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Chapter 1

Formal Bayes Methods for Model Calibration with
Uncertainty™

This box describes the Bayesian approach to assessing uncertainty, and how
it can be implemented to calibrate model parameters using observations,
taking account of the imperfections of the model, and measurement errors.
Section 1.1 outlines the justification for the Bayesian approach, Sec. 1.2 out-
lines the Bayesian approach to model calibration, and sections 1.3 and 1.4
discuss simple and more advanced strategies for performing the inferential
calculations. There is a brief summary in Sec. 1.5.

1.1. Bayesian methods

Bayesian methods provide a formal way of accounting for uncertainty,
through the use of probability, and the probability calculus. Uncertainty,
treated generally, is a property of the mind; it pertains to an individual,
and to the knowledge that individual possesses. Many people baulk at
the uncompromisingly subjective or ‘personalistic’ nature of uncertainty.
A superficial understanding of science would suggest that this subjectiv-
ity is out of place, but in fact it lies at the very heart of what makes a
scientist an expert in his or her field: the capacity to make informed judge-
ments in the presence of uncertainty (Ziman, 2000, provides a naturalistic
assessment of ‘real’ science). Different Hydrologists will produce different
models of the same catchment, which is to say that the process of design-
ing and constructing a model is subjective. The Bayesian approach extends
this subjectivity to descriptions of uncertainty, e.g. uncertainty about the
relationship between the model output and the behaviour of the actual
catchment. But while model-building is something Hydrologists do a lot
of, thinking about uncertainty is less familiar, and seems less structured.
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And yet it is a vital part of any model-based analysis—we cannot make
inferences about a catchment without accounting for the limitations of the
model. The probabilistic approach is therefore a way of making explicit
what must be happening implicitly. In requiring us to quantify our uncer-
tainties as probability distributions, it puts these judgements into a form
where they may be debated, and amended (Goldstein, 2006).

The fact that these judgements are subjective, and the case for making
them transparent in scientific inference, are unassailable. What we have
yet to establish here is why we should do this within a probabilistic frame-
work. The pragmatic answer is that the probabilistic approach has proved
to be extremely powerful and, in conjunction with modern computational
methods (particularly Monte Carlo methods), is unsurpassed in complex
inferences such as data assimilation, spatial-temporal modelling, and sci-
entific model calibration and model-based prediction (see also the many
scientific applications in Liu, 2001). As these fields have developed, a con-
sensus has emerged, and the result is that the overt subjectivity has been
somewhat reduced, in the same way that a consensus on how to treat a
certain aspect of a hydrologic model reduces the differences across models.

The pragmatic answer focuses on the efficacy of the probability calculus.
Perhaps that is the only justification that is required. Before the advent
of modern computational methods, though, the first answer would have
been that there is foundational support for the probability calculus as a
model for the way we reason. The probability calculus is based on three
simple axioms. We suppose the existence of a set €, and a measure Pr(+)
defined on subsets of 2. The axioms assert that Pr(-) satisfies the following
properties:

(1) Pr(A) >0;
(2) Pr(2) = 1
(3) Pr(AUB) =Pr(A)+Pr(B)if ANB =0;

where A, B C ) (see, e.g., Dawid, 1994). Why these axioms and not oth-
ers? There are a number of interpretations, i.e., suggested relations between
these axioms and the real world (see, e.g., Gillies, 1994). In the Bayesian
interpretation, Pr(A) is an operationally-defined assessment of an individ-
ual’s uncertainty about A, a view that was formalised by Bruno de Finetti
in the 1930s (de Finetti, 1937, 1964, 1972). Book-length treatments of this
approach can be found in Savage (1972) and Lad (1996); Jeffrey (2004)
provides a concise introduction.

Imagine that we are interested in X, the amount of rain in mm
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on the Met Office roof on Christmas Day 1966. We might set Q =
{X=0,X=1,...,X=100}. Any subset of Q is termed a proposi-
tion, and interpreted as the union of its components. Thus if A =
{X=0,X=1,X =2} then Pr(A) =Pr(X =0o0r X =1or X =2). But
how does one assess Pr(A4)? One operationalisation of the Bayesian ap-
proach is to think of Pr(A) as the value of v that minimises, for me (or
whoever’s probability is being assessed), the loss function (v — I4)?, where
I, is the indicator function of the proposition A, i.e. I4 = 1 if A is true,
and 0 otherwise. If I was sitting at my desk with the meteorological records
for the Met Office roof in front of me, I would know whether or not A was
true. In this case v = 1 would minimise my loss if it was, and v = 0 if it was
not. In general, however, I would likely settle on a value for v somewhere
between 0 and 1: where exactly would be a quantification of how probable
I thought that A was.

The operational definition of probability is combined with a simple ra-
tionality principle: I would never choose a probability (or, more generally,
collection of probabilities) which resulted in a loss that could be unam-
biguously reduced no matter what the outcome. Probabilities obeying this
principle are termed coherent. It is easy to show that coherence implies the
three axioms given above. For example, if I chose a value for Pr(A) that
was strictly less than zero, then a value Pr(A4) = 0 would result in a loss
that was smaller, no matter whether A turned out to be true or false; hence
Pr(A) > 0 is implied by coherence.

In order for these axioms to lead to a useful calculus, we need rule for
describing how knowing the truth of one proposition would change our prob-
abilities for others. In other interpretations of the probability axioms this
is defined to be the conditional probability Pr(A | B) = Pr(AU B) /Pr(B),
provided that Pr(B) > 0. In the Bayesian approach, however, the condi-
tional probability Pr(A | B) is operationally defined as the value of v which
minimises, for me, the loss function

Ig(v —1I4)? (1.1)

a definition which subsumes Pr(A), which is equal to Pr(A | ) since I =1
with certainty. It can then be proved that the relation

Pr(AU B) = Pr(A | B) Px(B) (1.2)

follows as a consequence of the coherence of the collection of probabilities
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for AUB, A| B, and B (see, e.g., de Finetti, 1972, ch. 2). The result

Pr(B| A)Pr(A)

Pr(A|B) = Pr(B)

providing that Pr(B) > 0 (1.3)
which is an immediate consequence of (1.2), is referred to as Bayes’s Theo-
rem precisely because it is a theorem: it is a consequence of the operational
definition of Pr(A | B) and the principle of coherence.

The Bayesian approach does not assert that this is how people actu-
ally assess probabilities: it is a model for reasoning, and has the same
advantages and disadvantages as models used elsewhere in science. For
simple propositions we can usually assess Pr(A) directly, without recourse
to thinking about loss functions: most people seem to understand probabil-
ity without having to operationalise it. For more complicated propositions,
however, the probability calculus helps us to break probability assessments
down into more manageable parts.

Suppose, for example, that X denotes uncertain parameters in our hy-
drologic model, and 2°" a sequence of flow measurements on a river down-
stream of the catchment (conventionally, capitals are used for uncertain
quantities, and small letters for possible values). We might attempt to de-
scribe Pr(X = z) for all « directly, taking into account only implicitly that

obs js known at the

Z = z°P. It is important to stress this point: Z = z
point where Pr(X = ) is specified, and so if this information is relevant
it ought to impact on Pr(X = x); but the impact is implicit, in that we
cannot trace, formally, the effect that Z equals 2°P® rather than some other
value.

Bayes’s Theorem gives us an alternative way of assessing X: we can

compute the posterior distribution

Pr(Z =2"|X =) Pr(X =x)
Pr(Z = z°0bs) '

Pr(X=z|Z= ZObS) = (1.4)

In this case, the link between Z = 2°" and X = z is made explicit. The
cost, though, is that now we have to specify two distributions instead of
one: we need to specify the conditional distribution Pr(Z = z | X = x) for
all values z and z, and the prior distribution Pr(X = z) for all z, then
we can compute the required conditional probability (the denominator is

simply a normalising constant). The first function in the numerator of
Eq. (1.4),

L(z) £Pr(Z =2 | X = 2), (1.5)



March 27, 2008 14:26 World Scientific Review Volume - 9in x 6in FRMbox2-4

Formal Bayes Methods for Model Calibration with Uncertainty® 5

is known as the likelihood function, where ‘2> denotes ‘defined as’. The
likelihood function is a function of just x, and it appears as though
Pr(Z = z | X = ) is not required, except where z = z°". But the validity
of Bayes’s Theorem depends on the likelihood function being one particular
value from a well-defined conditional distribution, and so we have to specify
the whole distribution Pr(Z = z | X = ), and then plug-in 2°".

Other methods for uncertainty assessment, such as the GLUE approach
(see Box 777 in this volume), specify a ‘likelihood-like’ function: a function
of x for which smaller values indicate a poorer fit to the data. Inferences
based on these ‘likelihood-like’ functions cannot be formally interpreted as
probabilities. They might, however, be informally interpreted as probabil-
ities: within the subjective framework there is nothing to stop an individ-
ual from adopting whatever method he or she sees fit to assess his or her
probabilities. The issue, though, is whether the resulting assessments are
authoritative. There is, perhaps, a lack of authority in a probabilistic as-
sessment that cannot be demonstrated to be consistent with the probability
calculus.

Most of us make our everyday probabilistic assessments directly. For
example, when we assess Pr(rain today) we take account, informally, of the
event ‘rain yesterday’: we do not do the conditional probability calcula-
tion. In scientific applications, though, the conditional calculation has a
large advantage: the conditional distribution Pr(Z =2 | X = x) is of-
ten ‘nearly’ available, in the form of a physical model. Denoting Y as the
actual behaviour of the river, the model represents a function mapping can-
didate values for X into candidate values for Y: the ‘forwards’ direction
of the model corresponds to the direction of the conditional probability
Pr(Z = z| X = x). Of course the model does not get us all the way from
X to Z, because we still have to account for the effect of its inaccuracies,
and of measurement errors. But it is reasonable to expect the model, if it is
carefully constructed, to get us most of the way there. Therefore while there
is nothing to stop us trying to assess Pr(X = z) directly, taking account
informally that Z = 2°P%, in scientific applications there is often a strong
case for using the conditional probability Pr(X =z|Z= ZObS) instead, in
conjunction with a physical model.

The next section describes a statistical framework for linking together
the model parameters, model evaluations, the actual system values, and
the observations.
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1.2. Model calibration in a simple statistical framework

As above, let X denote the (unknown) ‘best’ values for the model param-
eters, let Y denote the system values, e.g. river height at various locations
and various times, let Z denote the measurements, and z°°° the actual mea-
sured values. Calibration is learning about X using Z = 2°"; calibrated
prediction is learning about X and Y using Z = 2°P®
calibration, but the extension to calibrated prediction is straightforward.
The main purpose of calibration is to assess a point value and a mea-
sure of uncertainty for the ‘best’ values for the model parameters. Craig
et al. (1997, 2001) and Goldstein and Rougier (2006) discuss the statisti-
cal approach to calibration and calibrated prediction, particularly for large

. This Box focuses on

problems; Kennedy and O’Hagan (2001) provide a more conventional but
less scalable approach. Note that the assertion that there exists a ‘best’
value for the model parameters is not clear-cut; this is discussed within the
context of a more general statistical framework in Goldstein and Rougier
(2004, 2007).

Referring back to Eq. (1.4), we need to specify the prior distribution
Pr(X = z) for each x, and the statistical model Pr(Z = z | X = x), for each
combination of x and z. The prior distribution quantifies our judgements
about the model parameters before observing Z (or, more realistically, ne-
glecting the information that Z = 2°")
tations of the model parameters, but it should also reflect information col-
lected from previous observations on the catchment, or similar catchments,

. It must respect the physical limi-

where such information exists. Sometimes a fairly vague specification for
Pr(X = z) will suffice, in situations where there is lots of information about
X in Z. The ‘classical’ situation where this occurs is where the components
of Z are independent conditional on X. However, this is emphatically not
the case with physical models, for reasons to be explained below. There-
fore the choice of Pr(X = x) is likely to have some impact on the posterior
distribution, and it is worth investing some effort in this choice or, if that
is not possible or if it proves too hard, performing a sensitivity analysis by
re-doing the inference for a range of choices.

We also have to specify the statistical model Pr(Z =z | X = z). We
could specify this directly, but in practice it is easier to induce this dis-
tribution by specifying two other quantities. Denote the model output at
model parameters z as f(x). We will assume, for simplicity, that the compo-
nents of f(z), Y, and Z correspond one-to-one, for every x. The difference
Y — f(x) denotes the difference between the system values and the model
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output when evaluated at x. This is uncertain because Y is uncertain. The
difference

e2Y — f(X) (1.6)

denotes the model discrepancy. This is the difference between the system
value and the model output when evaluated at the best choice of parameter
values, X. This is uncertain because both X and Y are uncertain. Next,
we need a statistical model for the measurement error, to take us from Y

to Z,
e27-Y. (1.7)

Putting these together, we have a statistical model for the distribution of
Z conditional on X, since

Z=Y +e=f(X)+e+te, (1.8)

where ‘=’ denotes ‘equivalent by definition’.

In the simplest case where X, € and e are treated as mutually indepen-
dent, a treatment that is almost always used in practice, our choices for
the marginal distributions of € and e induce the conditional distribution
Pr(Z = z| X = z). For example, suppose that we decide that both € and
e are multivariate Gaussian (this might require a transformation of f(x),
Y, and Z), each with mean zero, and with variance matrices 3¢ and X€.
Exploiting the fact that the sum of two independent Gaussian distributions
is Gaussian, we find that

L(z) = go(z‘)bs; fz), X+ Z"‘) (1.9

where ¢(+) is the Gaussian Probability Density Function (PDF) with spec-
ified mean and variance. We will adopt these choices from now on, so that
our task simplifies to (i) choosing a prior distribution for X and choosing the
variance matrices £¢, and X¢, and (ii) calculating Pr(X =z | Z = 2°™) on
the basis of these choices. Strategies for doing the calculation are discussed
in sections 1.3 and 1.4.

Now we can clarify why physical models do not give rise to observa-
tions that are conditionally independent given X. When physical models
are inaccurate, their errors are almost always systematic across the output
components. For example, if the model predicts a value that is too high at
time ¢, then we would usually judge that this error will persist into time
t + 1, if the unit of time is not too large. This persistence of errors is rep-
resented by dependence among the components of the discrepancy e. This
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dependence means that the observations are not conditionally independent
given X. The only situation in which we can ignore the discrepancy (in the
sense that it has little effect on the inference) is when it is dominated by
the measurement error, so that X€ + ¢ ~ 3°. It is fairly standard to treat
the measurement errors as independent, and in this case the observations
would be conditionally independent given X. But if the observation errors
are large, then the data are not very informative about X, and so the choice
of prior Pr(X = z) will be important.

Specifying the discrepancy variance X¢ is the hardest task in calibrating
a model. Often it is ignored, i.e. implicitly set to zero. In this case each
observation is treated as more informative than it actually is, and the result
can be incompatible posterior distributions based on different subsets of the
observations. Another example of a poor implicit choice is to minimise the
sum of squared differences between 2°b% and f(x). This is equivalent to
finding the mode of the posterior distribution in the special case where
both ¢ and X¢ are treated as proportional to the identity matrix. The
problem with this choice is that it ignores the persistence of model errors,
and so over-weights collections of observations that are close in space or
time. A crude way around this is to thin the observations, arranging that
they are sufficiently well-separated that the persistence is negligible. This
is an effective strategy if the observations are plentiful, and it reduces the
specification of $¢ to a diagonal matrix: perhaps even simply o1 for some
scalar o, and identity matrix I, if all the observations are the same type.
In general, however, the diagonal components of 3¢ will have to be set
according to how good the model is judged to be, and the off-diagonal
components according to how persistent the model-errors are judged to be.

Rougier (2007) discusses these issues in more detail, in the context of
climate modelling.

1.3. Simple sampling strategies

The posterior distribution in Eq. (1.4) is very unlikely to have a closed-
form solution (which would only happen if the model was linear and the
prior Pr(X = x) was Gaussian). Therefore either we estimate the constant
of integration, Pr(Z = zObs), or we use a random sampling scheme that
does not require this value to be computed explicitly. For simplicity, we
will assume from now on that X is absolutely continuous with prior PDF



March 27, 2008 14:26 World Scientific Review Volume - 9in x 6in FRMbox2-4

Formal Bayes Methods for Model Calibration with Uncertainty 9

7x (v) and posterior PDF 7x |z (x), for which Bayes’s Theorem states

Txz(z) = ¢ 'L(z) mx(z) where c¢=£ / L(z) mx(x)dz, (1.10)
X
where X C RP is the parameter space, and c is the normalising constant
(also known as the marginal likelihood), which we previously denoted as
Pr (Z = zObs).

If p (the dimension of X') is low, say less than five, the former approach
may be the best option. In this case, a deterministic numerical scheme can
be used to approximate ¢ (see, e.g., Davis and Rabinowitz, 1984; Kythe
and Schiferkotter, 2004). Once this value has been computed, the posterior
distribution can be summarised in terms of means, standard deviations and
correlations, using further integrations. If a single point-estimate of X is
required, the posterior mean is usually a good choice.

If p is much larger than about five, though, this approach becomes
unwieldy, because so many points are required in the integration grid. The
alternative strategy is to randomly sample from the posterior directly, which
can then be summarised in terms of the properties of the sample. These
properties include quantiles, since the empirical distribution function of
any parameter can be computed directly from the sample, and this can
then be inverted. Sampling does not of itself fix the problem of a high-
dimensional parameter space. In particular, n function evaluations in a
random sampling scheme are likely to do a worse job than n points in an
integration scheme, since in the latter these points will be chosen to span X.
But the overriding advantage of sampling is its flexibility: we can keep going
until the summaries of the posterior are accurate enough for our purposes,
and we can adapt our approach as we go along. Numerical integration
requires us to operate on pre-specified grids, and if we find out that an
n-point grid does not deliver the required accuracy, then it is hard to reuse
these points in a more accurate calculation on a new, denser, grid (although
Romberg integration is one possibility, see Kythe and Schéferkotter, 2004,
sec. 2.7).

The subject of Monte Carlo sampling is huge and still developing (see,
e.g., Ripley, 1987; Robert and Casella, 1999; Evans and Swartz, 2000; Liu,
2001). Here we outline one of the simplest approaches, Importance Sam-
pling, since it is intuitive and corresponds quite closely to current practice
(see the end of this section). The mantra for the most basic form of Im-
portance Sampling is sample from the prior, weight by the likelihood. The
following steps are repeated for i =1,...,n:
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(1) Sample z(*) from 7x (x);
(2) Evaluate the model to compute f(z());
(3) Now compute the weight w; = L(z("), e.g. using Eq. (1.9).

The weights describe the quality of the fit between each f(z(*)) and 2°b,
taking account both of the model discrepancy and the observation error.
Upweighting candidates for X that give a good fit to the observations is very
intuitive, but this general principle gives no guidance regarding the form
of the weighting function. The Bayesian formalism indicates that in this
simple approach (a more sophisticated approach is described in Sec. 1.4)
the correct choice for the weighting function is the likelihood function.
After n samples, the mean of the weights is an estimate of c¢:

c=E(L(X)) mn (o + - 4 w,), (1.11)

where the expectation is with respect to mx (). To estimate the posterior
expectation of some specified function h(X) we compute

E(h(X)) :c*l/ h(z) L(z) mx (x) dz

X
=c 'E(h(X)L(X))
wq h(x(l)) + -+ wy, h(x("))
~ wy + -+ wy
cancels top and bottom. Thus to estimate the mean vector p

we choose h(z) = z, and to estimate the variance of X; or the covariance
between X; and X, we choose h(x) = (z; — pi)(x; — p;), where for the

, (1.12)

where n=!

variance j = 1.

We can also estimate quantiles, by inverting the distribution function.
The cumulative probability Pr(X <a'|Z= zObS) can be estimated for any
x’ by setting h(z) = I,<,s, remembering that I, <, is the indicator func-
tion. For simplicity, suppose that X is a scalar (i.e., p = 1). Then the
estimated posterior distribution function of X has steps of

W) o WG

1.13

w1 + e + Wy, ( )
at each o(;), where o), ..., 0(,) are the ordered values of W, 2™ and
w1y, -+ -, W(pn) are the correspondingly-ordered weights. This distribution

function can be inverted to give marginal posterior quantiles; i.e. we identify
that value o9 for which Pr (X < ol® | Z = zObs) is approximately equal to
our target probability. An intuitive measure of uncertainty about X is the
95% symmetric credible interval, which is defined by the 2.5th and 97.5th
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percentiles. It is a mistake often made in practice, but this should not be
referred to as at 95% confidence interval, which is quite a different thing
(see, e.g., a standard statistics textbook such as DeGroot and Schervish,
2002, sec. 7.5).

Comparison with current practice. Current practice for model-
calibration is diverse, but one strategy that is used frequently is to sample
2 from the PDF mx (x) and then keep all those samples for which some
distance measure on z°P — f(z() is small, discarding the rest. This cannot
be consistent with the Importance Sampling approach outlined in this sec-
tion unless the likelihood function is zero for some set of parameter values,
and constant on the complement of this set in A'. It is hard to imagine
such a likelihood function emerging from any reasonable choice for the con-
ditional probability of Z given X; hence, this approach cannot be said to
give rise to a sample from the posterior PDF mx|z(x).

This strategy of keeping only those samples that match the observa-
tions sufficiently well requires us to quantify what we mean by ‘sufficiently
well’, and any number of different choices are possible, although the Nash-
Sutcliffe measure seems to be the most popular in Hydrology. This issue
is resolved in the Importance Sampling approach, which tells us exactly
how the difference between 2°° and f(2(?)) should be scored if we want to
describe our uncertainty probabilistically. But the major benefit of Impor-
tance Sampling arises from its efficiency in more advanced implementations,
as discussed in the next section.

1.4. More advanced strategies

Sampling from the prior and weighting by the likelihood is very intuitive.
It works well in situations where the observational data are not highly
informative, so that the posterior PDF 7x|z(x) is not that different from
the prior, mx (z). This is because the sampled values {x(l), . ,x(”)} do
a good job of spanning the z-values that predominate in the posterior.
Typically the observational data will be not-highly-informative when the
measurement errors are large, when the discrepancy is large (i.e. the model
is judged to be poor), or when the model output is fairly constant in z.
What about the other situation, though, when the observations are ex-
pected to be highly informative. In this case, simple Importance Sampling
‘wastes’ model evaluations by putting many of the z(*) into regions of the
parameter space that have near-zero likelihood, and thus near-zero poste-
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rior probability. This will be a problem if the model itself is expensive to
evaluate. In this case, it would be more efficient to find a way to sample the
z( so that they were likely to occur in regions of high posterior probability.
Importance Sampling allows us to do this, and to correct for the fact that
we are not sampling from mx (z).

Suppose we think that some specified PDF 7 () is likely to be a better
approximation to the posterior PDF than is mx (z), and that 7 (z) is easy
to sample from and to compute; 7 (x) is known as the proposal distribu-
tion. The PDFs mx (z) and 7'y (x) must satisfy certain technical conditions:
7 () > 0 wherever mx () > 0, and the ratio L(z)mx (x)/7 () must be
strictly bounded above (these are discussed further below). Where these
conditions hold, the sampling strategy is:

(1) Sample z(*) from 7' (x);
(2) Evaluate the model to compute f(z());
(3) Now compute w; 2 L(z®) 7x (x@) /' ().

Then we proceed as before. Note that this generalises the strategy of the
previous section, where the proposal distribution was taken to be mx(z).
We only have to compute the likelihood and the two PDFs up to multi-
plicative constants, since the product of these will cancel out when we take
the ratio of the weights.

How do we choose a good proposal distribution? Omne simple ap-
proach is to approximate the posterior distribution using numerical meth-
ods. Asymptotic theory suggests that as the amount of information in z°"
becomes large, so the prior becomes less and less important in determin-
ing the posterior, and the likelihood function tends to a Gaussian PDF
(Schervish, 1995, sec. 7.4.2). Now this is unlikely to be true in the case
of calibrating a hydrologic model: there is unlikely to be sufficient infor-
°bs particularly if we are realistic about the size of the model
discrepancy. But the attraction of Importance Sampling is that the pro-
posal distribution only needs to be approximately like the posterior. In
fact, pragmatically, the proposal only needs to be a better approximation
to the posterior than is the prior.

One simple approach is to take the proposal distribution to be a multi-
variate Gaussian distribution. The mean vector is the maximum likelihood
value,

mation in z

# £ sup log L(x), (1.14)
zeX

and the variance matrix is the negative of the inverse of the Hessian matrix
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of log L(z) evaluated at © = &:

62
Bxi &rj

-1
- log L(z) _J . (1.15)

Both # and ¥ can be assessed in a single numerical maximisation of the log-
likelihood function: this maximisation does not have to be overly-precise. It
is interesting to make the link back to more deterministic methods of model-
calibration, in which finding &, the best-fitting model-parameter, is seen as
the goal. In this respect the Bayesian approach is clearly a generalisation:
one that allows us also to assess the uncertainty in our choice of model-
parameters (Rougier, 2005).

The Gaussian proposal is very tractable, and seems a safe choice because
' (x) > 0 for all z € RP, so that the condition 7’ (z) > 0 wherever
mx(z) > 0 is automatically met. But there is a risk that the posterior
distribution might have thicker tails than the proposal distribution, so that
the condition that L(z)mx(z)/m' () is strictly bounded above might not
be met. A simple and fairly robust expedient is to thicken the tails of
the proposal distribution by switching from a multivariate Gaussian to
a multivariate Student-¢ distribution with a small number of degrees of
freedom (Geweke, 1989).

The multivariate Student-t is easy to sample from and easy to compute.
Generally, if X ~ N,(0,1),V ~ x2(8), and Y ~ T,(p, S, ), a p-dimensional
multivariate Student-t where p is the mean vector, S the scale matrix, and
0 is the degrees of freedom, then

D 1
Y=pu+—0TX 1.16
p V/(SQ (1.16)

where @ is the Choleski decomposition of S, i.e. S = Q7(Q), and 2 denotes
‘equal in distribution’. In other words, the multivariate Student-¢ can be
generated from p standard Gaussian variates and a single x? variate. The
variance of Y is (6/(0 —2)) S, and so we should choose § and then set S =
((6 — 2)/8) 3 before computing @, although setting S = ¥ is conservative.
The PDF of YV is

Ty (y) o< [1+ 6_1(sz)] —o+p)/2 _ [1+ v_l(xTx)] —(@+p)/2 (1.17)

where z 2 Q 7(y — p) = \/d/vz. In other words, we can compute the
PDF at y (up to a multiplicative constant, which we can ignore) using the
sampled values x and v. Using an n X p matrix of X variates and an n-
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vector of V variates, the whole set of sampled Y variates and PDF values
can be generated in one simple operation.

Why stop at just one choice of proposal distribution? This procedure
can be iterated, if we have a measure of how well our proposal distribution
is matching the posterior distribution; this is known as Adaptive Impor-
tance Sampling (Oh and Berger, 1992). One simple measure is the effective
sample size,

" (w; — w)?

ESS £ # where cv? £ W (1.18)
and w is the mean value of the weights. The ESS ranges from about 1,
when a single (¥} dominates the weights, to n, when all weights are equal.
It can be shown that the efficiency of the proposal distribution is roughly
proportional to the ESS (Liu, 2001, sec. 2.5.3). Once we have a reasonably-
sized sample from our initial proposal distribution, we can re-estimate the
posterior mean and variance of X, and we can use these estimates to select
a more appropriate proposal distribution, typically by updating the mean
vector and scale matrix of the multivariate Student-t.

We can think of this approach as a pilot sample followed by the main
sample, or we can iterate a few times, until the ESS has increased and
stabilised at—one hopes—a value fairly close to n. We can use just the
final sample to estimate properties of the posterior distribution or, if this is
not sufficiently large, we can pool estimates from all the samples, weighting
by the estimated standard error. We might also use the ESS to tune our
choice of the degrees of freedom. Adaptive methods can sometimes be
unstable, and so, if resources allow, a duplicate analysis would increase
confidence in the result.

If after several iterations the ESS remains small, this suggests that our
proposal distribution is a poor match to the posterior; i.e., the posterior is
not unimodal and roughly bell-shaped. In this case a large n will be re-
quired, in order to raise the ESS to a reasonable value, or else a more sophis-
ticated proposal can be used, such as a mixture of multivariate Student-¢
distributions (Oh and Berger, 1993). Another possibility is to transform
one or more of the components of X. For example, if a component is
strictly positive, then using a Gaussian marginal distribution for the log-
arithm might be better than, say, a Gamma distribution for the original
value. Likewise, if a component is a proportion, then a Gaussian distribu-
tion for the logit might be better than a Beta distribution for the original
value. Transforming X in this way, so that X = R? and wx (z) is relatively
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symmetric, is is a good principle in general. Another one is to arrange, as
far as possible, that the transformed values will be roughly uncorrelated
in the posterior. Usually, this requires more information about the model
than we possess, but we might be able to infer such a transformation from
previous studies, if they have taken care to present multivariate uncertainty
estimates for the model parameters.

The more advanced methods in this section are really concerned with
making the most efficient use of a fixed budget of model-evaluations. The
more efficient methods are a little more complicated to implement, and—
taking a defensive view of the possibility of implementation errors—are only
justified if the budget is quite constraining. Having said that, they can make
a huge difference to the accuracy of the resulting approximations. The most
robust and useful recommendation is to proceed in stages: spend some of
the budget on a pilot sample from the prior distribution, and evaluate a
diagnostic like the ESS. If this is a reasonable fraction of n, then it is quicker
and safer to spend the rest of the budget on more points sampled from the
prior; otherwise, extra efficiency can be purchased with extra coding.

1.5. Summary

The Bayesian approach provides a framework within which we may assess
our uncertainties. It is important to appreciate that there is no unambigu-
ous ‘Bayesian answer’ to a problem, and that the answer that we derive will
be one that is imbued throughout by our judgements. This is obviously the
case for the process of building the physical model. But it is also the case
both of the formal process of describing and quantifying our beliefs about
our physical model, the underlying system, and the observations; and of the
calculations we implement to approximate features of our inferences regard-
ing the model-parameters. To emphasise a point made at the start, once we
have decided to assess our uncertainty probabilistically, we choose to adopt
an approach such as estimating the posterior distribution 7 x|z () because
we think that it helps us to make better judgements about X, the model
parameters, and it also helps us to convince other people to adopt these
judgements, since our reasoning is transparent. In other words, calculat-
ing mx|z(x) does not automatically lead us to the ‘right’ answer regarding
X, but, rather, to a better answer than we might have got through other
methods.
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