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1 Introduction

This is a worksheet about JAGS, using rjags. These must both be installed

on your computer. Go to http://mcmc-jags.sourceforge.net/ to find

out about and download JAGS. Once installed, you need to install the R

package rjags, by doing the following once only:

#### install rjags package (once only)

install.packages("rjags")

If everything works smoothly then you should be able to execute the follow-

ing code and get the following output (some of your numbers ought to be

slightly different):

library(rjags)

## Loading required package: coda

## Linked to JAGS 4.0.1

## Loaded modules: basemod,bugs,dic

example(jags.samples)

##

## jgs.sm> data(LINE)

##

∗j.c.rougier@bristol.ac.uk
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## jgs.sm> LINE$recompile()

## Compiling model graph

## Resolving undeclared variables

## Allocating nodes

## Graph information:

## Observed stochastic nodes: 5

## Unobserved stochastic nodes: 3

## Total graph size: 40

##

## Initializing model

##

##

## jgs.sm> LINE.samples <- jags.samples(LINE, c("alpha","beta","sigma"),

## jgs.sm+ n.iter=1000)

##

## jgs.sm> LINE.samples

## $alpha

## mcarray:

## [1] 3.006265

##

## Marginalizing over: iteration(1000),chain(2)

##

## $beta

## mcarray:

## [1] 0.7949662

##

## Marginalizing over: iteration(1000),chain(2)

##

## $sigma

## mcarray:

## [1] 1.006746

##

## Marginalizing over: iteration(1000),chain(2)

I suppressed the progress bar for rjags, using options(jags.pb = "none"),

because it messes up this document, but you might prefer to keep it.

2 Setting up your computer

Don’t ignore this section! Unless you get into good habits early on, your

computer will rapidly become a graveyard of unattributed files. Put all of

your R projects in a common place. For example, in a folder called Rprojects.
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Inside this folder create a new folder for each application. We are going to

analyse the Rats data, so Rats would be a good name for this folder. When

you are in R, make sure you issue the command

setwd("~/Rprojects/Rats")

or something similar, so that R knows where everything is, and everything

goes; this is your ‘working directory’. If you ever want to know what your

working directory is from inside R, type getwd().

The first thing to do is to put the data-files into your working directory.

You can download the two files Rats.xls and Rats.csv from the course webpage

at http://www.maths.bris.ac.uk/~mazjcr/BMB/2016/home.html. We will

be using Rats.csv but I included Rats.xls so you can practice exporting

spreadsheet data in CSV format as UTF-8 encoding. To do this you need

to open the data in Open Office Calc or Google Sheets, and export it from

that—Microsoft do not want you to use a non-proprietary encoding.

A comment on these data. The original digital source of these data

is http://www.openbugs.net/Examples/Rats.html. Unfortunately these

data are wrongly-represented as an R object—see if you can figure out why.

I discovered this in the matplot below. Thank goodness I always visualize

my data once I have loaded it! The original paper source is the Gelfand et

al paper listed at the top of the data-file. When I checked the digital source

against the original paper source I found another error. And the moral of

this story? Data you download from the Internet are not reliable; it is you

who are at fault if you fail to check them.

Next, you need to open a new file which will contain all of your R com-

mands for the session. Never just type stuff at the > prompt, unless you are

checking something or trying something out. Create a file called Rats1.R in

Rprojects/Rats, open it with a simple text editor (not Word for Windows!)

and start it off with a helpful summary, such as

#### Rats1.R

## first go at analysing the Rats data using rjags.

library(rjags)

setwd("~/Rproject/Rats")
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All the lines of code below go into Rats1.R, as a permanent record of the steps

you have taken in your analysis. This way you can replicate the analysis

exactly later on, just by doing source("Rats1.R"). And you can come back

later on and improve the analysis, by editing the file.

In the meantime, you can cut-and-paste from Rats1.R to the R prompt.

Software such as RStudio makes this very easy.

On we go. Let’s see what CSV files are in my working directory.

list.files(pattern = "csv$")

## [1] "Rats.csv"

If you want to know more about how the pattern is specified, have a look at

the help-file ?list.files and then at help("regex", package = "base").

You will see there that ‘$’ matches the end of the string, so that ‘csv$’

matches any name which ends with csv.

Below, you will see that I often use foo as a temporary variable name;

this is a common programmers’ convention, with other popular choices being

bar and tmp.

Now you need to inspect Rats.csv. I would not usually do this within R,

but in this case it is straightforward:

foo <- readLines("Rats.csv", encoding = "UTF-8")

head(foo, 15)

## [1] "Rats data, originally from Table 3 (p978) of"

## [2] ""

## [3] "A.E. Gelfand, S.E. Hills, A. Racine-Poon, and A. Smith, 1990, Illustration"

## [4] "of Bayesian inference in Normal data models using Gibbs sampling, Journal"

## [5] "of the American Statistical Association, 85, 972-985."

## [6] ""

## [7] "Source is http://www.openbugs.net/Examples/Ratsdata.html, with corrections"

## [8] ""

## [9] "Time t is days from birth, and weight is grams, one row per rat"

## [10] ""

## [11] "t = 8,t = 15,t = 22,t = 29,t = 36"

## [12] "151,199,246,283,320"

## [13] "145,199,249,293,354"

## [14] "147,214,263,312,328"

## [15] "155,200,237,272,297"
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So the data starts at line 11, with the time values, and then the weights

start at line 12. Let’s read these both in:

## get the times off foo

times <- foo[11]

times <- strsplit(times, ",")[[1]]

times <- gsub("t = ", "", times)

times <- as.numeric(times)

times # ta dah! But you could have typed them in more easily!

## [1] 8 15 22 29 36

## get the weights out of Rats.csv

raw <- read.csv("Rats.csv", header = FALSE,

skip = 11, fill = FALSE, encoding = "UTF-8")

# str(raw)

head(raw)

## V1 V2 V3 V4 V5

## 1 151 199 246 283 320

## 2 145 199 249 293 354

## 3 147 214 263 312 328

## 4 155 200 237 272 297

## 5 135 188 230 280 323

## 6 159 210 252 298 331

And don’t forget to check the data visually. I’ll plot each rat as one line.

## visual check on the results

matplot(times, t(raw), type = "b", pch = 16, lty = 1)
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That looks OK, but the first time I did it, I could see immediately that there

was a problem with the data (see above).

3 Specifying the model

rjags needs the model, expressed in BUGS notation, written in a file. We

can do this from within within your Rats1.R file, by wrapping the model in

a ‘cat("...", file = "Rats.bug")’.

#### write the model out to a file

cat("

#### model for Rats

model {
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for (i in 1:n) {
for (j in 1:k) {
Y[i, j] ~ dnorm(alpha + beta[i] * (x[j] - mean(x)), tauy)

}
beta[i] ~ dnorm(mub, taub)

}

## flat prior for (alpha, tauy, mub, taub)

alpha ~ dnorm(0, 0.001^2)

tauy ~ dgamma(0.001, 0.001)

mub ~ dnorm(0, 0.001^2)

taub ~ dgamma(0.001, 0.001)

}
", file = "Rats.bug")

If you have a look in your working directory you will now find a file called

Rats.bug containing exactly the lines given above.

You can see from above that the BUGS notation is quite simple, and

conforms closely to the way that we would express a statistical model in

extensive form. One thing to watch out for, though. The scale parameter in

a Normal distribution is usually the variance, but in BUGS it is the precision

which is the reciprocal of the variance. So in the lines for alpha and mub,

the second parameter indicates a variance of 1/0.0012, or 10002.

4 Using rjags

If you are unclear about how to use rjags, type ?rjags to get a very helpful

message. Here are the steps listed in the message:

1. Define the model using the BUGS language in a separate file.

Done that.

2. Read in the model file using the ‘jags.model’ function.

But this gives an error:

#### set up the JAGS sampler

## this causes an error
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myrats <- jags.model("Rats.bug")

## Compiling model graph

## Resolving undeclared variables

## Deleting model

## Error in jags.model("Rats.bug"): RUNTIME ERROR:

## Compilation error on line 6.

## Unknown variable n

## Either supply values for this variable with the data

## or define it on the left hand side of a relation.

This is because there are objects in Rats.bug which are not random

variables: n, k, and x. So these must be supplied through the data

argument.

## this works OK

mydata <- list(n = nrow(raw), k = ncol(raw), x = times)

myrats <- jags.model("Rats.bug", data = mydata)

## Compiling model graph

## Resolving undeclared variables

## Allocating nodes

## Graph information:

## Observed stochastic nodes: 0

## Unobserved stochastic nodes: 184

## Total graph size: 509

##

## Initializing model

But what we really want to do is to supply the Y values as well. We

use Y = as.matrix(raw) because raw is a dataframe.

## this is what we want to do, including the observations

mydata <- list(n = nrow(raw), k = ncol(raw), x = times,

Y = as.matrix(raw))

myrats <- jags.model("Rats.bug", data = mydata)

## Compiling model graph
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## Resolving undeclared variables

## Allocating nodes

## Graph information:

## Observed stochastic nodes: 150

## Unobserved stochastic nodes: 34

## Total graph size: 509

##

## Initializing model

Below, I’ll suppress the jags commentary using the argument quiet = TRUE.

3. Update the model using the ‘update’ method for ‘jags’ objects.

I’ll cover this below, in the subsection on Assessing convergence (sec. 5.1).

4. Extract samples from the model object using the ‘coda.samples’ func-

tion.

Here is the very simplest example of that, where we just extract α and

some of the β quantities.

## pull out a sample of the betas

rsam <- coda.samples(myrats,

c("alpha", "beta[1:3]", "beta[7]"), n.iter = 1000)

head(rsam)

## [[1]]

## Markov Chain Monte Carlo (MCMC) output:

## Start = 1

## End = 7

## Thinning interval = 1

## alpha beta[1] beta[2] beta[3] beta[7]

## [1,] 242.3745 5.969256 7.301887 6.601351 5.864765

## [2,] 242.7985 6.141207 7.291924 6.947651 6.036773

## [3,] 243.2772 6.614218 6.763668 5.763482 6.070928

## [4,] 242.0239 6.018950 6.220971 5.929867 6.406937

## [5,] 243.9434 5.960167 6.282002 5.298714 5.470378

## [6,] 241.7870 5.923740 6.283835 5.846657 5.719476

## [7,] 241.4971 6.055372 5.691364 6.125876 5.726264

##

## attr(,"class")

## [1] "mcmc.list"
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rsam is an mcmc.list object, see ?mcmc.list for more details about

how to extract elements from it. Note that the column names iden-

tify the random variables, which may be in a different order to the

argument.

To see a summary of the random sample do

summary(rsam)

which I have not included here because there is quite a lot of informa-

tion (but type it for yourself). See the examples in the next section.

5 Important details

5.1 Assessing convergence

The handout describes the Brooks and Gelman (1998) method for assessing

convergence. It is based on running multiple chains, which is specified in

the jags.model function using the n.chains argument. My hunch is that

the beta variables will converge slowly, so these are the ones I will check

(I’ll just do the first 4). Here is roughly how we will proceed, subject to one

adjustment to be made below.

## this is what we want to do, including the observations,

## but this will not work properly quite yet ...

mydata <- list(n = nrow(raw), k = ncol(raw), x = times,

Y = as.matrix(raw))

myrats <- jags.model("Rats.bug", data = mydata, n.chains = 4,

quiet = TRUE)

rsam <- coda.samples(myrats, c("beta[1:4]"), n.iter = 2000)

## this test is similar to the test in the handout,

## we want values only a little larger than 1

gelman.diag(rsam)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## beta[1] 1.04 1.10
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## beta[2] 1.04 1.11

## beta[3] 1.04 1.10

## beta[4] 1.04 1.11

##

## Multivariate psrf

##

## 1.05

The reason this is not quite right is because the test requires the initial

values for the chain to be over-dispersed with respect to the posterior (tar-

get) distribution; JAGS does not do this automatically. One approach is to

generate over-dispersed values by sampling from the prior distribution. But

because the prior is very dispersed, we’ll use a slightly concentrated prior

by including a few observations.

## sample from over-dispersed distribution: 'bar' this has

## only a few observations

bar <- as.matrix(raw)

bar[-(1:3), ] <- NA # just include first three mice

mydata <- list(n = nrow(raw), k = ncol(raw), x = times, Y = bar)

myrats <- jags.model("Rats.bug", data = mydata, n.chains = 4,

quiet = TRUE)

rsam <- coda.samples(myrats, c("alpha", "tauy", "mub", "taub"),

n.iter = 10000) # do long run

rsam <- rsam[10000, ] # just keep final value

## now initialise the sampler with these values

inits <- lapply(rsam, as.list) # wants a list of lists

mydata$Y <- as.matrix(raw) # now all the observations

myrats <- jags.model("Rats.bug", data = mydata, n.chains = 4,

inits = inits, quiet = TRUE)

rsam <- coda.samples(myrats, c("beta[1:4]"), n.iter = 5000)

gelman.diag(rsam)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## beta[1] 1.00 1.01
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## beta[2] 1.01 1.01

## beta[3] 1.01 1.02

## beta[4] 1.00 1.01

##

## Multivariate psrf

##

## 1.01

gelman.plot(rsam)
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So it seems as though the chains have converged after 3000 iterations. In

future, after each call to jags.model we will include the call

update(myrats, n.iter = 3000)

to do the burn-in.
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If you have single or multiple chains, a trace plot is another way assess

convergence, by eye. This ought to look like a ‘hairy centipede’. Execute

the following command (not run here).

## trace plot for convergence by eye

traceplot(rsam)

5.2 Monte Carlo Standard Errors (MCSEs)

These are produced automatically by the summary method.

## run the chain some more and look at the estimates and MCSEs

rsam <- coda.samples(myrats, c("alpha", "beta[1:4]"), n.iter = 1000)

summary(rsam)

##

## Iterations = 5001:6000

## Thinning interval = 1

## Number of chains = 4

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## alpha 242.604 1.2910 0.020412 0.02084

## beta[1] 6.197 0.1961 0.003101 0.01290

## beta[2] 6.253 0.1969 0.003113 0.01278

## beta[3] 6.213 0.1920 0.003036 0.01157

## beta[4] 6.152 0.2101 0.003321 0.01711

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## alpha 240.038 241.752 242.614 243.462 245.081

## beta[1] 5.792 6.092 6.205 6.316 6.572

## beta[2] 5.874 6.138 6.244 6.359 6.689

## beta[3] 5.830 6.106 6.213 6.329 6.606

## beta[4] 5.671 6.047 6.179 6.285 6.499
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The ‘Time-series SE’ is similar to the batch means standard error. The

latter can be found explicitly using the batchSE function:

## Estimate MCSEs using batch means

batchSE(rsam)

## alpha beta[1] beta[2] beta[3] beta[4]

## 0.01932646 0.01435182 0.01351773 0.01342804 0.01672872

If these standard errors are too large for your application, the you need to

increase the value of the n.iter argument. Usually, n.iter = 1000 would

be a bit low, n.iter = 1e5 would be more common, or even larger, but

that takes too long for a demonstration.

5.3 Monitoring other random quantities

You can only monitor random quantites which are named in the model file.

Suppose we want to monitor the mean weight at birth,

ȳ0 :=
1

n

n∑
i=1

(
α− βi · x̄

)
.

We have to add this to the model. Unfortunately rjags does not allow us to

specify more than one model block, so we have to add the monitor to the

original file. Modify the previous code as follows.

#### write the model out to a file

cat("

#### model for Rats

model {

for (i in 1:n) {
for (j in 1:k) {
Y[i, j] ~ dnorm(alpha + beta[i] * (x[j] - mean(x)), tauy)

}
beta[i] ~ dnorm(mub, taub)

}

## flat prior for (alpha, tauy, mub, taub)
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alpha ~ dnorm(0, 0.001^2)

tauy ~ dgamma(0.001, 0.001)

mub ~ dnorm(0, 0.001^2)

taub ~ dgamma(0.001, 0.001)

## add a monitor

ybar0 <- mean(alpha - beta * mean(x))

}
", file = "Rats.bug")

## here we re-do the steps above, note the burn-in

myrats <- jags.model("Rats.bug", data = mydata, n.chains = 4,

quiet = TRUE)

update(myrats, n.iter = 3000) # burn-in

rsam <- coda.samples(myrats, "ybar0", n.iter = 1000)

foo <- summary(rsam)

print(foo)

##

## Iterations = 3001:4000

## Thinning interval = 1

## Number of chains = 4

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## 106.52607 3.11107 0.04919 0.31070

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## 100.6 104.5 106.4 108.6 112.8

So the expected mean birthweight is 106.5± 2× 0.31 grams.
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6 Other fun stuff

6.1 Visualizing 1D margins

#### plot the marginal posterior PDF for ybar0

densplot(rsam, lwd = 2)
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Using densplot rather than plot(density(ybar0)) is convenient because

it works directly from objects of class mcmc.list, and also it makes a sen-

sible choice of bandwidth. traceplot and densplot are called together

if you type plot(rsam), although you will get a lot of figures, so setting

par(ask = TRUE) might be a good idea.

We can see from the PDF that the marginal posterior PDF of ȳ0 is

approximately bell-shaped (very approximately!), and hence approximately
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Normal. This is not unusual; in fact, it is a Theorem that, under certain

conditons, including lots of observations, the posterior PDF is approximately

Multinormal, which implies that the margins are approximately Normal.

Note that often these conditions do not hold, but it is always gratifying to

see a bell-shaped posterior PDF.

Let’s have a look at the posterior densities of the parameters with “flat”

prior PDFs:

## densities of the flat parameters

rsam <- coda.samples(myrats, c("alpha", "mub", "taub", "tauy"),

n.iter = 1000)

op <- par(no.readonly = TRUE)

par(mfrow = c(2, 2), mar = c(3, 3, 3, 1), cex.axis = 0.8, cex.main = 1)

densplot(rsam)
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par(op) # reset graphics parameters

6.2 Choosing between models

I’m just going to show how to compare two models using the Deviance

Information Criterion (DIC), not enter into a debate about whether this is

a good idea!

First, we need to score the current model. This needs multiple chains.

#### model comparison for taub --> infty

## collect DIC values for the current model

myrats <- jags.model("Rats.bug", data = mydata, n.chains = 4,
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quiet = TRUE)

update(myrats, n.iter = 3000)

dic1 <- dic.samples(myrats, n.iter = 1000, type = "pD")

dic1

## Mean deviance: 1256

## penalty 4.351

## Penalized deviance: 1260

Now we need to create a second model in which τβ → ∞, which means

that each βi is replaced by µβ.

## write the new model out to a file

cat("

#### new model for Rats has taub --> infty

model {

for (i in 1:n) {
for (j in 1:k) {
Y[i, j] ~ dnorm(alpha + mub * (x[j] - mean(x)), tauy)

}
}

## flat prior for (alpha, tauy, mub)

alpha ~ dnorm(0, 0.001^2)

tauy ~ dgamma(0.001, 0.001)

mub ~ dnorm(0, 0.001^2)

}
", file = "Rats0.bug")

## collect DIC from new model

myrats0 <- jags.model("Rats0.bug", data = mydata, n.chains = 4,

quiet = TRUE)

update(myrats0, n.iter = 3000)

dic0 <- dic.samples(myrats0, n.iter = 1000, type = "pD")

dic0

## Mean deviance: 1256
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## penalty 3.027

## Penalized deviance: 1259

Now we compare the two DICs. A small value is better, so if dic1 - dic0

is negative, then the original model with a βi for each rat is better, and if

it is positive then the new model with a common β for all rats is better.

## compare the DICs

diffdic(dic1, dic0) # could also do dic1 - dic0

## Difference: 0.9707562

## Sample standard error: 0.6583179

This is positive, and so it looks as though the model with a common β is

better. Looking at the DIC values, the common-β model is achieving the

same quality of fit but with a smaller effective number of parameters. This

gives it a better (lower) score because overfitting is a source of prediction

error.

6.3 Controlling the initialisation values

For fully-reproducible research it is necessary to specify the initial value

of the Markov chain and the random seed used to initialise the random

nunbers used to simulate the Markov chain. Otherwise these are selected

by the software, with the random seed being selected in a pseudo-random

manner, and varying from run to run. You do this using the inits argument

to jags.model, see ‘Initialization’ in ?jags.model for more details. (We

already did some initialization in the convergence test.)

Initialisation values for the random quantities can be collected directly

from the model. These do not have to be ‘correct’, merely not-invalid. The

update function takes care of moving the sequence into the correct part of

the state space. Having said that, better initalisation values mean better-

tuned proposals in the non-Gibbs proposals, so perhaps one could do better

than my choices below.

I’ll use the original model (Rats.bug), to show how to initialise a vector

of random quantities. This just has one chain.
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#### control the initialisation values

inits <- list(

alpha = 0,

tauy = 1,

mub = 0,

taub = 50,

.RNG.name = "base::Wichmann-Hill", # this is my usual choice,

.RNG.seed = 101 # any integer will do

)

myrats <- jags.model("Rats.bug", data = mydata, inits = inits,

quiet = TRUE)

update(myrats, n.iter = 3000)

rsam <- coda.samples(myrats, "ybar0", n.iter = 1000)

head(rsam)

## [[1]]

## Markov Chain Monte Carlo (MCMC) output:

## Start = 3001

## End = 3007

## Thinning interval = 1

## ybar0

## [1,] 104.8307

## [2,] 103.7027

## [3,] 103.9726

## [4,] 103.6066

## [5,] 104.8607

## [6,] 105.7734

## [7,] 104.4688

##

## attr(,"class")

## [1] "mcmc.list"

Your head(rsam) should now be identical to mine.

6.4 Missing observations

Missing observations are easy to handle. Suppose that we were missing the

first and third observations on Rat 16. These just become NA in the Y matrix

(we already did this in the convergence test). We can collect imputed values

from the Markov chain.

I’ll do this one with the new model, with a common β for all rats.
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#### pretend that some obervations are missing

Y <- raw

Y[16, c(1, 3)] <- NA # Rat 16 missing a couple of values

mydata$Y <- Y

myrats0 <- jags.model("Rats0.bug", data = mydata, quiet = TRUE)

update(myrats0, n.iter = 3000)

rsam <- coda.samples(myrats0, "Y[16, 1:5]", n.iter = 1000)

head(rsam)

## [[1]]

## Markov Chain Monte Carlo (MCMC) output:

## Start = 3001

## End = 3007

## Thinning interval = 1

## Y[16,1] Y[16,2] Y[16,3] Y[16,4] Y[16,5]

## [1,] 128.7586 207 226.4811 288 324

## [2,] 153.3167 207 231.2442 288 324

## [3,] 156.2232 207 225.5468 288 324

## [4,] 173.7728 207 231.5943 288 324

## [5,] 170.1133 207 246.6527 288 324

## [6,] 154.0430 207 255.4892 288 324

## [7,] 160.9726 207 245.9760 288 324

##

## attr(,"class")

## [1] "mcmc.list"

# summary(rsam) # to get estimates for the missing values

Let’s have a look at the imputed growth curves for this rat.

## plot a random sample of 100 of the growth curves

rsam1 <- sample.int(nrow(rsam[[1]]), 100)

rsam1 <- rsam[[1]][rsam1, ]

matplot(times, t(rsam1), type = "b", pch = 16, lty = 1)
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There is too much variation in the imputed values for my liking.

7 Afterword

A final word on the Rats model. I have used the standard model, in which

the coefficients α and βi are conditionally Normal. But if this were my infer-

ence, I would use Gamma distributions for the βi, imposing the constraint

that the rats gain weight over time; to allow, in the prior PDF, that the rats

might shrink in their first five weeks seems bizarre. It would be better still

to use a functional form for weight as a function of time which imposed the

obvious constraint that weight can never be negative, or zero.
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