained in Section 2.3.

2.3 Conditional probabilities

In this section, A, B, . . . will be arbitrary propositions, i.e. state-
ments which are either FALSE or TRUE. They can be combined
into new propositions using the propositional calculus. The axioms of
probability provide a framework for reasoning about the truths of a
set of propositions in the presence of uncertainty. These axioms can
be used to prove simple but important results such as

If Pr(B) = 0, then Pr(A ∧ B) = 0,

which I will use several times below.
I define conditional probabilities implicitly. Pr(A | B) is the condi-

tional probability of A given B exactly when

Pr(A ∧ B) = Pr(A | B) · Pr(B). (2.3)

Under this definition, Pr(A | B) is arbitrary (between 0 and 1) when
Pr(B) = 0, since in this case (2.3) reads 0 = Pr(A | B) · 0; otherwise
Pr(A | B) is the unique value

Pr(A | B) =
Pr(A ∧ B)

Pr(B)
, Pr(B) > 0. (2.4)

It is easily checked that if Pr(B) > 0, then Pr(• | B) obeys the
axioms of probability. The following result is crucial in extending
conditional probabilities to more complex situations.

Theorem 2.1 (Extension theorem). If Pr(C) > 0, then

Pr(A ∧ B | C) = Pr(A | C) · Pr(B | A ∧ C). (2.5)

Proof. First, suppose that Pr(A ∧ C) = 0. In this case Pr(A | C) = 0
by definition, because Pr(C) > 0; and Pr(A ∧ B | C) = 0, because
Pr(• | C) obeys the axioms of probability. Hence (2.5) has the form
0 = 0 · Pr(B | A ∧ C), and the result holds in this case, with the value
of Pr(B | A ∧ C) being arbitrary.

Now suppose that Pr(A ∧ C) > 0. In this case,

Pr(A ∧ B ∧ C) = Pr(A ∧ C) · Pr(A ∧ B ∧ C)
Pr(A ∧ C)

= Pr(A ∧ C) · Pr(B | A ∧ C).
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Now divide through by Pr(C), which is non-zero, to complete the
proof.

The Extension theorem can be iterated to provide a factorization
of any conjunction.2 2 I’m calling this the ‘Telescope the-

orem’ because I like the image, but
elsewhere you may see it called the
‘chain rule for probabilities’.

Theorem 2.2 (Telescope theorem). Let A1, . . . , Am, C be a set of
propositions, and write Ai:j := Ai ∧ · · · ∧ Aj. If Pr(C) > 0, then

Pr(A1:i | C) = Pr(A1 | C) ·
i

∏
j=2

Pr(Aj | A1:(j−1) ∧ C). (2.6)

Proof. In Theorem 2.1, set A ← A1, B ← A2:i, and C ← C, to give

Pr(A1:i | C) = Pr(A1 ∧ A2:i | C) = Pr(A1 | C) · Pr(A2:i | A1 ∧ C).

Now expand out the second term on the righthand side, by re-
peated use of Theorem 2.1. If for some j, Pr(A1:(j−1) ∧ C) = 0, then
the additional conditional probabilities have arbitrary values, but
the result, which has the form 0 = 0 · Pr(Aj:i | A1:(j−1) ∧ C), still
holds.

2.4 Conditional independence

In this section I will write ‘ fX’ or ‘ fXA ’ when I need to refer explic-
itly to the joint PMF of X or the marginal PMF of XA, but I will use
the ‘p’ notation in expressions, for clarity.

The Telescope theorem (Theorem 2.2) asserts that if X = (X1, . . . , Xm),
then fX(x) equals

p(x1, . . . , xm) = p(x1) ·
m

∏
j=2

p(xj | x1:(j−1)). (2.7)

The Telescope theorem suggest that we can construct the joint PMF
fX by thinking conditionally, one element (or one block of elements)
at a time, and them multiplying them all together.

Of course this is still a lot of work. fXj |X1:(j−1)
is a function with j

arguments, which has to be a PMF for Xj for every x1:(j−1) ∈ X1:(j−1).
Without some simplifications, this conditional approach to speci-
fying fX is unlikely to be easier than specifying fX directly. Condi-
tional independence is the crucial simplification. Here is the formal
definition.

Definition 2.2 (Conditional independence). Let A, B, C be disjoint
subsets of {1, . . . , m}. XA is conditionally independent of XB given
XC exactly when

p(xA, xB | xC) = p(xA | xC) · p(xB | xC) (2.8)

whenever p(xC) > 0. In this case we write

XA ⊥⊥ XB | XC.
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The practical implications of condional independence are cap-
tured in the following result.

Theorem 2.3. The following statements are equivalent:

1. XA ⊥⊥ XB | XC.

2. If p(xB, xC) > 0, then

p(xA | xB, xC) = p(xA | xC). (2.9)

Proof.
(1) =⇒ (2). If p(xB, xC) > 0, then p(xB | xC) > 0. Dividing

(2.8) by p(xB | xC) gives (2.9), after applying the Extension theorem
(Theorem 2.1).

(2) =⇒ (1). If p(xC) > 0 then

p(xA, xB | xC) = p(xA | xB, xC) · p(xB | xC) (†)

by Theorem 2.1. If p(xB, xC) = 0 then p(xA | xB, xC) is arbitrary, and
we can set it equal to p(xA | xC) in (†), to give (2.8). If p(xB, xC) > 0,
then we can substitute from (2.9) into (†) to give (2.8), as required.

Eq. (2.9) states that if XA ⊥⊥ XB | XC, then knowledge of XB

is irrelevant when predicting XA with knowledge of XC. What is
deeply mysterious is this irrelevance relationship is symmetric, i.e.

XA ⊥⊥ XB | XC ⇐⇒ XB ⊥⊥ XA | XC, (2.10)

which follows from the symmetry of the original definition, in (2.8).
Dawid (1998) discusses this and other properties of conditional
independence.

Here is an important implication of conditional independence:

XA ⊥⊥ XB | XC =⇒ XA ⊥⊥ g(XB) | XC (2.11)

for all g. This includes the special case where g(xB) is a subset of
the elements of XB. The proof is straightforward. By symmetry, XA

is irrelevant when predicting XB in the presence of XC. Therefore
XA must be irrelevant in predicting any function of XB in the
presence of XC, and so XA ⊥⊥ g(XB) | XC.

One special case of conditional independence comes up fre-
quently when modelling. If

XA ⊥⊥ XB | Y (2.12)

for all possible disjoint sets A and B, then X is mutually conditionally
independent given Y. I write this as

�X | Y. (2.13)
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It is straightforward to prove that

�X | Y ⇐⇒ fX|Y(x | y) =
m

∏
i=1

fXi |Y(xi | y). (2.14)

Mutual conditional independence is a very powerful modelling
assumption, because it factorizes a conditional PMF with m + 1
arguments into the product of m conditional PMFs each with only
two arguments. It is common to have the additional simplification
that fXi |Y is the same for all i. In this case we would say that X is
mutually conditionally independent and identically distributed (IID) given
Y.

* * *
For completeness, I also mention ‘unconditional’ independence,

in which there is nothing to condition on. XA and XB are indepen-
dent exactly when

p(xA, xB) = p(xA) · p(xB), (2.15)

which is written XA ⊥⊥ XB. Likewise, X can be mutually indepen-
dent, which I write as �X, and, as a special case of this, (mutually)
IID.

Here are two very important things to remember about the non-
relationship between independence and conditional independence:

1. X ⊥⊥ Y �=⇒ X ⊥⊥ Y | Z. For example, X and Y might be the
values from two independent rolls of a dice, and Z might be the
sum of the two values.

2. X ⊥⊥ Y | Z �=⇒ X ⊥⊥ Y. For example, X might be electricity
generated in a hydro-electric plant, Z might be depth of water
behind the dam, and Y might be recent rainfall on the catchment
above the dam.

These two non-relationships can be proved probabilistically, but the
examples are more vivid. Independence and conditional indepen-
dence are two different things.

2.5 Graphical models

When we construct fX using conditional independence, we use (2.9)
to simplify the terms in the Telescope theorem. In particular, we
order the Xi’s so that when we write out the Telescope factorization,
only a subset of X1:(j−1) are relevant in fXj |X1:(j−1)

. Let this subset be
denoted paj ⊆ {1, . . . , j − 1}, where ‘paj’ is read as ‘parents of Xj’.
So the Telescope theorem is also written

p(x) = p(x1) ·
m

∏
j=2

p(xj | xpaj
). (2.16)

According to Theorem 2.3,

Xj ⊥⊥ Xpaj | Xpaj
j = 2, . . . , m, (2.17)
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where paj is the complement of paj in {1, . . . , j − 1}. So the set�
pa2, . . . , pam

�
represents our conditional independence modelling

for X. If paj is a strict subset of {1, . . . , j − 1} then conditional
independence modelling has simplified the task of specifying
fXj |X1:(j−1)

by reducing the number of arguments this function
requires.

There is a simple way to visualize the set of paj’s, as a directed
acyclic graph (DAG). In a DAG each Xj is a vertex (or node) and
there is an edge from Xi from Xj exactly when i ∈ paj, or Xi is a
‘parent’ of Xj. Here are two DAGS for m = 3:

X3

X2

��

X1

��

��

and

X3

X2

��

X1

��

In the lefthand case there is no conditional independence, the set of
pa’s is

�
pa2 = {1}, pa3 = {1, 2}

�
, and

p(x1, x2, x3) = p(x1) · p(x2 | x1) · p(x3 | x1, x2).

In the righthand case the edge from X1 to X3 is missing, and the set
of pa’s is

�
pa2 = {1}, pa3 = {2}

�
. So in the righthand case we have

X3 ⊥⊥ X1 | X2, and

p(x1, x2, x3) = p(x1) · p(x2 | x1) · p(x3 | x2).

Some stochastic processes are actually defined by their con-
ditional independencies, or, equivalently, their DAGs. If X is a
Markov process, then its DAG is

X1 �� X2 �� X3 . . . Xm−1 �� Xm .

If X is mutually conditionally independent given Θ (i.e. �X | Θ) then
the DAG of (Θ, X) is

X1 X2 X3 . . . Xm−1 Xm

Θ

�� �� �� �� �� ,

(2.18)

from (2.14).
DAGs can be used to understand the maxim of statistical mod-

elling (Definition 2.1), given in Section 2.1. Consider, for example,
(2.18). Suppose that we are interested in the marginal distribution
of X, where the X’s are a set of random quantities which are similar
but not identical. We introduce Θ to simplify the joint distribution
of (Θ, X), by asserting that �X | Θ. In this case, we need to specify
fΘ and fXj |Θ for j = 1, . . . , m. From (2.14),

p(θ, x1:i) = p(θ) · p(x1:i | θ) = p(θ) ·
i

∏
j=1

p(xj | θ). (2.19)
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Now marginalize over Θ to give

p(x1:i) =
�

Ω
p(θ) ·

i

∏
j=1

p(xj | θ)dθ. (2.20)

If we then divide through by p(x1:(i−1)) we see that p(xi | x1:(i−1))

depends on all of the values x1:(i−1). So there is no conditional inde-
pendence at all in the marginal distribution of X. We start with the
simple DAG in (2.18), with only m edges, but when we integrate
out Θ we end up with an interesting DAG on X with a full set of
m · (m − 1)/2 edges. In other words, integrating out random vari-
ables is a good way to ‘complexify’ the joint distribution of random
quantities.

Here is the general result for what happens to the DAG of X
when the random variable Θ is integrated out.

Theorem 2.4. Let X = (X1, . . . , Xm) and write fΘ,X as

p(θ, x) = p(θ) ·
m

∏
j=1

p(xj | xpaj
) (2.21)

for some random variables Θ, where paj are the parents of Xj in fΘ,X,
with 0 ∈ paj indicating that Θ is a parent of Xj. Let ‘qai’ denote the
parents of Xi in fX. Then

qai =





Ai−1 ∪
��

j∈Ai
paj

�
\ {0} 0 ∈ pai

pai 0 �∈ pai

(2.22)

where Ai =
�

j : 1 ≤ j ≤ i and 0 ∈ paj
�

.

Proof. I will write ‘paj’ in place of ‘xpaj
’, for clarity. Start with the

Telescope theorem (Theorem 2.2),

p(θ, x1:i) = p(θ) ·
i

∏
j=1

p(xj | paj). (2.23)

Now marginalize over Θ to give

p(x1:i) = ∏
j∈Bi

p(xj | paj)
�

Ω
p(θ) · ∏

j∈Ai

p(xj | paj)dθ, (2.24)

where Ai comprises those j = 1, . . . , i for which 0 ∈ paj, and Bi

the others, for which 0 �∈ paj. Now divide by p(x1:(i−1)) to find
p(xi | x1:(i−1)). If i ∈ Ai, then Bi = Bi−1, and the first term cancels to
give

p(xi | x1:(i−1)) =

�
Ω p(θ) · ∏j∈Ai

p(xj | paj)dθ
�

Ω p(θ) · ∏j∈Ai−1
p(xj | paj)dθ

.

On the other hand, if i ∈ Bi, then Ai = Ai−1 and the second term
cancels, plus most of the first term, to give

p(xi | x1:(i−1)) = p(xi | pai).

The expression in (2.22) follows directly from these two cases.
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In words, if Θ ∈ pai and Θ is marginalized out, then Xi gets an
edge from each Xj (j < i) for which Θ ∈ paj, and also an edge from
all of the X’s that are parents of these Xj’s (some of these edges
may be duplicates). For example,

from

X1 �� X2 X3

Θ

�� ��
to

X1 �� ��X2 �� X3

In (2.18), paj = {0} and Ai = {1, . . . , i}. This leads to

qai = {1, . . . , i − 1} ∪
�

0 ∪ · · · ∪ 0
�
\ {0} = {1, . . . , i − 1},

as claimed. There is a more detailed example in Section 2.6.
Eq. (2.22) shows that qai ⊃ pai \{0}; i.e., when marginalizing

over Θ, Xi never loses edges from previous Xj’s, and will typically
gain edges whenever Θ is a parent of Xi. Hence if Θ is a parent of
many Xi’s, then marginalizing over Θ can create a DAG with many
more edges. We seldom marginalize explicitly, in modern statistical
models. Instead, we allow MCMC to do the marginalization for us.
The availability of MCMC means we can spend more time thinking
about the DAG of (Θ, X), and about the marginal and conditional
distributions which appear in (2.16).

2.6 Hierarchical models

Hierarchical models are constructed when X = (X1, . . . , Xm) are
similar but not identical. They allow the statistician to control the
interrelationship between the Xi’s according to known groups
(including covariates, in the case of regression). The natural starting
point of a hierarchical model is a DAG.

Suppose that m = 5, and that (X1, X2, X3) belong in one group,
and (X4, X5) in another. For example, Xi might be the exam score
of a pupil at a school and the two groups might be different classes.
We expect X1 to be more similar to X2 than X4. If we had observed
(X1, X2, X4) then we would want our prediction for X3 to be more
influenced by xobs

1 and xobs
2 than xobs

4 , and we would want our
prediction of X5 to be more influenced by xobs

4 than xobs
1 and xobs

2 .
The beauty of a hierarchical model is that we encode the group
structure and then we leave it to the observations to determine the
degree to which information from one group affects the prediction
of the other.

Write the two groups as XA = (XA1, XA2, XA3) and XB = (XB1, XB2).
In general Xij is the jth case in the ith group; this multiple index-
ing helps with the notation. A common choice of DAG for the
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illustration is

XA1 XA2 XA3 XB1 XB2

ΘA

�� �� ��

ΘB

�� ��

Ψ

�� ��
(2.25)

The X’s in group A are similar but not identical, because they share
a common parameter, ΘA; likewise for group B. The two Θ’s are
similar but not identical, because they share a common parameter
Ψ, sometimes termed a hyperparameter. This type of modelling can
be extended indefinitely, to handle multi-way grouping, and also
overlapping group memberships.

The required marginal and conditional distributions can all
be read off the DAG. Take (2.25). At the bottom level, we need a
marginal distribution for Ψ, fΨ. At the middle level we have �Θ | Ψ,
which is equivalent to

fΘ|Ψ(θ | ψ) = ∏
i=A,B

fΘi |Ψ(θi | ψ), (2.26)

see (2.14). It would be very common to treat fΘi |Ψ as invariant to
i, in which case we just need to specify fΘA |Ψ, a PDF for ΘA with
parameter Ψ, which we would also use for ΘB. At the top level we
have �XA | ΘA and �XB | ΘB. Hence

fXi |Θi
(xi | θi) =

nA

∏
j=1

fXij |Θi
(xij | θi) i = A, B (2.27)

(nA = 3 and nB = 2). It would be very common to treat fXij |Θi

as invariant to both i and j, in which case we would just need
to specify fXA1|ΘA

, a PMF for X1 with parameter ΘA. So, in the
simplest possible case, we just need to specify

fΨ, fΘA |Ψ, and fX1|ΘA

namely one marginal distribution and two conditional distributions.
With these three distributions we can handle an arbitrarily large
number of groups, and an arbitrarily large number of cases per
group.

The DAG alone does not completely specify the statistical model,
because although it tells us what distributions we need, it does not
tell us the identity of each distribution. In other words, we have to
make specific choices for the three distributions given above, which
involves being clear about the nature of the parameters and the
hyperparameters. Usually, when we do this we find that we need
some additional parameters at the top level: typically dispersion
parameters, if Θi is controlling the expectation of each group.
These tend to obscure the structure of the DAG, unfortunately,
unless it is constructed using plates.3 Additional parameters can 3 See https://en.wikipedia.org/

wiki/Plate_notation. Eq. (2.35) is the
complete DAG for (2.28).
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be left off the DAG, for clarity, but they need to be expressed in
the ‘extensive’ form of the model, which not only encodes the
conditional independence in the DAG, but also the choices for the
marginal and joint distributions, and the nature of the parameters.

One choice for the extensive form of the illustration is

Xij | Θi, σ2 ∼ N(Θi, σ2) i = A, B; j = 1, . . . , ni (2.28a)

Θi | µ, τ2 ∼ N(µ, τ2) i = A, B (2.28b)

µ ∼ N(0, 10002) (2.28c)

τ2 ∼ Ga(0.001, 0.001) (2.28d)

σ2 ∼ Ga(0.001, 0.001), (2.28e)

where ‘N’ denotes the scalar Gaussian (Normal) distribution, with
specified expectation and variance, and ‘Ga’ denotes the Gamma
distribution with specified shape and rate. The hyperparameters
are Ψ = (µ, τ2) and the additional dispersion parameter is σ2. As
can be inferred, the convention with the extensive form of a hierar-
chical model is that the joint distribution is constructed by taking
the product over the rows, and within rows by taking the prod-
uct over each index. The extensive form is used in programming
languages such as BUGS, JAGS, and STAN.

The last three lines in (2.28) represent something of a fudge.
The three parameters µ, τ2, and σ2 are modelled independently
(hence appearing on separate rows). They are all three given ‘flat’
priors, in order to make them maximally responsive to the obser-
vations. The standard flat priors would be µ uniform on R, and
log τ2 and log σ2 each uniform on R.4 But these are improper dis- 4 Technically, this is equivalent to

(µ, log τ2, log σ2) being uniform on R3.tributions. The choices above represent proper distributions which
approximate the flat priors. It is hard to recommend this approach,
especially in the light of prior beliefs about X which would con-
strain the priors. But it is widely used, and there is little harm as
long as the statistician checks carefully for the influence of the prior
distribution on the posterior predictions.

Hierarchical modelling is a very rich approach to statistical
modelling, and the illustration above is about as simple as they
come—most hierarchical models are more interesting than (2.28),
particularly in incorporating covariates, which typically enter at
the top level. See Lunn et al. (2013) or Gelman et al. (2014) for
more details. Hierarchical models are also used for X’s with more
complex structure than ‘similar but not identical’; see Banerjee et al.
(2004) or Cressie and Wikle (2011) for applications in spatial and
spatio-temporal statistics.

* * *
The illustration provides an opportunity to see again how the

maxim of statistical modelling (Definition 2.1) works. Our intention
is to construct an interesting statistical model for X so that we
can predict (X3, X5) from the observations (xobs

1 , xobs
2 , xobs

4 ). We
introduced some additional random quantities, namely (Ψ, Θ),
and construct a statistical model for (Ψ, Θ, X) which exploits lots
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of conditional independence, based on our understanding of the
group structure of X. Then, notionally at least, we recover the
marginal distribution for X by marginalizing over (Ψ, Θ).

Theorem 2.4 needs to be adapted if we want to marginalize over,
say, ΘB, which is not at the bottom level of the DAG (i.e. it has
parents). Following exactly the same logic as Theorem 2.4, each
‘child’ of ΘB inherits the parents of ΘB, and XB2 also gains an edge
from XB1, to give

XA1 XA2 XA3 XB1 �� XB2

ΘA

�� �� ��

Ψ

��

�� ��

(2.29)

If we also marginalize over ΘA we get

XA1 �� ��
XA2 �� XA3 XB1 �� XB2

Ψ

�� �� �� �� ��

(2.30)

And if we were now to marginalize over Ψ we would have a full
set of 10 edges. The maxim of statistical modelling is simply that
introducing random variables and marginalizing over them is a
better way to construct a PMF for X than trying to write down such
a PMF directly.

2.7 Full conditionals

In this section I will return to DAGs constructed for the PMF fX,
without distinguishing between random quantities and random
variables; i.e. each Xi might be either a random quantity or a ran-
dom variable.

It is a basic property of a DAG that it is constructed with respect
to a specific ordering of all of the random quantities. We cannot
simply glance at the DAG and answer questions such as “Is Xi

conditionally independent of Xj given XC?”, for some arbitrary
set C not containing i or j. Of course we could get lucky. Suppose
that i < j, without loss of generality (by symmetry of conditional
independence). If it so happened that paj = C and i �∈ C then we
would be able to answer “Yes”; otherwise, we do not know—at
least, not without further thought.

To explore this issue, consider the challenge of finding the full
conditional of Xi, which is defined as

p(xi | x−i) (2.31)
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where X−i is every random quantity bar Xi. Suppose we found that
the full conditional only depended on a subset of x−i, say the index
set ‘nei’. In that case we would have shown that

Xi ⊥⊥ Xnei | Xnei (2.32)

where nei is the complement of {i} ∪ nei in {1, . . . , m}. Here ‘nei’
denotes the ‘neighbours’ of Xi, as explained below.

If we found the neighbours for each Xi we could construct a
new graph on X: a graph in which there was an edge from Xi to Xj

exactly when i ∈ nej. This is an undirected graph because

i ∈ nej ⇐⇒ j ∈ nei (2.33)

(proved below, Theorem 2.6). Call this the conditional independence
graph (CIG) of fX. The CIG of fX has a remarkable property, given
by the Hammersley-Clifford theorem.5 5 Which some authors refer to as the

Hammersley-Clifford-Besag theorem,
following Besag (1974). This is not a
trivial theorem; see Besag (1974) for
one proof, and Lauritzen (1996, ch. 3)
for another. Besag (1974) is one of the
great papers in modern statistics.

Theorem 2.5 (Hammersley-Clifford theorem). If

supp X =
m

∏
i=1

supp Xi,

then XA ⊥⊥ XB | XC if and only if every path on the CIG from XA to XB

passes through XC.6 6 The ‘support’ of X is
supp X :=

�
x ∈ X : fX(x) > 0

�
.

The condition that the support of X is
equal to the product of the marginal
supports is termed the positivity
condition; it cannot be dropped.

In these notes I will not prove the Hammersley-Clifford theo-
rem, but I will show how to turn a DAG into a CIG, so that every
conditional independence property can be read off (subject to the
positivity condition).

Theorem 2.6 (Moralization theorem). The following two steps transform
the DAG of fX into the CIG:

1. Insert an edge between every pair of vertices which share a child.

2. Replace all directed edges with undirected edges (i.e. remove arrows).

Proof. I will write ‘paj’ in place of ‘xpaj
’, for clarity. The full condi-

tional of Xi is

p(xi | x−i) =
p(x)

∑xi
p(x)

=
∏m

j=1 p(xj | paj)

∑xi ∏m
j=1 p(xj | paj)

∝ p(xi | pai) · ∏
j∈Ai

p(xj | paj) (2.34)

where pa1 = ∅ and Ai :=
�

j : i ∈ paj
�

. The last step follows
because in the denominator, terms without i in paj come through
the sum and then cancel with the same terms in the numerator.
This leaves only p(xi | pai) and terms with i ∈ paj. This comprises
all parents of Xi, all children of Xi, and all vertices which share a
child with Xi, which proves (2.33), and justifies the two steps in the
theorem.
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The CIG of (2.25) is the same as the DAG, but without the ar-
rows. This is because (2.25) is a tree, which is a directed graph in
which every vertex has exactly one parent. But if we add in σ2, the
DAG becomes

XA1 XA2 XA3 XB1 XB2

ΘA

�� �� ��

ΘB

�� ��

σ2

�� �� �� �� ��

Ψ

��
��

(2.35)

which is a bit messy. Careful inspection reveals two new edges in
the CIG, shown below as dashed:

XA1 XA2 XA3 XB1 XB2

ΘA ΘB

σ2 Ψ

(2.36)

Applying the Hammersley-Clifford theorem (Theorem 2.5) we can
read off, for example,

XA1 ⊥⊥ all other X’s | ΘA, σ2

XA ⊥⊥ XB | ΘA, σ2

subject to the positivity condition, which is satisfied in (2.28) be-
cause the support of each random quantity/variable does not
depend on its parameters.


