
Efficient Emulators for Multivariate

Deterministic Functions

Jonathan Rougier∗

Department of Mathematics
University of Bristol, UK

June 13, 2008

Abstract

One of the challenges with emulating the response of a multivariate
function to its inputs is the quantity of data that must be assimilated,
which is the product of the number of model evaluations and the num-
ber of outputs. This paper shows how even large calculations can be
made tractable. It is already appreciated that gains can be made when
the emulator residual covariance function is treated as separable in the
model-inputs and model-outputs. Here an additional simplification on
the structure of the regressors in the emulator mean function allows
very substantial further gains. The result is that it is now possible
to emulate rapidly—on a desktop computer—models with hundreds of
evaluations and hundreds of outputs. This is demonstrated through
calculating costs in floating-point operations, and in an illustration.
Even larger sets of outputs are possible if they have additional struc-
ture, e.g. spatial-temporal.

Keywords: Gaussian process, Separable variance, Kronecker
product, Outer-product emulator

1 Introduction

An emulator is a statistical framework for predicting the output from a
complex deterministic function, such as a computer model. From the early
papers of Sacks et al. (1989) and Currin et al. (1991), the technology of
emulation has rapidly matured, to the point where there is a standard ap-
proach for scalar outputs using a Gaussian process (see, e.g., Santner et al.,
2003). This process is conditioned on evaluations of the model at different
carefully-selected inputs, and the resulting updated process can be used to

∗Department of Mathematics, University Walk, Bristol BS8 1TW, U.K. Email
j.c.rougier@bristol.ac.uk.

1

predict the model’s response at any new set of inputs. In statistical infer-
ence, the emulator takes the place of the model, and account is taken of the
uncertainty in the prediction. This uncertainty, which would go to zero if
the number of evaluations were increased without limit, has been termed
‘code uncertainty’ by O’Hagan (2006).

Recently, attention has turned to the construction of multivariate emu-
lators, i.e. emulators for functions with vector outputs (Craig et al., 1997,
2001; Kennedy and O’Hagan, 2001; Bayarri et al., 2005; Conti and O’Hagan,
2007; Higdon et al., 2007; Bayarri et al., 2007). A standard framework for
assimilating the data into an emulator—scalar or multivariate—is described
in section 2, which uses a conjugate distribution to simplify the updating
process. The main challenge with multivariate emulators is the quantity of
data that must be assimilated, which is the product of the number of evalu-
ations and the number of outputs. Section 3 describes a standard approach
for simplifying the update in this case, which is to impose separability in the
residual covariance function. Such an emulator might be termed a ‘separable
emulator’.

This simplification only goes so far, though, and for large problems it
has been necessary, typically, to dimensionally-reduce the number of output
components, e.g. by modelling the first few principal components. Section 4
presents a further new simplification, which has a dramatic effect on the cal-
culations. It restricts the choice of regressors in such a way that the resulting
factorisation of the regression matrix is conformable with the factorisation
of the residual variance matrix that follows from separability. This allows
the updating equations to be simplified algebraically, to the point where the
actual computations happen on much smaller objects. Paradoxically, this
new restriction actually allows for a much more general treatment of the em-
ulator, because without it the regression matrix typically has to be treated
very crudely. Such an emulator is termed an ‘outer-product emulator’.

Both sections 3 and 4 have separate subsections on computation. Ac-
curacy and efficiency are absolutely crucial in large applications, where the
maximum possible benefit needs to be extracted in linear algebra opera-
tions using matrices with special structure, such positive definiteness and
Kronecker product form. The costs of different approaches are contrasted in
floating point operations (flops), depending on the size of the emulator, in
particular the number of evaluations and the number of output-components.
Section 4 also contains a subsection contrasting the outer-product emulator
with the multivariate emulator proposed by Conti and O’Hagan (2007).

The power of the two simplifications is illustrated in section 5, where the
time in seconds to construct an emulator is presented for various sizes for the
model and choices for the emulator. The separable emulator is shown to be
much more efficient than the basic emulator, but the outer-product emulator
is an order of magnitude better still, both in the time for construction and
the sizes of model that can be emulated. These practical results complement

2

the theoretical analysis in sections 3 and 4. Section 6 concludes, indicating
a further extension suitable for models with large numbers of outputs, e.g.
spatial-temporal.

This paper is a companion to Rougier et al. (2007), where an outer-
product emulator is used to model an atmospheric model, incorporating a
large amount of expert judgement about the model’s behaviour.

2 Conjugate emulator

2.1 Model structure

Consider a deterministic computer model with model-input r ∈ R ⊂ Rp,
producing a set of outputs. This paper is concerned with models for which
the set of outputs is finite and pre-specified, and does not depend on r.
Typically this is either a feature of the model itself, or it can be superimposed
on the model’s raw outputs, e.g. by interpolating them onto a fixed set of
knots in the domain of the model-outputs. In this case the model output
can be represented as

f(r) ,
(
f1(r), . . . , fq(r)

)T (1)

where q is the number of outputs. Here ‘,’ denotes ‘defined as’, and, below,
‘≡’ denotes ‘equivalent by definition’. Typically, the model-output index j
maps to a tuple sj , which denotes the coordinate of the jth value in the
domain of the model-outputs; this domain is denoted S.

Computer models with a fixed set of outputs will be referred to as having
regular outputs. It is perfectly standard for computer models to have regular
outputs, but the point is emphasised here because it is a cornerstone of the
techniques in this paper.

For illustration, the computer model might be a climate model, evalu-
ated to equilibrium for fixed forcing. The model-input r might represent
the value of the model-parameters (e.g. diffusivity), and j might index the
ocean-cells in the finite difference scheme used to integrate the differential
equations in the model. Then fj(r) might be a scalar quantity such as salin-
ity. Each j would be associated with a triple of latitude, longitude, and
depth, corresponding to the location of the mid-point of its cell, and the
output index would be sj = (xj , yj , zj). In a more advanced scheme with an
adaptive spatial grid, the raw output for input r would depend on r; this raw
output must then be post-processed in order that the model can be treated
as having regular outputs. If the model-output comprised more than one
type, such as salinity and pressure for each cell, then sj would be extended
to include a factor for the type of output, such as sj = (xj , yj , zj ,Tj), where
Tj ∈ {S,P}.

3

2.2 The emulator

Computer models can only be evaluated a finite number of times: often, for
a large model like a climate model, only a small number of times. Conse-
quently we are uncertain about the model output at an arbitrary choice of
input variable r ∈ R, what O’Hagan (2006) describes as ‘code uncertainty’.
An emulator predicts the model-output at any r, based on an ensemble of
evaluations; in inference, the emulator then takes the place of the model.

In this paper, the emulator is represented in the general form

fj(r) =
v∑

k=1

βk gk(r, sj) + e(r, sj) j = 1, . . . , q, (2)

where G , {g1(·), . . . , gv(·)} are specified regressors defined on R× S, β ,(
β1, . . . , βv

)T is a vector of uncertain regression coefficients, and e(·) is an
uncertain residual, represented as a stochastic process defined on R× S.

If we specify a joint distribution for β and e(·), then (2) induces a dis-
tribution over any finite collection of model evaluations. For tractability,
we choose a Normal Inverse Gamma distribution, introducing a common
uncertain variance multiplier τ :

β ⊥⊥ e(·) | τ (3a)
β | τ ∼ Nv

(
m, τV

)
(3b)

e(·) | τ ∼ GP
(
0, τκ(·)

)
(3c)

τ ∼ IG(a, d). (3d)

Here Nv(·) denotes a multivariate Gaussian distribution with specified mean
vector and variance matrix, GP(·) denotes a Gaussian process with specified
mean function and covariance function, and IG(·) denotes an Inverse Gamma
distribution. The residual mean function is simply E

(
e(r, s)

)
= 0 for all r

and s, and the residual covariance function κ(·) is defined on (R× S)2.
Eq. (3) induces a Normal Inverse Gamma (NIG) distribution over any

finite collection of model evaluations augmented by the multiplier τ . The
convenient parameterisation of the NIG, and the predictive and conditional
distributions, are summarised in the Appendix. Hence our emulator for
f(·) is specified by a choice of regressors G and then, based on these, the
Normal Inverse Gamma (NIG) hyperparameters {m,V, a, d} and the residual
covariance function κ(·).

4

2.3 Updating and predicting

Denote any finite collection of m model-inputs as

R ,

RT
1
...

RT
m

 =

R11 . . . R1p
...

. . .
...

Rm1 . . . Rmp

 (4)

where R is used to denote an arbitrary finite collection of model-inputs, as
opposed to R and R′ below, which denote the inputs where we have evaluated
the model, and the inputs where we wish to predict the model-output.

It will be convenient to represent any finite collection of model-outputs
as a vector, which also encompasses the special case where the model-output
is a scalar. Define the mq-vector of model-outputs as

y(R) , vec

 f(R1)T

...
f(Rm)T

 (5)

where the operator ‘vec’ stacks the columns of a matrix into a vector, from
left to right so that in running along y(R), the model-evaluation index
changes faster than the model-output index. The regression matrix G(R) is
defined in two stages. First, for any regressor gk(·), define

G(k)(R) , vec

 gk(R1, s1) . . . gk(R1, sq)
...

. . .
...

gk(Rm, s1) . . . gk(Rm, sq)

 . (6a)

Then define the matrix G(R) as

G(R) ,
[
G(1)(R), . . . , G(v)(R)

]
(6b)

i.e. the columns G(k)(R) stacked together, into an mq × v matrix. For the
residual, define

e(R) , vec

 e(R1, s1) . . . e(R1, sq)
...

. . .
...

e(Rm, s1) . . . e(Rm, sq)

 , (7)

another mq-vector. The emulator for the full set of evaluations can be
written in vector form as

y(R) = G(R)β + e(R). (8)

In any particular application we will have performed n evaluations for

5

the design matrix R: n may be zero, in which case all predictions are trivial
(provided that the NIG distribution is proper). Suppose therefore that n > 0
and we would like to predict the model-output at n′ new inputs, in the design
matrix R′. For simplicity, write y(R) = y and y(R′) = y′, similarly for G
and G′, and e and e′, suppressing the R and R′ arguments. The update of y′

by y proceeds by conditioning. The observations and predictands are both
known linear combinations of the vector (β, e, e′),

y = Gβ + e y′ = G′β + e′. (9)

Conditional on τ , (β, e, e′) and hence (β, e′, y) is multivariate Normal, and so
(β, e′)|y is multivariate Normal, and y′|y is multivariate Normal. Integrating
out τ , the predictand y′ is multivariate t. The central part of the update is
computing the mean and variance of (β, e′) | (y, τ). The reason for focusing
on (β, e′) rather than y′ directly is that the update of β only has to happen
once: it does not depend on R′.

The multivariate Normal update of (β, e′) by y, taking τ as given, is
centred around the nq × nq variance matrix

S , GV GT + W (10a)

where W , Var
(
e
)
, and it follows that Var

(
y | τ

)
≡ τS. The updating

equations for (β, e′) are then

E
(
β | y, τ

)
= m + V GT S−1(y −Gm) (11a)

Var
(
β | y, τ

)
= τ

{
V − V GT S−1(V GT)T

}
(11b)

E
(
e′ | y, τ

)
= (W ′)T S−1(y −Gm) (11c)

Var
(
e′ | y, τ

)
= τ

{
W ′′ − (W ′)T S−1W ′} (11d)

Cov
(
β, e′ | y, τ

)
= −τ V GT S−1W ′, (11e)

where W ′ , Cov
(
e, e′

)
and W ′′ , Var

(
e′

)
.

For the final stage, recollect that y′ is a known linear combination of
(β, e′), and denote the inferred mean and variance of y′ | (y, τ) as µ′ and
τT ′, where T ′ does not depend on τ . Then the joint distribution of (y′, τ) |y
factorises as

y′ | (y, τ) ∼ Nn′q(µ′, τT ′) (12a)
τ | y ∼ IG(a + nq, d + ξ) (12b)

where ξ is the Mahalanobis distance

ξ , (y −Gm)T S−1(y −Gm). (12c)

6

The emulator of y′ is then

y′ ∼ Stn′q

(
µ′,

d + ξ

a + nq
T ′, a + nq

)
(13)

where St(·) is a multivariate t distribution. Unless a + nq is small, y′ is
effectively multivariate Normal with mean µ′ and variance {(d + ξ)/(a +
nq)}T ′.

A useful test of the implementation of an emulator is to let R′ be a subset
of the rows of R. Because the emulator is updated by conditioning, it must
interpolate R, in the sense that E

(
f(Ri) | y

)
= Yi and Var

(
f(Ri) | y

)
= 0,

and this is easy to check.

3 Separable residual covariance function

So far, our simplifications in the joint distribution have been restricted to
the conditional independence of β and (e, e′), and the NIG distribution for
(β, e, e′, τ). In this section and the next we make further simplifications to
our distribution for y(R), concerning the form of the covariance function
κ(·), in this section, and the regressors G, in section 4.

3.1 The Sherman-Morrison-Woodbury reformulation

The expensive calculation in (11) is the inversion of S. Since S is a variance
matrix, the first step is to find the Cholesky decomposition of S, an operation
requiring (nq)3/3 flops (Golub and Van Loan, 1996, p. 144). The total cost
of inverting S, which also requires a double back-substitution, is (nq)3/3 +
2(nq)3 = 7(nq)3/3 flops.

The expression for S−1 can be represented differently, using the Sherman-
Morrison-Woodbury (SMW) formula, which implies

(A−1 + BC−1BT)−1 = A−AB(C + BT AB)−1(AB)T (14)

for appropriately conformable and non-singular matrices; see, e.g., Golub
and Van Loan (1996, p. 50), or Brookes (2005, Matrix Identities). Using the
mapping A → W−1, B → G, C → V −1,

S−1 = W−1 − (W−1G)(V −1 + GT W−1G)−1(W−1G)T (15)

which has the advantage that the nq × nq matrix inverse is of W , not S. If
the model has regular outputs we can arrange, if we so choose, for W to have
special structure which makes it easier to invert, as discussed in section 3.2.
Note that two further matrix inversions are required to compute S−1, but
both of these are of v× v matrices, where v is the number of regressors, and
are therefore unlikely to be large enough to be troubling. Further, we might

7

well specify V as diagonal, e.g. if the regressors are orthogonal, in which
case its inversion is trivial.

As a second application of the SMW formula, the updated variance for
β can be written

Var
(
β | y, τ

)
≡ τD−1 where D , V −1 + GT W−1G (16)

using the mapping A → V , B → GT , C → W ; the v × v variance matrix D
can be used to simplify S−1:

S−1 = W−1 − (W−1G)D−1(W−1G)T . (15′)

3.2 Separability in the residual variance

Specifying the residual covariance function over (R×S)2 can be demanding,
and it is natural to simplify this task by treating κ(·) as separable in r and
s, so that

κ(r, sj , r
′, sj′) = κr(r, r′)× κs

jj′ . (17)

Note that separability in the covariance function of the residual does not im-
ply separability in the covariance function of the emulator. This is somewhat
reassuring, given that separability is a very strong constraint on our judge-
ments about the model (see, e.g., the characterisation in O’Hagan, 1998).
Note also that the term in the model-inputs is represented by a covariance
function, since the purpose of the emulator is to predict the model at any
point in R. The term in the output index, however, can be represented as a
variance matrix, because the outputs are the same for every evaluation that
we have or want to predict.

In the case of a model with regular outputs, separability of κ gives rise
to a Kronecker product factorisation of W :

W = W s ⊗W r (18a)

where ‘⊗’ denotes the Kronecker product, W s is the q × q variance matrix

W s ,

κs
11 . . . κs

1q
...

. . .
...

κs
q1 . . . κs

qq

 (18b)

and W r is the n × n Gram matrix of kr(·) for R. Using the general result
that (A⊗B)−1 = A−1⊗B−1, the cost of the inverting W in this case is not
7(nq)3/3 flops but 7(n3+q3)/3 flops. There are also Kronecker factorisations
for W ′ and W ′′, defined after (11). The properties of the Kronecker product
can be found in, e.g., Golub and Van Loan (1996, sec. 4.5.5) or Brookes
(2005, Matrix Relations).

8

A similar approach has been proposed when the outputs are not regular
or κ(·) is not separable, which is to replace the original W matrix with an
approximate Kronecker product decomposition (Genton, 2007).

There is a second benefit to having a Kronecker structure for W , which
is that sparsity in either W r or W s will be preserved in W . This sparsity can
be exploited both to reduce the size of W (as it is represented in the com-
putation) and, where there is banding, to speed up the crucial operations of
finding the Cholesky decomposition and backsolving. Wendland (1995) de-
scribes a family of covariance functions which are sparse. Additional sparsity
can be imposed by tapering W r or W s (Furrer et al., 2006).

3.3 Computation

One approach to computation is to use the SMW formula is to compute
S−1, and then plug the value for S−1 into (11), the original updating equa-
tions. However, this simple plug-in approach ignores the additional benefits
of separability in the residual variance. These benefits accrue from working
as much as possible with the original objects, which permits algebraic sim-
plifications in the updating equations. These algebraic simplifications are
exact, while numerical calculations that do not take advantage of them are
only approximate. Therefore this subsection is about enhancing accuracy
and efficiency.

What can go wrong if S−1 is plugged in? There are two sources of numer-
ical error. First, plugging-in S−1 breaks the standard rule of not inverting
matrices in place, but rather solving them as systems of linear equations (the
“pitfall of explicit inverse computation”, Golub and Van Loan, 1996, p. 121).
In other words, when evaluating X = S−1B it is better to solve SX = B for
X than to compute S−1 first and then perform the matrix multiplication.
Second, plugging-in S−1 fails to take advantage of the fact that S is posi-
tive definite symmetric, with Cholesky decomposition S = QT Q. Suppose
we had Q. In this case we could evaluate expressions such as AS−1B in
two back-substitutions and a matrix product: (Q−T AT)T Q−T B. An obvi-
ous benefit of this approach is that symmetric expressions such as AS−1AT

can be computed efficiently, and are sure to be symmetric. But proceed in
this way would incur a cost of (nq)3/3 to find Q. Thus plugging-in S−1 is
incompatible with a careful treatment of matrix expressions involving S−1.

By proceeding algebraically, however, we can achieve an efficient calcu-
lation and a careful treatment of S−1. Starting from (11), (12c), (15′), and

9

(16), the expressions that must be computed in order to update (β, e′) are:

c , y −Gm (19a)

D , V −1 + (GT W−1G) (19b)

E
(
β | τ, y

)
= m + V {(GT W−1c)− (GT W−1G)D−1(GT W−1c)} (19c)

Var
(
β | τ, y

)
= τD−1 (19d)

E
(
e′ | τ, y

)
= (W ′)T W−1c− (GT W−1W ′)T D−1(GT W−1c) (19e)

Var
(
e′ | τ, y

)
= τ

{
W ′′ − (W ′)T W−1W ′

+ (GT W−1W ′)T D−1(GT W−1W ′)
}

(19f)

Cov
(
β, e′ | τ, y

)
= −τV

{
GT W−1W ′ − (GT W−1G)D−1(GT W−1W ′)

}
(19g)

ξ = cT W−1c− (GT W−1c)T D−1(GT W−1c) (19h)

(with some re-arrangement to highlight the compound terms). The terms
involving combinations of W ’s can be simplified algebraically. In particular,
define

W r ′ ,

κr(R1, R
′
1) . . . κr(R1, R

′
n′)

...
. . .

...
κr(Rn, R′

1) . . . κr(Rn, R′
n′)

 (20a)

then

W−1 = W−s ⊗W−r (20b)
W ′ = W s ⊗W r ′ (20c)

W−1W ′ = (W−s ⊗W−r)(W s ⊗W r ′) = Iq ⊗W−rW r ′ (20d)

(W ′)T W−1W ′ = W s ⊗ (W r ′)T W−rW r ′, (20e)

where W−r , (W r)−1 and similarly for W−s. Note, for example, that (20d)
is block-diagonal, and that all the blocks are the same. This structure would
be buried within the plug-in approach, and would be compromised by the
finite precision of floating point operations.

Terms involving G and the W ’s will be much further simplified follow-
ing the additional structure proposed in the next section. To illustrate the
practical benefits of working in terms of the W ’s, though, consider the ex-
pression W−1c. Assume that the Cholesky decompositions of W r and W s

have been computed; denote these as Qr and Qs, respectively. On the one
hand we have the plug-in-style calculation

(W s ⊗W r)−1c =
(
Q−s(Q−s)T ⊗Q−r(Q−r)T

)
c (21)

10

where Q−r , (Qr)−1, and similarly for Q−s. The cost in flops is

(q3 + q3) + (n3 + n3) + n2q2 + 2(nq)2.

The first parenthetical term is for W−s: a back-substitution to find Q−s

and then a symmetric cross-product to find Q−s(Q−s)T ; the second is the
same for W−r; the next term is the Kronecker product; the final term is the
product with c. A better way to proceed is to appreciate that x = W−1c
is the solution of the linear equation W rXW s = C, where x ≡ vec X and
c ≡ vec C (Golub and Van Loan, 1996, p. 181). First solve W rZ = C for Z,
then solve W sXT = ZT for X. Starting with the Cholesky decompositions,
each set of linear equations requires a double back-substitution, so the cost
in flops is

2n2q + 2q2n.

To illustrate, consider a modest emulator with n = 30 and q = 10. In this
case the cost of the first calculation is 326 Kflops, and that of the second is
24 Kflops, i.e. an order of magnitude smaller. This is only a guide to the
accuracy and efficiency advantages of exploiting the algebraic structure of
S−1 rather than just plugging-in, since W−1c is computed implicitly in the
plug-in. But it is highly suggestive, and borne out in the illustration in
section 5.

4 Outer-product emulators

In this section we restrict our joint distribution for y(R) further, with a
particular structure for the regressors.

4.1 Factorising the regression matrix

There is a natural approach to constructing a multivariate emulator. For a
fixed r, we think of the model output as being approximately (ignoring the
residual) an uncertain linear combination of specified basis functions in s:

f(s) ≈
vs∑

k′=1

αk′ gs
k′(s) for fixed r (22)

where Gs ,
{
gs
1(·), . . . , gs

vs
(·)

}
. Then we think of the coefficients as being

themselves uncertain linear combinations of specified basis functions in r:

αk′ = αk′(r) ≈
vr∑

k′′=1

βk′k′′ gr
k′′(r) k′ = 1, . . . , vs, (23)

11

where Gr ,
{
gr
1(·), . . . , gr

vr
(·)

}
. Note that we are using the same regressors

for each coefficient. Combining these gives

f(r, s) ≈
vs∑

k′=1

vr∑
k′′=1

βk′k′′ gr
k′′(r) gs

k′(s) ≡
v∑

k=1

βk gk(r, s) (24)

where v = vsvr and G is the set of pairwise products of the regressors in Gr

and in Gs.
Now define separate regression matrices for r and s:

Gr ,

gr
1(R1) . . . gr

vr
(R1)

...
. . .

...
gr
1(Rn) . . . gr

vr
(Rn)

 and Gs ,

gs
1(s1) . . . gs

vs
(s1)

...
. . .

...
gs
1(sq) . . . gs

vs
(sq)

 .

(25)
Note that Gr is a function of the design matrix R (so that Gr ′ is the cor-
responding matrix for R′), but Gs is invariant to R, and so only has to be
computed once. The crucial result is that in an emulator such as (24), the
regression matrix G from (6) can be factorised as

G = Gs ⊗Gr. (26)

As will be shown below, this factorisation is highly beneficial when combined
with rectangular outputs and a separable residual covariance function. For
this reason I suggest that the term outer-product emulator be restricted to
situations where all three of these features are present.

4.2 Computation

In an outer-product emulator, the Kronecker factorisations of G and W are
conformable. This means there are algebraic simplifications for the terms
combining G and W .

Consider, to start with, the term

GT W−1 = (Gs ⊗Gr)T (W−s ⊗W−r) ≡ Hs ⊗Hr (27)

where Hs , (Gs)T W−s, and similarly for Hr. Then the three terms involv-
ing G and W are:

GT W−1G = HsGs ⊗HrGr (28a)

GT W−1W ′ = (Gs ⊗Gr)T (Iq ⊗W−rW r ′) = (Gs)T ⊗HrW r ′ (28b)

GT W−1c = vec{HrC(Hs)T}. (28c)

Note that in (28a), HsGs ≡ (Gs)T W−sGs, and similarly for HrGr. Starting
from the Cholesky decomposition of W s, Qs say, it is better to compute

12

(28a) as
HsGs = {(Qs)−T Gs}T{(Qs)−T Gs}, (28a′)

and similarly for HrGr, involving one back-substitution and one symmetric
cross-product.

As an illustration of the further benefits the come from an outer-product
emulator, consider the cost of computing GT W−1c without and with the
factorisation of G. Without the factorisation this cost is

2n2q + 2q2n + 2vnq

flops, i.e. the same as before plus the matrix product GT (W−1c). With the
factorisation of G the cost is

2vrnq + 2vrqvs + 2n2vr + 2q2vs

flops, including the cost of computing Hr and Hs (third and fourth terms).
For the modest emulator, setting vr = vs = 4, these two costs are 34Kflops
and 11 Kflops (and Hr will be reused in the calculation of GT W−1W ′).

4.3 Relation to the emulator of Conti and O’Hagan (2007)

This subsection explores the relationship between the outer-product emu-
lator and the multivariate emulator of Conti and O’Hagan (2007, hereafter
CoH). Although superficially different, the CoH emulator is a special case
of the outer-product emulator, and thus all of the computational benefits
outlined in this section transfer directly.

We return to the arbitrary finite collection of model evaluations R in-
troduced at the start of section 2, but now expressed for the restrictions
of the outer-product emulator. Written in matrix form, the outer-product
emulator is

Y = GrB(Gs)T + E (29)

where β ≡ vec B where B is a vr × vs matrix of uncertain regression coef-
ficients, and e ≡ vec E where E is the m × q residual matrix in (7). CoH
propose an apparently different multivariate model, namely

Y = GrD + E (30)

where D is a vr × q matrix of uncertain regression coefficients. Clearly,
(30) is a special case of (29), with Gs = Iq: identify sj with j, and then
define the regressors in Gs as sk(sj) = δkj for k = 1, . . . , q, where δkj is
the Kronecker delta. The two emulators are equivalent in general, since the
mean and variance of D can always be specified consistently with the mean
and variance of B and the matrix Gs, but not in the particular case proposed
by CoH, where a non-informative prior is used for D.

13

The CoH emulator illustrates two other features of the outer-product
emulator. First, the regression coefficients in the CoH emulator all have
well-defined units, because each model-output has its own column in D.
The regression coefficients in the outer-product emulator have, in general,
indeterminate units if there is more than one output-type, which makes it
more difficult to specify a prior mean and variance (m and V). The special
case of Gs = Iq which makes the outer-product emulator into the CoH emu-
lator illustrates how to circumvent this problem: a block-diagonal structure
in Gs where the blocks are organised according to the type indicator in sj .
This is implemented by including a Kronecker delta in each of the com-
ponents of Gs, which selects a particular output-type. This block-diagonal
structure also means that different output-types can have different sets of
regressors. Having several output-types also affects the interpretation of the
common variance multiplier τ in the variance of β and the residual. Where
there are multiple output-types it is natural to treat the variance multiplier
as unitless and κs(·) as a correlation function, and ensure that V and W s

are scaled appropriately.
Second, the two emulators differ in how they treat of the output domain

S. In CoH this is simply the index set {1, . . . , q}. Therefore there can be no
prior structure across the output components other than that specified in
the prior variance of D and the prior for W s (with CoH’s non-informative
prior for {D,W s} there is no prior structure at all). This is unattractive
if part of S is a metric space, e.g. if the sj index different spatial locations
or times. The outer-product emulator, by allowing this type of structure to
be representing explicitly in the prior through the choice of Gs, can borrow
strength across Y , which will be important when the number of evaluations
is small. A referee has pointed out that a metric space in S also allows us
to predict ‘new’ model-output values for any r at output indices s′, s′′, . . .
which do not correspond to any of the actual model-outputs s1, . . . , sq. This
would involve a straightforward generalisation of the calculations given here.

5 Illustration

This illustration demonstrates the efficiency of the outer-product emulator
over a range of values for n, the number of evaluations in the ensemble, and
q, the number of model-outputs. This efficiency takes two forms. First, the
outer-product emulator should be much faster, as already established from
the calculation of costs in flops. Second, the outer-product emulator con-
structs much smaller objects, and it avoids the calculation of G altogether.
Thus it should continue to function where other emulators cannot allocate
enough memory. The outer-product emulator will also be more accurate,
with less potential for numerical errors from finite precision arithmetic.

The object is to predict ten further evaluations (i.e., n′ = 10); in all cases

14

●

●

●

●

●

●

●

●

●

q = 10

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

● S
W
G

●
●

●

●

●

●

●

●

q = 20

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

●

●

●

●

●

q = 50

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

●

●

●

q = 100

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

Number of evaluations (log scale)

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

Figure 1: Timings for the three methods of constructing the emulator and
predicting n′ = 10 new evaluations, for varying n and q, with vr = 7, vs = 4.
Method S, direct inversion of S (section 2.3); Method W, SMW inversion
of S with a separable residual covariance function (section 3.3); Method G,
outer-product emulator (section 4.2). The timings are total elapsed time in
seconds. Where timings are not shown for a given n, it is because there was
not enough memory to complete the calculation.

15

v = 28, with vr = 7 and vs = 4. Three calculations are considered. First,
the direct inversion of S, following the calculations in (11) in section 2.3
(method S). Second, the construction of S−1 using the SMW formula and
the additional simplifications that arise from a separable residual covariance
function, as described in section 3.3 (method W). Third, the further addi-
tional simplifications that arise in an outer-product emulator, as described
in section 4.2 (method G).

The calculations are implemented in the statistical computing environ-
ment R (R Development Core Team, 2004). In R, the function kronecker is
implemented in high-level code rather than, say, C or Fortran. Therefore a
further substantial increase in speed would be available if this function were
rewritten. The timings are for a 2007 MacBook Pro laptop (2.33 GHz Intel
Core 2 Duo with 2 GB memory). The results are given in Figure 1, which
speaks for itself: the performance of the outer-product emulator is really as-
tounding. It computes in about one second a prediction that neither of the
other two approaches could compute at all (bottom right panel), and easily
handles 100,000 components (q = 100, n = 1000). But it is also interesting
to note that while separability of the residual covariance function confers a
reasonable speed improvement over direct inversion of S, it adds very little
in terms of the size of the dataset that can be handled. This suggests that
the effective size of the calculation is determined mainly by the combined G
and W terms, rather than just the W terms.

In terms of accuracy, all three methods gave the same results to a toler-
ance of 10−7 (using the R function all.equal).

6 Discussion

An outer-product emulator has three features. First, the underlying model
has regular outputs, i.e. outputs that can be represented as a matrix in which
the rows are model evaluations and the columns are output-components.
This is standard for many models, or can be imposed by post-processing the
raw model-output. Second, the residual covariance function in the emulator
separates into the product of a term in the model-input values and a term
in the model-output index. This separability is a very natural choice for
constructing the joint covariance function, and is a weaker choice than is
typically made in scalar emulator construction, where the covariance func-
tion for the model-input values is itself taken to be the product of a function
for each input-component. Third—and this is the new feature—the regres-
sors are constructed as the pairwise product of a set of regressors in the
model-inputs and a set of regressors in the model-outputs.

As illustrated in section 5, the outer-product emulator can go an order of
magnitude larger in emulating multivariate functions, both in terms of the
number of evaluations in the ensemble, and the number of outputs. Alter-

16

natively, it offers the opportunity to build many emulators where previously
there was only time for a few. This makes it easier to generate predictive
diagnostics for emulators, as in Rougier et al. (2007), or to embed an outer-
product emulator within a hierarchical statistical model, e.g. to estimate or
to mix over the emulator hyperparameters.

The outer-product emulator also points the way to the natural generali-
sation of current practice, in which regressors play a much more active role
in the emulator. This is valuable for the emulator’s predictive performance
when the model input space is largely an extrapolation from the convex hull
of the ensemble of evaluations. Typically this would be when the model is
very expensive to evaluate, or the input-space is high-dimensional: many
environmental models, e.g. climate models, have exactly these characteris-
tics. A large number of regressors is possible because the regression matrix
never has to be explicitly evaluated.

The approach used in the outer-product emulator can be taken further,
for applications where there are a very high number of model-outputs for
each evaluation. Typically this would arise where the domain of the model-
outputs was spatial-temporal. In this case it would be natural to specify
the variance matrix for the model-output index to be separable in space and
time. If the model-outputs were regular in space and time and the output-
regressors were constructed from the pairwise product of space regressors
and time regressors, then exactly the same Kronecker product approach
could be used to factor the regression matrix Gs and the residual variance
matrix W s. In this way many thousands of outputs per evaluation could
be handled in a multivariate emulator, if, say, they comprised five hundred
spatial locations at each of one hundred times. This is a typical configuration
for modelling the impact of atmospheric greenhouse gas emissions on C21st
climate. Higdon et al. (2007) provide another example: 36 evaluations where
each evaluation produces a 20×26 matrix of radii indexed by time and angle.
This could be computed as a n = 36 and q = 520 problem, but the emulator
could also be treated as separable in time and angle, permitting the inclusion
of many more evaluations, or a higher resolution for the outputs.

Acknowledgements

This paper was conceived while I was a Duke University Fellow as part of the
SAMSI programme ‘Development, Assessment and Utilization of Complex
Computer Models’, and a visitor to the IMAGe group at NCAR. I would like
to thank Stephan Sain at NCAR for the initial insight that the regression
matrix could have a Kronecker product factorisation, Tony O’Hagan and the
JCGS referees for their very perceptive comments, and Patrick and Mark at
Organica Café in Boulder CO, where the paper was largely written.

17

Appendix: The convenient parameterisation of the
Normal Inverse Gamma distribution

The Normal Inverse Gamma distribution for [x, τ], where x is a k-vector and
τ a positive scalar, has the general form

x | τ ∼ Nk

(
m, τV

)
(A1a)

τ ∼ IG(a, d). (A1b)

It can also be written [x, τ] ∼ NIGk(m,V, a, d). The convenient parameter-
isation of the IG is

IG(τ ; a, d) =
(d/2)a/2

Γ(a/2)
τ−(1+a/2) exp{−(d/2)τ−1} (A2)

where a denotes the degrees of freedom (i.e., shape) and d the scale. The
mean of this distribution is d/(a− 2). Integrating out τ ,

π(x) ∝
(
1 + (x−m)T (d V)−1(x−m)

)(k+a)/2 (A3)

or, in the standard parameterisation of the multivariate t,

x ∼ Stk

(
m, (d/a)V, a

)
(A4)

which implies E
(
x
)

= m, Var
(
x
)

= {d/(a− 2)}V .
If x = [x1, x2] with lengths k1 and k2, then

π(x1, τ | x2) = π(x1 | τ, x2) π(τ | x2) . (A5)

The first distribution is Gaussian:

x1 | τ, x2 ∼ Nk1

(
m1·2, τV1·2

)
(A6a)

where

m1·2 , m1 + V12(V22)−1(x2 −m2) (A6b)

V1·2 , V11 − V12(V22)−1V21. (A6c)

The second distribution is Inverse Gamma:

τ | x2 ∼ IG
(
a + k2, d + ξ

)
(A7a)

where
ξ , (x2 −m2)T (V22)−1(x2 −m2). (A7b)

18

Thus the updated distribution [x1, τ] | x2 remains NIG:

[x1, τ] | x2 ∼ NIGk1

(
m1·2, V1·2, a + k2, d + ξ

)
. (A8)

References

M.J. Bayarri, J.O. Berger, J. Cafeo, G. Garci-Donato, F. Liu,
Parthasarathy R.J. Palomo, R. Paulo, J. Sacks, and D. Walsh, 2007. Com-
puter model validation with functional output. Annals of Statistics. To
appear.

M.J. Bayarri, J.O. Berger, M. Kennedy, A. Kottas, R. Paulo, J. Sacks, J.A.
Cafeo, C.H. Lin, and J. Tu. Validation of a computer model for vehicle
collision. Technical Report 163, National Institute of Statistical Sciences,
2005.

M. Brookes, 2005. The Matrix Reference Manual. On-line, http://www.
ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html.

S. Conti and A. O’Hagan, 2007. Bayesian emulation of complex multi-
output and dynamic computer models. In submission, currently available
at http://www.tonyohagan.co.uk/academic/ps/multioutput.ps.

P.S. Craig, M. Goldstein, J.C. Rougier, and A.H. Seheult, 2001. Bayesian
forecasting for complex systems using computer simulators. Journal of
the American Statistical Association, 96, 717–729.

P.S. Craig, M. Goldstein, A.H. Seheult, and J.A. Smith, 1997. Pressure
matching for hydrocarbon reservoirs: A case study in the use of Bayes
Linear strategies for large computer experiments. In C. Gatsonis, J.S.
Hodges, R.E. Kass, R. McCulloch, P. Rossi, and N.D. Singpurwalla, ed-
itors, Case Studies in Bayesian Statistics III, pages 37–87. New York:
Springer-Verlag. With discussion.

C. Currin, T.J. Mitchell, M. Morris, and D. Ylvisaker, 1991. Bayesian
prediction of deterministic functions, with application to the design and
analysis of computer experiments. Journal of the American Statistical
Association, 86, 953–963.

R. Furrer, M.G. Genton, and D. Nychka, 2006. Covariance tapering for
interpolation of large spatial datasets. Journal of Computational and
Graphical Statistics, 15, 502–523.

M.G. Genton, 2007. Separable approximations of space-time covariance
matrices. Environmetrics, 18(7), 681–695.

19

G.H. Golub and C.F. Van Loan, 1996. Matrix Computations. Baltimore:
Johns Hopkins University Press, 3rd revised edition.

D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model
calibration using high dimensional output. Technical Report LA-UR-07-
1444, Los Alamos National Laboratory, 2007. To appear in the Journal
of the American Statistical Association.

M.C. Kennedy and A. O’Hagan, 2001. Bayesian calibration of computer
models. Journal of the Royal Statistical Society, Series B, 63, 425–464.
With discussion.

A. O’Hagan, 1998. A Markov property for covariance structures. Unpub-
lished, available at http://www.shef.ac.uk/~st1ao/ps/kron.ps.

A. O’Hagan, 2006. Bayesian analysis of computer code outputs: A tutorial.
Reliability Engineering and System Safety, 91, 1290–1300.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2004. ISBN 3-900051-00-3, http://www.R-project.org.

J.C. Rougier, S. Guillas, A. Maute, and A. Richmond, 2007. Emulat-
ing the Thermosphere-Ionosphere Electrodynamics General Circulation
Model (TIE-GCM). In submission, currently available at http://www.
maths.bris.ac.uk/~mazjcr/EmulateTIEGCM.pdf.

J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, 1989. Design and
analysis of computer experiments. Statistical Science, 4(4), 409–423. With
discussion, pp. 423–435.

T.J. Santner, B.J. Williams, and W.I. Notz, 2003. The Design and Analysis
of Computer Experiments. New York: Springer.

H. Wendland, 1995. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Advances in Computational
Mathematics, 4(1), 389–396.

20

