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Abstract

Spatial error in the SRTM DEM plays a crucial role in constrain-

ing uncertainty about elevations, especially in remote or poor regions,

where little other information is available. Spatial error covariance

functions are estimated from a figure in the paper ‘A global assessment

of the SRTM performance’ (Rodriguez et al., 2006, this Journal). The

range of the near-field error is found to be approximately 2km. The

use of these error covariance functions is demonstrated in a reanalysis

of an upscaling calculation for a hydraulic model of a floodplain.
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1 Introduction

The Shuttle Radar Tomography Mission (SRTM) provides a Digital Eleva-

tion Map (DEM) at 30m resolution over a large part of the earth’s surface,

within latitudes ±60◦. Most of the earth’s inhabitants fall within its foot-

print, and it is a vital resource for many applications involving natural haz-

ard risk assessment, particularly in remote or poor regions, where the SRTM

DEM is the primary source of information about elevations. The original

SRTM dataset is currently being reprocessed to produce an improved DEM

called NASADEM, to be released in 2017. See http://www2.jpl.nasa.

gov/srtm/ for more details.

Risk assessment involves making choices under uncertainty. Where possi-

ble, all sources of uncertainty that can be quantified should be included. One

such source of uncertainty for natural hazards concerns elevations, which

will often provide boundary conditions for assessing the footprint of a haz-

ard event; for example a flood, lahar, landslide, avalanche, earthquake, or

wildfire (see, e.g., Rougier et al., 2013). As explained in section 2, the SRTM

DEM and its spatial error structure play a crucial role in constraining un-

certainty about elevations.

In a large and carefully executed study, E. Rodriguez and colleagues

at the JPL (Rodriguez et al., 2005, 2006) collected and analysed data on

the error of the SRTM DEM, primarily through a ground campaign covering

thousands of miles, to collect ‘ground truth’ GPS data. Although containing

a wealth of information, the published results did not explicitly quantify an

object of interest to statisticians and hazard scientists, namely the near-field

spatial covariance function of the SRTM DEM errors. (Typically only the

near-field covariances are required, since most hazard events play out on

scales of a few kilometres.) Section 3 fits spatial covariance functions to

the error data contained in Figure 6 of Rodriguez et al. (2006), which also

appears as Figure 3.18 of Rodriguez et al. (2005). Section 4 demonstrates

the importance of these spatial covariance functions in upscaling the SRTM

to larger blocks, as is often done in flood modelling.

One hopes that the ground-truth data collected by Rodriguez et al. will

be used again, to assess the forthcoming NASADEM’s errors. With access

to the raw data, scientists at JPL will be able to provide a more accurate

assessment of the NASADEM error covariance functions than given here,
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although possibly expressed in the same functional form (eq. 5 and Table 1).

In the meantime, however, the covariance functions produced here could

serve for the NASADEM as well, because, as shown below, the structure of

the spatial error is large enough that it would be better to approximate it

with the covariance functions from the old product, than to ignore it.

2 Statistical interpretation of the SRTM DEM

This short section makes a simple but conceptually important point. Con-

sider a region, such as a floodplain, which is tiled by SRTM 30m pixels.

For concreteness, and consistency with section 4, suppose that this region

comprises a 9km× 9km block, i.e. a 300× 300 grid of SRTM 30m pixels.

There are actually two statistical objects defined on this region. First,

there is a prior probability distribution for the true elevation at each pixel.

This might be represented by an expectation vector m and a variance matrix

T , where mi is the the expected elevation of the ith pixel, and Tij is the

covariance between elevation at the ith pixel and at the jth pixel, where

i, j = 1, . . . , 3002.

Second, there is the conditional distribution of the SRTM DEM given

the true elevations accepting that the shuttle flights, the primary data, the

JPL scientists, their algorithms and their computers together represent an

inexact instrument for measuring elevation. The expected error of the SRTM

DEM is taken to be zero at every pixel. But it is also necessary to specify

a (3002× 3002) variance matrix Σ, where Σii is the variance of the error for

at i, and Σij is the covariance between the error at pixel i and the error at

pixel j.

Formally, the probability distribution for the true elevations is updated

by conditioning on the SRTM DEM. Mathematics confirms what many peo-

ple find intuitive, and perhaps accept without question. Namely, that if the

prior variance matrix T is much larger than the error variance matrix Σ,

then the updated expectation of the true elevations is the SRTM DEM,

and the updated variance of the true elevations is the SRTM error variance.

The mathematics is given in Rougier and Zammit-Mangion (2016, notably

Theorem 3), where this result is termed the ‘plug-in’ update. In a nutshell,
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Figure 1: Digitized version of Rodriguez et al. (2006), Figure 6, re-created in

the statistical computing environment R (R Core Team, 2016). The vertical

axis shows the square root of the ‘structure function’, i.e. the square root of

the empirical variogram.

If the SRTM DEM is m̂ and the SRTM error variance is Σ, then,

in the absence of further information, it is reasonable to represent

the true elevations as having expectation m̂ and variance Σ.

This is not to rule out a better update for the elevations, should more

information be available: it is merely the default approach.

Modern practice in spatial statistics tends not to use this default ap-

proach. Instead, an informative prior distribution is used to encode smooth-

ness assumptions about the elevations through the structure of the prior

variance matrix T ; see, e.g., the textbooks of Banerjee et al. (2004), Rue

and Held (2005), or Cressie and Wikle (2011). Zammit-Mangion et al. (2014,

2015) give a flavour of this approach, which is highly technical. In the ab-

sence of a computational statistician, the default approach seems to be a

natural compromise. But it requires a function to specify the covariance

between the errors at any two pixels in the region of interest.
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3 Spatial modelling of the SRTM DEM errors

Let δh(x) be the SRTM DEM error in metres for the 30m pixel containing

location x. Assume that for ‖x − x′‖ ≤ 3km (i.e. a distance of 100 pixels)

the error process δh can be modelled as an intrinsic stationary and isotropic

process (see, e.g., Cressie, 1991, ch. 3), so that

E
{
δh(x)− δh(x+ ∆)

}
= 0 (1a)

V
{
δh(x)− δh(x+ ∆)

}
= 2γ(d) (1b)

where ∆ is an offset, and d := ‖∆‖. The function γ is termed the ‘semivar-

iogram’, and 2γ is the ‘variogram’. The empirical variogram is referred to

by Rodriguez et al. (2006) as the “structure function” (p. 254). Rodriguez

et al. plot the empirical structure function for four regions in their Figure 6,

recreated here in Figure 1.

Expanding out the lefthand side of (1b) shows that

V
{
δh(x)− δh(x+ ∆)

}
= 2
{

C(0)− C(d)
}

(2)

or

γ(d) = C(0)− C(d), (3)

where C is the covariance function of δh, termed the ‘error covariance func-

tion’ below. The usual practice in Statistics is to use ‘C’ to denote the

covariance function, although Rodriguez et al. (2005, eq. 1.2) use it for the

correlation function.

Inspecting shape of the curves in Figure 1 suggests that the error co-

variance function has the general form of ‘Nugget + Exponential’. The

Exponential correlation function with range r is implemented as

corr(d; r) = exp(−3d/r), (4)

because exp(−3) = 0.050 (3dp); i.e., the correlation drops to 0.05 at a dis-

tance d = r. However, on trying to fit this model, it is clear than one

Exponential term will not suffice. Instead, two Exponential terms are re-

quired, one short-range one, which is taken to have a range of 300m, and one

longer-range one, which is taken to have a range of 3km. Thus the chosen
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Figure 2: Like Figure 1 but with fitted covariance functions. See (5) and

Table 1.

error covariance function is

C(d) = σ20 1(d = 0) + σ21 exp(−3d/300) + σ22 exp(−3d/3000). (5)

where 1 is the indicator function. This form, with its nugget plus two

Exponential components, does not reflect just the spatial characteristics of

the SRTM instrument, but also artefacts introduced by JPL scientists in

post-processing the raw data, for example to reduce the mean bias.

The error covariance function in (5) is fitted to each of the curves in Fig-

ure 1, by minimising the sum of squared deviations. There is no theoretical

reason for this choice of loss function, and it is retained only because the fits

look plausible. The result is shown in Figure 2, with the values of the σ’s

given in Table 1. The correlation functions are shown in Figure 3, showing

that the range of the error is about 2km, for all four regions. The error

covariance function for other regions can be chosen from the most similar

of these four regions, or interpolated between them. The fitted covariance

function can be tentatively extended up to the distance at which the very

long-wave-length baseline roll errors start to de-correlate.

The penultimate row of Table 1 shows the estimated standard devia-
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Figure 3: Fitted correlation functions, logarithmic scale. The horizontal

dashed line shows that the range is about 2km in each region.

tion of the single-pixel uncertainty, and the final row shows the single pixel

90% error, which is, by convention, 1.64 times the standard deviation of the

single-pixel uncertainty (Rodriguez et al., 2005, sec. 1.6.1). According to

these estimates, the near-field error of the SRTM (i.e. ignoring the contri-

bution of baseline roll errors) has a 90% error of less than 6m for the four

regions Italy, Spain, Tunisia, and West Africa. This is consistent with the

conclusion of of Rodriguez et al. that the SRTM DEM substantially outper-

forms its target of a 90% error of 16m, because the baseline roll error is only

of the order of 2m (Rodriguez et al., 2006, p. 254).

4 Illustration: Upscaling

The SRTM DEM is widely used in hydraulic modelling of floodplains. Hy-

draulic models are often run at resolutions lower than 30m, and the standard

procedure is to aggregate the SRTM 30m pixels into larger blocks by taking

the arithmetic mean.

Neal et al. (2012, sec. 4.1.1) provide an instructive example. In this

study, the requirement is to aggregate the SRTM pixels into large enough

blocks that the difference in elevation between two contiguous blocks has a
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Table 1: Estimated σ values for the covariance function given in (5), in

metres.

Italy Spain Tunisia West Africa

σ0 0.00 1.52 0.92 1.62

σ1 2.65 2.29 1.35 0.95

σ2 2.06 2.22 1.16 1.23

Total 3.36 3.53 2.01 2.24

90% err. 5.51 5.78 3.29 3.68

95% probability of being less than 1m. Neal et al. use the approach outlined

in section 2, treating the SRTM DEM error variance as uncertainty about

the true elevation. But they assume that the range of the SRTM DEM

spatial error is less than 90m, whereas we find it to be 2km. Thus they

compute the standard deviation of the elevation of a 100-pixel block as one

tenth of the standard deviation of the elevation of a one pixel block. This

leads them to choose 900m blocks. This choice can be reexamined using the

error covariance functions from section 3, to find the probability that two

contiguous 900m blocks have a difference in elevations which is less than 1m.

First, we require a formula for the covariance of the elevations between

two rectangular blocks of pixels organised into a regular grid. Let X be the

elevations for a (r × c) rectangular block of pixels,

X :=


x11 x12 . . . x1c

x21 x22 . . . x2c
...

...
. . .

...

xr1 xr2 . . . xrc

 . (6)

Let X(i, j) be the elevations for a rectangular block at grid location (i, j),

indexed from (0, 0) in the bottom lefthand corner. Let Yij := mean{X(i, j)},
the arithmetic mean of the elevations in block (i, j). Then, under stationary

and isotropy,

C(Yij , Ykl) = mean
{

Σ(|i− k|, |j − l|)
}

(7)

where ‘C’ is the covariance operator, and Σ(i, j) is the (rc× rc) covariance

matrix between the elevations of the pixels in block (0, 0) and the elevations
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Figure 4: The standard deviation of the difference in elevation between two

contiguous blocks, as a function of block width (square blocks).

of the pixels in block (i, j). This result is derived in the Appendix. Adopting

the approach outlined in section 2, the elements of Σ(i, j) are computed

directly from one of the error covariance functions fitted in section 3. Based

on (7), the variance of the difference between elevations in two contiguous

blocks is

V(Y00 − Y10) = V(Y00)− 2C(Y00, Y10) +V(Y10)

= 2 mean
{

Σ(0, 0)− Σ(1, 0)
}
. (8)

## Screen chunk ’sdelev’ out after running once

The result is shown in Figure 4, for the four regions. A priori, we

expect these curves to have complicated shapes, because of the offsetting

effects in (8). A larger block implies a smaller Σ(0, 0), lowering the standard

deviation, but also a smaller Σ(1, 0), raising it. For blocks of 900m (a

30× 30 block of 30m pixels), the difference in elevations between contiguous

blocks has a standard deviation of 0.91m, based on the West Africa curve.

This implies that the probability of the difference being within 1m is 0.73,

using a Multivariate Normal distribution, rather than 0.95. But the Figure

shows that it is hard to get this probability higher without going to huge

blocks, which would result in much less physical boundary conditions. This

is because the range of the SRTM DEM error is 2km, roughly 70 pixels. To
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drive the probability upwards towards 0.95, the block width would need to

be much larger than 2km, so that most of the pixels within a block were

uncorrelated with each other.

The question remains, therefore, of how to deal with substantial uncer-

tainty about the true elevations, given that this cannot be suppressed by

blocks of a physically reasonable size. One approach is to propagate eleva-

tion uncertainty through the modelling, by running the model not just once,

on the upscaled SRTM DEM values, but on a set of candidate elevations all

of which are consistent with the SRTM DEM values and the error covariance

function. For example, suppose the floodplain is organised into 100 blocks

of 900m each,

Y09 Y19 . . . Y99

Y08 Y18 . . . Y98
...

...
. . .

...

Y00 Y10 . . . Y90

(9)

In general the blocks do not have to form a square or a rectangle; this is

just for ease of visualisation in Figures 5 and 6. The variance matrix of

(Y00, . . . , Y99) can be used to generate perturbations to add to the upscaled

SRTM DEM, in order to provide a set of possible elevations.

Nine such perturbations are shown in Figure 5, generated using the West

Africa values from Table 1 and a Multivariate Normal distribution. The line

segments separate blocks whose perturbations differ by more than 1m; i.e.

1m of flood will not cross a line segment from a darker to a lighter block, if

these perturbations are applied to a flat DEM.

By way of contrast, Figure 6 shows the effect of treating the blocks as

uncorrelated. It is easy to see by eye that the connectivity of the two cases

is completely different. This is because the range of the SRTM DEM error is

longer than one 900m block, so that contiguous blocks are positively corre-

lated, and hence the difference in their elevations is smaller than it would be

were they uncorrelated. Hydraulic models of floodplains are extremely sen-

sitive to connectivity, and therefore the presence of substantial spatial error

in the SRTM DEM is an important consideration for flood risk assessment.
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Figure 5: Nine perturbations to the SRTM DEM on upscaled blocks of

900m× 900m. Each panel represents a region of 9km× 9km. The greyscale

goes from −3m (black) to 3m (white) in steps of 0.5m. Line segments

separate blocks whose perturbations differ by more than 1m.
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Figure 6: The same as Figure 5, except with all of the between-block co-

variances set to zero. The connectivity is completely different.
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A Appendix: More details on the upscaled covariances

This Appendix provides more details about (7). Let ‘vec’ be the operator

that stacks the columns of a matrix into a vector, and define ~X := vecX.

By stationarity,

C{ ~X(a, b), ~X(a+ i, b+ j)} (10)

depends only on (i, j); denote this covariance matrix as Σ(i, j).

Under stationarity and isotropy, all values for Σ(i, j) can be computed

from Σ(i, j) restricted to the case (i, j) ≥ 0. For example, let Rc be the

permutation matrix which reverses columns in ~X. To derive this matrix,

start with X, an r×c rectangle of pixels. Reverse the columns in X by post-

multiplying by the c × c matrix D, which has 1s down the anti-diagonal

(i.e., D is the identity matrix with the columns reversed). Then Rc solves

Rc
~X = vec(XD). Because distances are preserved under reflection, and

because the covariance function is stationary and isotropic,

Σ(−i, j) = C{ ~X(0, 0), ~X(−i, j)} = C{Rc
~X(0, 0), Rc

~X(i, j)} = RcΣ(i, j)RT
c .

(11)

The form of Rc will not be required below, beyond the fact that it is a

permutation matrix.

Let Yij be the upscaled elevation in block (i, j), so that Yij = 1T ~X(i, j)/(rc),

where 1 is an (rc)-vector of ones. Then

C{Yij , Ykl} = C{Y00, Yk−i,l−j}

= C{1T ~X(0, 0)/(rc),1T ~X(k − i, l − j)/(rc)}

=
1TΣ(k − i, l − j)1

(rc)2
. (12)

Now suppose that k − i < 0 and l − j ≥ 0. Being a sum, the numerator

is invariant to permutations of the elements of Σ(k − i, l − j). Or, to put

it differently, 1TRc = 1T . So after substituting from (11), the Rc matrices

in the numerator disappear, and all that happens is k − i becomes |k − i|.
Applying the same reasoning to the case where l − j < 0, or twice if both

k − i < 0 and l − j < 0, gives

C{Yij , Ykl} =
1TΣ(|k − i|, |l − j|)1

(rc)2
, (13)

13



which holds for all (i, j, k, l). The expression on the righthand side is simply

the arithmetic mean of the elements of Σ(|k − i|, |l − j|), as stated in (7).
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