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1.7 Probability

It is very common to start with probabilities, and then define
expectations in terms of probabilities. I have done the opposite,
because I think that expectations are a better ‘primitive’. I find that
I can often have beliefs about a collection of random quantities
X that do not involve probabilities, but which obey the axioms
of Expectation.23 It is also the case that many of the core topics 23 JCR: A later chapter, not yet written,

takes this notion much further.in statistics, such as Decision Theory (Chapter 3), are naturally
expressed in terms of expectations rather than probabilities.

1.7.1 Definition

If we start with expectations, then we need to define probabilities
in terms of expectations. It turns out that there is no choice in how
to do this, if the resulting probabilities are to obey the Laws of
Probability.

Definition 4 (Laws of Probability).

1. For any proposition A, Pr(A) ≥ 0;

2. If A if certain, then Pr(A) = 1;

3. If A and B are mutually exclusive, then Pr(A ∨ B) = Pr(A) + Pr(B).

Theorists have a slightly stronger requirement for (3.). As it
stands, (3.) can be extended to finite disjunctions of mutually-
exclusive propositions, by recursion, termed finite additivity. But
theorists require a stronger property, to account for non-finite
disjunctions, termed countable additivity. A few people get worked
up about the different between these two conditions, and one,
Bruno de Finetti, was famous for rejecting countable additivity (see,
e.g. de Finetti, 1972, 1974/75). Others have risen to the challenge of
working within the more general but less tractable framework of
finite additivity (e.g., Dubins and Savage, 1965, this is not an easy
read). I doubt it matters at our level of generality, but I personally
have a preference for finite additivity, when reasoning about the
real world.

Here is the definition of probability in terms of expectation,
which ensures that the Laws of Probability hold. Probability is
defined on the domain of random propositions. The definition
makes this clear.

Definition 5 (Probability, Pr). Let X be a set of random quantities.
Let q(x) be any sentence from first-order logic24, termed a proposition. 24 That is, a statement about x that

evaluates to either FALSE or TRUE.Define Q := q(X), termed a random proposition. Then

Pr(Q) := E(1Q),

where 1 is the indicator function.25 25 That is, the function of the proposi-
tion p for which 1p = 0 if p is FALSE,
and 1p = 1 if p is TRUE.
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It is straightforward to check that complete coherence implies
that probabilities defined in this way satisfy the Laws of Probability.
(1.) follows by lower-boundedness, because 1A ≥ 0. (2.) follows
by normalisation, because 1A = 1 if A is certain. (3.) follows
by additivity, because if A and B are mutually exclusive, then
1A∨B = 1A + 1B. Complete coherence is required to ensure that
these pairwise properties hold for all possible propositions.

Here is the result which shows that this is the only way to define
probability in terms of expectation.

Theorem 1.7. Suppose that Pr(Q) = E{g(Q)}, where

g : {FALSE, TRUE} → R,

for some choice of g. The only choice of g which is compatible with both
complete coherence and the Laws of Probability is g(Q) := 1Q.

Proof. For complete coherence, the FTP (Thm 1.2) asserts that there
is a p ∈ P such that

Pr(Q) = E{g(Q)} = ∑
ω∈Ω

g(q(x(ω))) · p(ω)

for every first-order sentence q(x). The Laws of Probability imply
that if q(ω) = FALSE for all ω then Pr(Q) = 0, and if q(ω) = TRUE

then Pr(Q) = 1. Since p(ω) ≥ 0 and ∑ ω p(ω) = 1, it follows
that g(FALSE) = 0 and g(TRUE) = 1, i.e. g(Q) = 1Q, as was to be
shown.

1.7.2 Probability mass functions

The definition of probability provides a straightforward interpreta-
tion of p ∈ P from the FTP (Thm 1.2).

Theorem 1.8. Pr(X =̇ x) = p
�
ω−1(x)

�
.

Proof.

Pr(X =̇ x) = E(1X=̇x)

= ∑ ω
1x(ω)=̇x · p(ω) by the FTP

= ∑ ω
1ω=̇ω−1(x) · p(ω) because ω �→ x is bijective

= p
�
ω−1(x)

�
.

1.7.3 Foundational issues

This section tackles the profound question: Why these Laws of Proba-
bility and not some others? The answer to this question must involve
some desire on our part to adopt exactly these Laws and no others;
that is, a common agreement that probabilities which obey these
Laws are sensible, and probabilities which do not obey them are
not-sensible. This requires us to provide a practical definition of
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probability which can be used to distinguish between sensible sets
of probabilities and not-sensible ones. And then show that, accord-
ing to this definition, the sensible sets of probabilities are exactly
the ones which obey the Laws of Probability. Ressuringly, this is
possible.

This strand of reasoning about probabilities goes back to Ramsey
(1931)26 and Savage (1954). The basic idea that p := Pr(Q) is an 26 JCR: sort out this reference.

expression of my indifference between having £p with certainty,
and owning a bet which pays £0 if Q is FALSE, and £1 if Q is TRUE.
Call this the betting interpretation of probability.

Under the betting interpretation, I would pay £p to buy one unit
of bet on Q, or I would accept £p to sell one unit of bet. In general
I would exchange w · £p for an outcome of w · £1Q, where w is
the number of units, with w > 0 indicating buying w units of bet
(paying w · £p to win w · £1Q) and w < 0 indicating selling w units
of bet (receiving |w| · £p to pay out |w| · £1Q). All together, I am
prepared, notionally if not in practice, to enter into contracts of the
form

w · (1Q − p) for any w, negative or positive.

This is always accepting that |w| is not outlandishly large. There is
a generalisation, which goes back to Ramsey (1931), which swaps £
for a more general preference-based currency, which can be thought
of as tickets in a lottery.

No one would disgree that the probability of an impossible
proposition is 0, and the probability of a certain proposition is 1.
This is implied by the betting interpretation (under conditions to be
made clear below). What the betting interpretation does is provide
a way for us to attach probabilities to propositions that are neither
impossible nor certain. In some situations this is straightforward.
The situations of classical probability, for example, where we roll
dice or toss coins, or sample randomly from a population. In this
case, the betting interpretation should give the same answer as
classical probabilities. But the betting interpretation extends to arbi-
trary propositions. For example, proposition A might be “sea level
in 2100 is at least 0.5 m higher than today”. One can bet on this
proposition, but not embed it in a classical situation: it represents a
one-off event which, come 2100, we will know to be false or true.

What would be a not-sensible situation according to the betting
interpretation of probability? It would be one where, in a set of
probabilities p1, . . . , pk on propositions A1, . . . , Ak, it is possible to
find a set of amounts w := (w1, . . . , wk) such that I can never win.
More precisely, there is no outcome where I will make money, and
at least one outcome where I will lose money. In the vernacular,
with these probabilities I could be turned into a ‘money pump’.
People would bet with me for as large a |w| as I could stand, confi-
dent that they could never lose money, and on at least one outcome
they will make money. Sets of probabilities where this is possible
are termed incoherent, otherwise they are coherent. It seems funda-
mentally irrational to have incoherent probabilities; indeed, if it
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were pointed out to me that my probabilities were incoherent, I
would definitely want to change them. So not-sensible = incoher-
ent, and sensible = coherent.

Definition 6 (Coherent probabilities). Let A1, . . . , Ak be a set of
propositions, with probabilities p1, . . . , pk. These probabilities are coherent
exactly when there is no set of amounts (w1, . . . , wk) for which the agent
holding these probabilities will not make money on any outcome, and will
lose money on at least one outcome.

Now for the exciting result. A set of probabilities is coherent
if and only if the probabilities obey the Laws of Probability given
in Def. 4. This result knits together the betting interpretation of
probability and the Laws of Probability; it is sometimes termed the
Dutch Book argument, which is the name I will use below. There is
a proof of this result using expectations, which I do not like; see
Howson (1997) and Kadane (2011, sec. 1.7). I will provide a better
proof based on a standard mathematical result.

Before this next result, a brief clarification on vector inequalities:
x ≥ 0 indicates that xi ≥ 0 for all i; x > 0 indicates that x ≥ 0
and xi > 0 for at least one i; x � 0 indicates that xi > 0 for all i.
There are lots of variants on the following result; my reference for
this one (and its name) is the Encyclopedia of Mathematics, https://
www.encyclopediaofmath.org/index.php/Motzkin_transposition_

theorem.

Theorem 1.9 (Stiemke’s Theorem). Let A be an m × n matrix of reals.
Then exactly one of these two alternatives is true:

1. There exists an x � 0 for which Ax = 0,

2. There exists a y for which ATy > 0.

Theorem 1.10 (Dutch Book Theorem). Probabilities are coherent if and
only if they obey the Laws of Probability (Def. 4).

Proof. Consider any two propositions which are mutually exclu-
sive, and label them P and Q. Let p := Pr(P), q := Pr(Q), and
r := Pr(P ∨ Q). Construct the outcome matrix of a set of one-unit
bets, where each row is one possible outcome. There are three out-
comes in total: P is true and Q is false, P is false and Q is true, or
P is false and Q is false. Each column is the pay-off for one unit on
one of the three bets, on P, on Q, and on P ∨ Q. Thus

M :=




P Q P ∨ Q

P ∧ ¬Q 1 − p −q 1 − r
¬P ∧ Q −p 1 − q 1 − r
¬P ∧ ¬Q −p −q −r


.

The outcomes for a set of amounts w := (w1, w2, w3) is Mw.
The presence of all three rows in M indicates that none of the

three outcomes are impossible. If an outcome such as ‘¬P,¬Q’ is
impossible under the definition of P and Q then its row is dropped
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from M. This is part of the operational nature of the betting inter-
pretation: when we think about outcomes, we only think about
outcomes that are possible, because these are the only ones where it
matters whether we gain or lose money.27 27 As Matthew records, “sufficient unto

the day is the evil thereof” (ch6, v34).Consider Stiemke’s Theorem (Thm 1.9), with A ← −MT and
y ← w. The second alternative now reads Mw < 0. This is the
definition of incoherence. Therefore coherence is equivalent to the
first alternative, which now reads “there exists a x � 0 for which
MT x = 0.” We have to show that this condition is equivalent to
p ≥ 0, q ≥ 0, p + q = r, and, if P and Q are exhaustive, r = 1.
We will prove the equivalent conditions that, if P and Q are not
impossible, then p > 0, q > 0, the other conditions being the same.

Let s := x1 + x2 + x3, where x � 0 implies that s > 0. Multiply
out MT x = 0 to derive the three equations

x1 − p · s = 0

x2 − q · s = 0

x1 + x2 − r · s = 0.

We infer immediately that p > 0, q > 0, and p + q = r. Now let
P and Q be exhaustive, as well as mutually exclusive. The third
outcome is now impossible, so M has two rows and three columns,
and x = (x1, x2). Multiplying out as before gives the equations

x1 − p · s = 0

x2 − q · s = 0

(1 − r) · s = 0,

from which r = 1 (and, as before, p > 0, q > 0, and p + q = r).
To check the converse, we show that if the Laws of Probability

are violated then MT x = 0 does not have a solution x � 0, in which
case we would be in the second alternative of Stiemke’s Theorem
and the probabilities would be incoherent. This is straightforward.
Briefly: if p = 0 and P is not impossible, then x1 = 0; likewise, if
p < 0 then x1 and s would be of different signs. If p + q �= r, then
s = 0. If r �= 1 when P and Q are exhaustive, then s = 0. In all of
these cases the condition x � 0 is contradicted.

The proof of Thm 1.10 is quite clear about the equivalence of ‘Q
is impossible’ and Pr(Q) = 0. ‘Impossible’ means ‘logically impos-
sible’, not merely ‘almost inconceivable’. Impossible outcomes get
removed from M, but almost inconceivable ones do not, because
one can still lose money if an almost inconceivable outcome occurs.
Thus not-impossible outcomes have positive probabilities under
coherence, even though they may be tiny. It is a mistake to think
that tiny probabilities can be set to zero. Interesting propositions
can be constructed as disjunctions of billions of mutually exclusive
atomic propositions (see below). If all tiny probabilities were set to
zero, then we could end up with the probability of the certain event
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being less than 1, and that would be incoherent. Dennis Lindley
(1985) made this into a Principle.

Definition 7 (Cromwell’s Rule). Reserve Pr(Q) = 0 for cases where Q
is logically impossible.

* * *

There are a huge number of additional relations that are implied
by the Laws of Probability; this is the topic of Probability Theory. If
A1, . . . , Ak were a rich set of propositions, then it would be almost
impossible for me to specify coherent probabilities for all of the
propositions that could be constructed from A1, . . . Ak. This is why,
in practice, it is better to build probabilities by applying the Laws of
Probability, achieving probabilities for complicated propositions by
combining simpler ones.

The most primitive strategy for doing this is to break all of the
propositions down into a set of mutually exclusive and exhaustive
‘atoms’, so that every proposition can be expressed as a disjunction
of atoms. For a finite set of propositions, this takes the form of
expanding out the tautology28 28 Remember the distributive rule that

A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C).

TRUE = (A1 ∨ ¬A1) ∧ · · · ∧ (Ak ∨ ¬Ak) =
2k�

j=1

A(j)

where each atom A(j) has the form (Ã1 ∧ · · · ∧ Ãk), where Ãi is
either Ai or ¬Ai. Many of these atoms will be impossible and have
zero probabilities. For example, if Ai implies Aj, then all atoms
with Ai and ¬Aj in them will have zero probabilities. The rest must
have positive probabilities which sum to 1.

This comment is not as abstract as it seems. In Statistics, when
the propositions concern random quantities, the atoms are associ-
ated with the elements of the joint realm of X represented by the
set Ω. We have

TRUE =
�

ω∈Ω

�
X =̇ x(ω)

�
.

The probabilities on the atoms are represented by the function
p ∈ P, according to Thm 1.8. According to Thm 1.10, the two
conditions p(ω) ≥ 0 and ∑ω p(ω) = 1 are necessary and sufficient
for probabilistic coherence. When theorists write “Let Ω be a set,
let F be a σ-algebra over Ω, and let p be a non-negative, finite, σ-
additive measure on F, normalised so that p(Ω) = 1” they are
doing exactly this, but using concepts that allow generalisation to
non-countable Ω, for which the notion of an atom is more tricky.

1.8 Conditional probabilities

The stunning result of the Dutch Book Theorem prompts us to go
further, and consider conditional probabilities. We need to find a
betting interpretation of the conditional probability ‘P given Q’, and
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then verify that bets involving conditional probabilities are coherent
if and only if

Pr(P, Q) = Pr(P | Q) · Pr(Q) (1.39)

which is accepted as the defining property of the conditional proba-
bility ‘Pr(P | Q)’. Note the convention in Probability and Statistics of
writing a comma in place of the conjunction ‘∧’, i.e.

(P, Q) := (P ∧ Q).

Some authors write that Pr(P | Q) is undefined when Pr(Q) = 0; this
is a mistake. The relation has the form 0 = Pr(P | Q) · 0, and hence
Pr(P | Q) is arbitrary in this case, not undefined.

The interpretation that works is a ‘called off bet’. Let r := Pr(P |Q).
Then I am indifferent between having r with certainty, and owning
a bet with pay-off

1Q · 1P + (1 − 1Q) · r.

In this bet I get 1P if Q is true, and my money back if Q is false.
Thus the bet is ‘called off’ if Q is false. All together, I am prepared
to enter into contracts of the form

w · 1Q(1P − r) for any w, positive or negative.

Theorem 1.11 (Conditional Dutch Book Theorem). Let P and Q be
any two propositions. Then the conditional probability Pr(P | Q) is coherent
if and only if Pr(P, Q) = Pr(P | Q) · Pr(Q).

Proof. It’s the same proof as Thm 1.10. Let p := Pr(P, Q), q := Pr(Q),
and r := Pr(P | Q). We must show that p = r · q.

Assume that all four outcomes concerning P and Q are possible.
Now the outcome matrix is

M :=




P ∧ Q Q P | Q

¬P,¬Q −p −q 0
P,¬Q −p −q 0

¬P, Q −p 1 − q −r
P, Q 1 − p 1 − q 1 − r


.

Multiply out MT x = 0 to give the three equations

x4 − p · s = 0

x3 + x4 − q · s = 0

x4 − (x3 + x4) · r = 0,

where s := x1 + x2 + x3 + x4 > 0, as before. Because x � 0, so r > 0
and x3 + x4 = x4/r, from the third equation. Substituting into the
first and second equations gives

x4 − p · s = 0
x4

r
− q · s = 0

from which it follows immediately that

p = r · q,
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as was to be shown (also 0 < p < q).
To check the converse, note that s > 0 can be taken without loss

of generality, because of the free variables x1 and x2. p = 0 would
imply x4 = 0. If p > 0,

p
q
=

x3

x3 + x4
, r =

x3

x3 + x4
.

If p �= r · q then there is no solution in x. Thus the second alternative
in Stiemke’s Theorem would hold, i.e. the probabilities p, q, and r
would be incoherent.

1.9 Further thoughts on subjective probabilities

Here are some more general comments, which apply as much to
expectations as they do to probabilities.

First, how I or anyone else produces a value Pr(Q) is mysterious.
Through my life I have been exposed to information which may be
relevant to the truth of Q; some of this information I have remem-
bered more-or-less intact, other information has done no more than
leave a vague impression. I may go and seek out new information.
In the end, I reach for a probability that ‘seems right’ to me, and
I test out my probability on myself by asking whether I would be
willing to buy or sell a bet at price £p. The Laws of Probability say
no more than Pr(Q) > 0 if Q is not impossible, and Pr(Q) < 1 if Q
is not logically certain. If I have a second proposition R, and Q and
R happen to be mutually exclusive, then the Laws have something
further to say. If it turns out that my probabilities are incoherent,
the Laws do not tell me how to modify them. This is down to me.

On this basis, the impression that we often agree, approximately,
about probabilities deserves some thought. Likewise the related
impression that we are often willing to accept someone else’s prob-
abilities as our own. In fact this latter impression is not so hard to
understand. There are some domains, future weather for example,
where some people have hard-earned expertise. A meteorologist
knows a lot more about future weather than I do, and it would be
sensible of me to accept a meteorologist’s probabilities as my own,
once I have satisfied myself that her probabilities are coherent.29 I 29 This is the practical definition of an

expert: ‘someone whose probabilities
you accept as your own’.

am not accepting her probabilities because they are ‘right’, a con-
cept which makes no sense. I am accepting them, and sometimes
paying for them, because I believe that my decisions made on the
basis of her probabilities about future weather will work out better
than decisions made on the basis of my own probabilities.

But what to make of the impression that we often agree, approx-
imately, about probabilities? The simplest explanation is that we
humans tend to think alike, and, in many cases where we agree,
it is because we have been exposed to similar models and similar
evidence. Here is a cute result on this topic. I’m not claiming much
more for it than this!

Suppose there is a sequence of experimental outcomes, E1, E2, . . . ,
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all of which are implied by a scientific model M. Represent this as

Pr(EA | M) = 1 for all A,

where EA denotes the conjunction of any subset A of the experi-
mental outcomes.30 Then we have the following remarkable result, 30 I.e., EA := ∧i∈A Ei where A ⊂ N.

termed the First Induction Theorem by Good (1975), and originally
proved by Wrinch and Jeffreys (1921).

Theorem 1.12 (First Induction Theorem). Let Pr(EA | M) = 1 for all
A. If Pr(M) > 0 then

lim
n→∞

Pr(En | E1, . . . , En−1) = 1.

Proof. Under the conditions of the theorem,

Pr(EA) = Pr(EA | M)Pr(M) + Pr(EA | ¬M)Pr(¬M)

≥ Pr(EA | M)Pr(M)

= Pr(M)

for al A. Now let A ← {1, . . . , n} and write the lefthand side as

pn := Pr(E1, . . . , En) = Pr(E1)
n

∏
i=2

Pr(Ei | E1, . . . , Ei−1).

p1, p2, . . . is a monotone decreasing sequence bounded below by
Pr(M). Since Pr(M) > 0 it converges to a positive limit, in which
case Pr(En | E1, . . . , En−1) converges to 1.

The remarkable thing about this result is that the displayed equa-
tion in Thm 1.12 makes no reference to model M at all. It indicates
that anyone who believes that M implies the E’s and that M is not
logically impossible is bound, sooner or later, on the accumulation
of enough evidence, to act as though M is true, in terms of their
probabilities for other implications of M. Relaxing the conditions of
the result, to allow for ‘fuzziness’ in the definition of M and in the
nature of the evidence, we can still infer that probabilities will tend
to be similar, because we will be channeled by exposure to similar
evidence into probabilistically similar models for the world.


