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Simplest interesting example
Conditional on 8:
X0 ~ Ty (1 6)
Xt = g(Xt—lawt; 9)
ye = f(x¢; 0) + vt
where

we SN0, 1)

v N(0, v?)

(init. cond. unc.)

(state eqn.)

(structural uncertainty)

(measurement unc.)

and then let § ~ my(+), to account for parametric uncertainty. The
functions f and g are given, likewise the measurement uncertainty

standard deviation, v.

, 1} “intractable and

Sampling from {xo, x1,...,x7,0} | {y1,...

unsolved” (C. Andrieu)



The calibration problem

To learn about 8, typically by summarising samples from the
distribution (0 | y), where y = (y1,...,y7). We'll treat xg as
known, for simplicity.

» Ideally, we would run an MCMC chain with proposal
q(0 — 0') and acceptance probability

m(y [0") m(0') q(6" — 0)

A0 0) = 1A T0 7(0) o0 = 0y
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To learn about 8, typically by summarising samples from the
distribution (0 | y), where y = (y1,...,y7). We'll treat xg as
known, for simplicity.

» Ideally, we would run an MCMC chain with proposal
q(0 — 0') and acceptance probability

m(y [0") m(0') q(6" — 0)
m(y | 6)=(6) q(6 —6)

a0,0')=1A

» The catch is that we need to integrate out w in order to
evaluate 7(y | 0):

w(y|0) = / 7y | w,0) 7(w) duw

where w = (w1, ...,wr) — ouch!!



The calibration problem (cont.)

In a picture ...

(w | 8)-space (high-dimensional)

f-space (low-dimensional)



The calibration problem (cont.)

» We could approximate this tricky density with an Importance
Sampler estimate

fr(y\@) 12 y|w eyy(;d) |0) w’ 11dq( y’0)7

but how would this affect the MCMC chain?



The calibration problem (cont.)

» We could approximate this tricky density with an Importance
Sampler estimate

. Y|w O)m(w'[0) ;i
#(y|0) = 12 oy 0) w' % gu(y,0),
i=1 i

but how would this affect the MCMC chain?

» Mark Beaumont’s (2003) result. The §-marginal of the
MCMC equilibrium distribution with 7(y | ) replaced by
7(y | 0) is still w(0 |y), for all N > 1.

1. One has to accept/reject {w'} along with 6.
2. Small N normally implies a sticky chain.

» The general result was stated by Andrieu et al (2007): the
f-marginal is w(é | y) for any unbiased estimator of 7(y | 6).



The stochastic van der Pol oscillator

Has a ‘slow’ response x and a ‘fast’ response x’, related as
X"+ X 4 (= x*)x = oxdW,

where W is a Brownian motion. It is the basis for several
phenomenological models of glacial cycles, where x is ‘ice volume'
and x’ is ‘temperature’ (or, effectively, ‘CO,"). Here 6 = (a, 0).



The stochastic van der Pol oscillator

Has a ‘slow’ response x and a ‘fast’ response x’, related as
X"+ X 4 (= x*)x = oxdW,

where W is a Brownian motion. It is the basis for several
phenomenological models of glacial cycles, where x is ‘ice volume'
and x’ is ‘temperature’ (or, effectively, ‘CO,"). Here 6 = (o, o).

One realisation:

‘Ice volume'
‘Temperature’



The evidence (24 hours)
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Summary

» In inference for environmental systems, model limitations
require us to account for both parametric and structural
uncertainty.

» The generic problem for dynamical systems is therefore
non-linear data assimilation with uncertain static parameters.

» Learning about the parameters involves integrating out the
high-dimensional state vector; this can be done ‘exactly’ (in
the MCMC sense) using Beaumont's result.

» Recent developments not mentioned here have generalised this
approach (e.g. pseudo-marginal approach, particle-MCMC).

» This is an exciting time to be working as a statistician in
environmental science!



